高三数学一轮复习学案:三角函数的最值与综合应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习学案:三角函数的最值与综合应用
一、考试要求: 1、理解正弦函数、余弦函数在[]π2,0上最大值、最小值,理解正切函数在上性质。,⎪⎭
⎫ ⎝⎛22-ππ2、了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题。
二、知识梳理:
1、型三角函数式,可化为x b x a cos sin y += )sin(y 22ϕ++=x b a ,再求最值。
2、c x b x a y ++=sin sin 2型三角函数式,利用换元法转化成二次函数在闭区间上的最值问题进行求解。
三、基础检测: 1.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦
上单调递减,则ω= ( )
(A )3 (B )2 (C )32 (D )23
2.已知函数R x x x x f ∈-=,cos sin 3)(,若()1f x ≥,则x 的取值范围为( ) A. |,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭ B. |22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭
C. 5{|,}66x k x k k Z π
πππ+≤≤+∈ D. 5{|22,}66
x k x k k Z ππππ+≤≤+∈ 3.已知函数()sin(2)f x x φ=+其中ϕ为实数,若()()6
f x f π≤对x R ∈恒成立, 且()()2
f f ππ>,则()f x 的单调递增区间是 ( ) (A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭ (B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩
⎭ (C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭ (D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭
4.函数sin cos 26y x x ππ⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭
的最大值为 5.函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f
6.已知函数f (x )=A tan (ωx+ϕ)(ω>0,2
π<ω),y=f (x )的部分图像如下图,则f (24
π)=____________.
7.函数f(x)=2cosx(sinx-cosx)在[
43,8ππ]上的最大值和最小值分别是 8.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭
,有最小值,无最大值,则ω=__________
9.求f(x)=cos 2(x-12π)+sin2(x+12
π)-1的最小正周期及单调区间,以及取最值时x 的集合。
10. 已知函数()4cos sin()16
f x x x π
=+-。(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值。