山东高考文科数学立体几何大题及答案汇编
高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)
![高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)](https://img.taocdn.com/s3/m/6b84ff792f60ddccdb38a035.png)
2012-2018年新课标全国卷Ⅰ文科数学汇编立 体 几 何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ) A .17π B . 18π C . 20π D . 28π【2016,11】平面α过正方体1111ABCD A B C D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为( )A .32 B .22 C .33 D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书 中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】 【2014,8】 【2013,11】 【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( ) A .三棱锥 B .三棱柱 C .四棱锥 D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12πB. 12πC. 8πD. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A. 2B.C. 3D.2【2018,10】在长方形ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为A. 8B. 6C. 8D.8二、填空题【2017,16】已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA SCB ⊥平面,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为_______. 【2013,15】已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.三、解答题【2017,18】如图,在四棱锥P ABCD -中,AB ∥CD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【2016,18】如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGE【2015,18】如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ; (Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 6【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.【2013,19】如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C 6,求三棱柱ABC -A 1B 1C 1的体积.【2012,19】如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ; (2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.【2018,18】如图,在平行四边形ABCM 中,AB=AC=3,∠ACM=90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA 。
2022年山东新高考数学专项练习试题(含解析)——立体几何
![2022年山东新高考数学专项练习试题(含解析)——立体几何](https://img.taocdn.com/s3/m/883afbf6bed5b9f3f80f1c13.png)
一、单选题1.已知正方形的边长为1,P、Q分别为的中点,沿将三角形折起到的位置,则三棱锥体积的最大值()A. B. C. D.2.已知是两条不同的直线,是两个不同平面,下列命题中错误的是()A. 若,则B. 若,则C. 若,则D. 若,则3.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的外接球的表面积为()A. B. C. D.4.如图,为水平放置的的直观图,其中,,则在原平面图形中有()A. B. C. D.5.已知正三棱锥中,.底面边长为2,若该三棱锥的顶点都在同一个球的表面上,则球的表面积为()A. B. C. D.6.已知,,表示不同的直线,,表示不同的平面,则下列说法正确的是()A. 若,,则B. 若,,,则C. 若,,,,则D. 若,,,,则7.在三棱锥中,.若该三棱锥的四个顶点都在球的表面上,则当三棱锥体积最大时,球的表面积为()A. B. C. D.8.已知在四面体中,平面平面,△是边长为的等边三角形,,,则四面体的体积为()A. B. C. D.9.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.10.长方体中,和与底面所成的角分别为60°和45°,则异面直线和所成角的余弦值为()A. B. C. D.11.设,是两个不同的平面,l,m是两条不同的直线,且l,m()A. 若l,则B. 若,则l mC. 若l//,则//D. 若//,则l//m12.已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系()A. 两两垂直B. 两两平行C. 两两相交D. 两两异面13.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A. +1B. +3C. +1D. +314.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A. BM=EN,且直线BM、EN是相交直线B. BM≠EN,且直线BM,EN是相交直线C. BM=EN,且直线BM、EN是异面直线D. BM≠EN,且直线BM,EN是异面直线15.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. B. 12π C. D.16..一个几何体的三视图如图所示,则该几何体的表面积为()A. 3B. 4C. 2+4D. 3+417.设α,β为两个平面,则α∥β的充要条件是()A. α内有无数条直线与β平行B. α内有两条相交直线与β平行C. α,β平行于同一条直线D. α,β垂直于同一平面18.某工作的三视图如图所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为()(材料利用率=新工件的体积/原工件的体积)A. B. C. D.19.设是同一个半径为的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( )A. B. C. D.20.下列命题中错误的是()A. 如果α⊥β,那么α内一定存在直线平行于平面βB. 如果α⊥β,那么α内所有直线都垂直于平面βC. 如果平面α不垂直平面β,那么α内一定不存在直线垂直于平面βD. 如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ21.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是( )(1) AC⊥BE.(2) 若P为AA1上的一点,则P到平面BEF的距离为.(3) 三棱锥A-B EF的体积为定值.(4) 在空间与DD1,AC,B1C1都相交的直线有无数条.(5) 过CC1的中点与直线AC1所成角为40并且与平面BEF所成角为50的直线有2条.A. 0B. 1C. 2D. 322.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 1023.如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A. 2+B.C.D. 1+24.已知两条互不重合的直线m,n,两个不同的平面α,β,下列命题中正确的是()A. 若m∥α,n∥β,且m∥n,则α∥βB. 若m⊥α,n∥β,且m⊥n,则α⊥βC. 若m⊥α,n∥β,且m∥n,则α∥βD. 若m⊥α,n⊥β,且m⊥n,则α⊥β25.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A. πB.C.D.26.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A. A1E⊥DC1B. A1E⊥BDC. A1E⊥BC1D. A1E⊥AC27.已知为球O的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球O的表面积为()A. B. C. D.28.如图,设矩形ABCD 所在的平面与梯形ACEF 所在平面交于AC ,若,则下面二面角的平面角大小为定值的是()A. B. C. D.29.已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O 到平面ABC的距离为()A. B. C. 1 D.30.半径为1的球面上的四点A,B,C,D是一个正四面体的顶点,则这个正四面体的棱长是()A. B. C. D.二、解答题31.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,(Ⅰ)设分别为的中点,求证:平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.32.如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.33.如图,已知三棱柱ABC-A1B1C1,平面A1AC1C⊥平面ABC,∠ABC=90°.∠BAC=30°,A1A=A1C=AC,E,F 分别是AC,A1B1的中点(1)证明:EF⊥BC(2)求直线EF与平面A1BC所成角的余弦值.34.如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.35.如图,在三角锥中,, , 为的中点.(1)证明:平面;(2)若点在棱上,且MC=2MB,求点C到平面POM的距离.36.如图,长方体的底面是正方形,点在棱上,。
山东省13市2021届高三最新考试数学文试题分类汇编_立体几何 全国通用 Word版含答案
![山东省13市2021届高三最新考试数学文试题分类汇编_立体几何 全国通用 Word版含答案](https://img.taocdn.com/s3/m/548aecd2aaea998fcd220e43.png)
山东省13市2021届高三最||新考试数学文试题分类汇编立体几何3一、选择、填空题1、(滨州市2021届高三上期末)三棱锥S ABC- ,其三视图中的正 (主 )视图和侧 (左 )视图如下列图 ,那么该三棱锥的体积为 ( )A.833B.1633C.3233D.1632、(德州市2021届高三第|一次模拟考试)如图 ,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 ,假设该几何体的外表积是17π ,那么它的体积是 ( )A.8πB.563πC.143πD.283π3、(菏泽市2021年(高|考)一模)一个几何体的三视图如下列图,那么该几何体的体积为()A.3 B.4 C.5 D.64、 (济宁市2021届高三第|一次模拟 (3月 ) )一个四棱锥的三视图如下列图 ,那么该四棱锥外接球的体积为 .5、 (聊城市2021届高三上期末 )一个由圆柱和正四棱锥组成的几何体 ,其三视图如下列图 ,那么该几何体的体积为 ( )A .423π+B .443π+ C. 24π+ D .44π+ 6、 (临沂市2021届高三2月份教学质量检测 (一模 ) )一几何体的三视图如下列图 ,俯视图由一个直角三角形与一个半圆组成 ,那么该几何体的体积为(A) 48π+ (B) 412π+ (C) 88π+ (D) 812π+7、 (青岛市2021年高三统一质量检测 )某几何体的三视图如右图所示 ,那么该几何体的体积为A .883π+B .1683π+C .8163π+D .16163π+ 8、 (泰安市2021届高三第|一轮复习质量检测 (一模 ) )设m 、n 是两条不同的直线 ,αβ、是两个不同的平面 ,以下命题是真命题的是A .假设//,//,//m m αβαβ则B .假设//,//,//m m ααββ则C .假设,,m m αβαβ⊂⊥⊥则D .假设,,m m ααββ⊂⊥⊥则9、 (泰安市2021届高三第|一轮复习质量检测 (一模 ) )某三棱锥的三视图如石图所示 ,其侧(左)视图为直角三角形 ,那么该三棱锥最||长的棱长等于A .42B .34C .41D .5210、 (潍坊市2021届高三下学期第|一次模拟 )某几何体的三视图如下列图 ,那么该几何体的体积为A .16πB .8πC .163πD .83π 11、 (烟台市2021届高三3月 (高|考 )诊断性测试 (一模 ) )以下列图是一个几何体的三视图 ,那么该几何体的外表积为 .12、 (枣庄市2021届高三下学期第|一次模拟考试 )?九章算术?是我国数学史上堪与欧几里得?几何原本?相媲美的数学名著.其中 ,将底面为长方形且有一条侧棱与底面垂直的的四棱锥称之为阳马;将四个面都为直角三角形的四面体称之为鳖膈.直三棱柱3,111=⊥-AB BC AB ABC C B A 中, ,3541==AA BC , ,将直三棱柱沿一条棱和两个面的对角线分割为一个阳马和一个鳖膈 ,那么鳖膈的体积与其外接球的体积之比为 A .π15:3 B .π5:33 C .33:50π D .33:25π13、 (淄博市2021届高三3月模拟考试 )一个平放的各棱长为4的三棱锥内有一个小球 ,现从该三棱锥顶端向锥内注水 ,小球慢慢上浮.当注入的水的体积是该三棱锥体积的78时 ,小球恰与该三棱锥各侧面及水面相切 (小球完全浮在水面上方 ) ,那么小球的外表积等于 ( ).A .76πB .43π C. 23π D .2π二、解答题1、 (滨州市2021届高三上期末 )如图 ,在四棱锥P ABCD -中 ,AD AP = ,2CD AB = ,CD ⊥平面APD ,AB CD ∥ ,E 为PD 的中点.(Ⅰ )求证:AE ∥平面PBC ;(Ⅱ )求证:平面PBC ⊥平面PCD .2、 (德州市2021届高三第|一次模拟考试 )如图 ,六面体ABCDE 中 ,面DBC ⊥面ABC ,AE ⊥面ABC .(Ⅰ )求证://AE 面DBC ;(Ⅱ )假设AB BC ⊥ ,BD CD ⊥ ,求证:面ADB ⊥面EDC .3、 (菏泽市2021年 (高|考 )一模 )如图 ,在多面体ABCDPE 中 ,四边形ABCD 和CDPE 都是直角梯形 ,AB ∥DC ,∥DC ,AD ⊥DC ,PD ⊥平面ABCD ,AB =PD =DA =2PE ,CD =3PE ,F 是CE 的中点.(1 )求证:BF ∥平面ADP(2 )O 是BD 的中点 ,求证:BD ⊥平面AOF .4、 (济宁市2021届高三第|一次模拟 (3月 ) )如图 ,四棱锥P ABCD -中 ,底面ABCD 是平行四边形 ,且平面PAC ⊥平面ABCD ,E 为PD 的中点 ,PA PC = ,22AB BC == ,60ABC ∠=︒.(Ⅰ )求证://PB 平面ACE ;(Ⅱ )求证:平面PBC ⊥平面PAC .5、 (聊城市2021届高三上期末 )如图 ,在直三棱柱111ABC A B C -中 ,,D M 分别是1,AA BC 的中点 ,190CDC ∠= ,在ABC ∆中 ,260AB AC BAC =∠=,°.(1 )证明://AM 平面1BDC ;(2 )证明:1DC ⊥平面BDC .6、 (临沂市2021届高三2月份教学质量检测 (一模 ) )如图 ,在直角梯形ABCD 中 ,AB//CD ,∠BCD =90 . ,BC =CD ,AE =BE ,ED ⊥平面ABCD .(I)假设M 是AB 的中点 ,求证:平面CEM ⊥平面BDE ;(II)假设N 为BE 的中点 ,求证:CN//平面ADE .-中 ,底面ABCD是菱7、(青岛市2021年高三统一质量检测)如图 ,在四棱锥P ABCDPA= ,F是棱PA上的一个动点 ,E为PD的中点.形 ,PA⊥平面ABCD ,3(Ⅰ )求证:平面BDF⊥平面PCF;CE平面BDF.(Ⅱ )假设1AF= ,求证://8、(日照市2021届高三下学期第|一次模拟)如图,菱形ABCD与正三角形BCE的边长均为2 ,FD=.且平面ABCD⊥平面BCE ,FD⊥平面ABCD ,3EF平面ABCD;(I)求证://(II)求证:平面ACF⊥平面BDF.-中,四边形9、(泰安市2021届高三第|一轮复习质量检测(一模) )如图,在四棱锥P ABCDABCD为平行四边形,AC,BD相交于点O ,点E、F、G分别为PC、AD、PD的中点,OP =OA,PA⊥PD.求证:(I )FG//平面BDE;(II )平面BDE⊥平面PCD.10、(烟台市2021届高三3月(高|考)诊断性测试(一模) )如图 ,四边形ABCD和ABEG均为平行四边形,EA⊥平面ABCD,在平面ABCD内以BD为直径的圆经过点A,AG的中点为F ,CD 的中点为P ,且2AD AB AE ===.(1 )求证:平面EFP ⊥平面BCE ;(2 )求几何体ADG BCE -的体积.11、 (淄博市2021届高三3月模拟考试 )如图 ,四棱锥中,90P ABCD ABC BAD -∠=∠=︒ ,2BC AD = ,PAB ∆与PAD ∆都是边长为2的等边三角形 ,E 是BC 的中点.(Ⅰ )求证://AE 平面PCD ;(Ⅱ )证明:平面PCD ⊥平面PBD .参考答案一、选择、填空题1、B2、D3、【解答】解:由三视图得到几何体如图:由团长时间得到体积为=5;应选C.4、43π5、A6、A7、A8、C9、C10、D 11、33π12、C 13、C二、解答题1、.证明: (Ⅰ )取PC的中点F ,连接EF BF, ,…………1分因为E F,分别是PD PC,的中点 ,所以EF CD∥ ,且12EF CD=.……2分又AB CD∥ ,12AB CD= ,所以EF AB∥ ,且EF AB= ,………………3分即四边形ABFE为平行四边形,………………4分所以AE BF∥.………………………………5分因为BF⊂平面PBC ,且AE⊄平面PBC ,…………6分所以AE∥平面PBC.…………………………7分(Ⅱ )因为CD⊥平面APD ,AE⊂平面APD ,所以CD AE⊥ ,…………8分因为AD AP = ,E 为PD 的中点 ,所以AE PD ⊥. …………………………………………9分又PD CD D = ,所以AE ⊥平面PCD ,………………………………10分由 (Ⅰ )知 ,BF AE ∥ ,所以BF ⊥平面PCD ,…………………………11分又BF ⊂平面PBC ,所以平面PBC ⊥平面PCD . …………………………12分2、证明: (Ⅰ )过点D 作DO BC ⊥ ,O 为垂足 ,∵面DBC ⊥面ABC ,面DBC 面ABC BC = ,DO ⊂面DBC , ∴DO ⊥面ABC ,又AE ⊥面ABC ,∴//AE DO ,又AE ⊄面DBC ,DO ⊂面DBC ,∴//AE 面DBC .(Ⅱ )∵面DBC ⊥面ABC ,面DBC 面ABC BC = ,AB BC ⊥ , ∴AB ⊥面DBC ,又DC ⊂面DBC ,∴AB DC ⊥ ,又BD CD ⊥ ,AB BD B = ,AB 、BD ⊂面ADB ,∴DC ⊥面ADB ,又DC ⊂面EDC ,∴面ADB ⊥面EDC .3、【解答】证明: (1 )作FM ⊥CD ,垂足为M ,连接BM ,那么DM =2PE =AB ,EM ∥PD∵DM ∥AB ,∴DMBA 是平行四边形 ,∴BM ∥AD ,∵BM ⊄平面ADP ,AD ⊂平面ADP∴BM ∥平面ADP同理EM ∥平面ADP∵BM ∩EM =M .∴平面BFM ∥平面ADP∵BF ⊂平面BFM ,∴BF ∥平面ADP ;(2 )由 (1 )可知FM =PE ,DM =BM =2PE ,∴FD=FB =PE ,∵O 是BD 的中点 ,∴FO ⊥BD ,∵AD =AB ,O 是BD 的中点 ,∴AO ⊥BD ,∵AO ∩FO =O ,∴BD ⊥平面AOF .4、 (Ⅰ )连接BD ,交AC 于点O ,连接OE ,∵底面ABCD 是平行四边形 ,∴O 为BD 中点 ,又E 为PD 中点 ,∴//OE PB ,又OE ⊂平面ACE ,PB ⊄平面ACE ,∴//PB 平面ACE .(Ⅱ )∵PA PC = ,O 为AC 中点 ,∴PO AC ⊥ ,又平面PAC ⊥平面ABCD ,平面PAC 平面ABCD AC = ,PO ⊂平面PAC ,∴PO ⊥平面ABCD ,又BC ⊂平面ABCD ,∴PO BC ⊥.在ABC ∆中 ,22AB BC == ,60ABC ∠=︒ ,∴222cos AC AB BC AB BC ABC =+-⋅⋅∠2212122132=+-⨯⨯⨯= , ∴222AC AB BC =+ ,∴BC AC ⊥.又PO ⊂平面PAC ,AC ⊂平面PAC ,PO AC O = ,∴BC ⊥平面PAC , 又BC ⊂平面PBC ,∴平面PBC ⊥平面PAC .5、解: (1 )取1BC 的中点N ,连接,DN MN ,那么11//2MN CC 且112MN CC =. 又11//2AD CC 且112AD CC = , ∴//AD MN ,且AD MN = ,∴四边形ADNM 为平行四边形 ,∴//DN AM .又DN ⊂平面1BDC ,AM ⊄平面1BDC ,∴//AM 平面1BDC .(2 )由题设1AC = ,那么2AB = ,由余弦定理 ,得3BC =.由勾股定理 ,得90ACB ∠= ,1BC AC ⊥.又∵1BC CC ⊥ ,且1CC AC C =∩ ,∴BC ⊥平面11ACC A .又1DC ⊂平面11ACC A ,∴1DC BC ⊥.又1DC DC ⊥ ,且DC BC C =∩ ,∴1DC ⊥平面BDC .6、7、解: (Ⅰ )证明:连接AC 交BD 于O底面ABCD 是菱形 ,BD AC ∴⊥ ,⊥PA 面ABCD ,BD ⊂面ABCD ,BD PA ∴⊥PA AC A = ,PA ⊂面PAC ,AC ⊂面PACBD ∴⊥面PAC ,…………………………………4分BD ∴⊥面PCFBD ⊂平面BDF ,∴平面BDF ⊥平面PCF …………………………………………6分 (Ⅱ )证明:过E 作//EG FD 交AP 于G ,连接CG ,连接FO .∵//EG FD ,EG ⊄面BDF ,FD ⊂面BDF ,∴//EG 面BDF , …………………………………………………………………………8分 底面ABCD 是菱形 ,O ∴是AC 的中点 , E 为PD 的中点 ,G ∴为PF 的中点 ,1AF = ,3=PA ,F ∴为AG 的中点 ,//OF CG ∴CG ⊄面BDF ,OF ⊂面BDF ,∴//CG 面BDF ,…………………………………………………………………………10分 又EG CG G = ,,EG CG ⊂面CGE ,∴面//CGE 面BDF ,又CE ⊂面CGE ,∴//CE 面BDF ……………………………………………………12分 8、 (Ⅰ )证明:如图 ,过点E 作BC EH ⊥于H ,连接HD ,∴3=EH . ∵平面ABCD ⊥平面BCE ,⊂EH 平面BCE ,平面 ABCD 平面BCE BC = ,∴EH ⊥平面ABCD ,又∵FD ⊥平面ABCD ,3=FD ,∴EH FD // ,EH FD =.∴四边形EHDF 为平行四边形.∴HD EF //.∵⊄EF 平面ABCD ,⊂HD 平面ABCD ,∴//EF 平面ABCD . …………………………………………………7分(Ⅱ )证明:⊥FD 面ABCD ,AC FD ⊥∴ ,又四边形ABCD 是菱形 , BD AC ⊥∴ ,又D BD FD = ,⊥∴AC 面FBD ,又⊂AC 面ACF ,从而面⊥ACF 面BDF .………………………………………12分 9、10、 (1 )证明:因为在平面ABCD 内以BD 为直径的圆经过点A ,AD AB = , 所以平行四边形ABCD 为正方形 ,所以BC AB ⊥ ,因为⊥EA 平面ABCD ,又⊂BC 平面ABCD所以⊥EA BC .因为⊥BC EA ,BC AB ⊥ ,=EA AB A ,EA ⊂平面ABEG ,AB ⊂平面ABEG ,所以BC ⊥平面ABEG ,又EF ⊂平面ABEG ,所以BC EF ⊥.因为在三角形EAG 中 ,2==EA EG ,F 为AG 的中点所以⊥EF AG又在平行四边形ABEG 中 ,//BE AG ,所以⊥EF BE .因为⊥EF BC ,⊥EF BE ,BC BE B = ,BE ⊂平面BCE ,BC ⊂平面BCE ,所以EF ⊥平面BCE又EF ⊂平面EFP ,所以平面EFP ⊥平面BCE所以EF是三棱柱ADG BCE-的高 ,所以1222242ADG BCE BCEV S EF-∆=⋅=⨯⨯⨯=.11、解: (Ⅰ ) 因为90ABC BAD∠=∠=︒,2BC AD=,E是BC的中点 ,所以//AD CE ,且AD CE=.四边形ADCE是平行四边形 ,所以//AE CD.AE⊄平面PCD ,CD⊂平面PCD,所以//AE平面PCD .(Ⅱ )连接DE,设AE交BD于O,连PO,那么ABED是正方形 ,所以AE BD⊥.因为2PD PB==,O是BD中点,所以PO BD⊥.显然OA OBPA PBPO PO=⎧⎪=⎨⎪=⎩,那么POA PBD∆≅∆,90POA PBD∠=∠=︒, 即AE PO⊥.因为BD PO O= ,所以AE⊥平面PBD.因为//AE CD ,所以CD⊥平面PBD.又CD⊂平面PCD ,所以平面PCD⊥平面PBD.。
十年高考数学山东卷精校版含详解——11立体几何部分
![十年高考数学山东卷精校版含详解——11立体几何部分](https://img.taocdn.com/s3/m/8a6a9255767f5acfa1c7cd9d.png)
十年高考数学山东卷精校版含详解——11立体几何部分一、选择题(共17小题;共85分)1. 已知直线a、b分别在两个不同的平面α、β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A. 4√5,8B. 4√5,83C. 4(√5+1),83D. 8,83. 如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是( )A. 3B. 2C. 1D. 04. 已知α、β表示两个不同的平面,m为平面α内的一条直线,则“ α⊥β”是“ m⊥β”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5. 下列几何体各自的三视图中,有且仅有两个视图相同的是( )A. ①②B. ①③C. ①④D. ②④6. 正方体的内切球与其外接球的体积之比为( )A. 1:√3B. 1:3C. 1:3√3D. 1:97. 如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ).A. 9πB. 10πC. 11πD. 12π8. 设地球的半径为R,若甲地位于北纬45∘东经120∘,乙地位于南纬75∘东经120∘,则甲、乙两地的球面距离为( )A. √3RB. π6R C. 5π6R D. 2π3R9. 如图是一个几何体的三视图,根据图中的数据,计算该几何体的表面积为( )A. 15πB. 18πC. 22πD. 33π10. 一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A. 13+23π B. 13+√23π C. 13+√26π D. 1+√26π11. 已知三棱柱ABC−A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形.若P 为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )A. 5π12B. π3C. π4D. π612. 已知三棱柱ABC−A1B1C1的侧棱与底面垂直,体积为94,底面是边长为√3的正三角形,若P 为底面A1B1C1的中心,则PA与平面ABC所成角的大小为( )A. 5π12B. π3C. π4D. π613. 已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2√23π B. 4√2π3C. 2√2πD. 4√2π14. 在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A. 2π3B. 4π3C. 5π3D. 2π15. 一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图所示,则该四棱锥侧面积和体积分别是( )A. 4√5,8B. 4√5,83C. 4(√5+1),83D. 8,816. 一空间几何体的三视图如图所示,则该几何体的体积为( )A. 2π+2√3B. 4π+2√3C. 2π+2√33D. 4π+2√3317. 如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60∘,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则三棱锥P−DCE的外接球的体积为( ).A. 4√3π27B. √6π2C. √6π8D. √6π24二、填空题(共10小题;共50分)18. 如图,正方体ABCD−A1B1C1D1的棱长为1,E为线段B1C上的一点,则三棱锥A−DED1的体积为.19. 如图,在正三棱柱ABC−A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为.20. 已知m、n是不同的直线,α、β是不重合的平面,给出下列命题:①若α∥β,m⊂α,n⊂β,则m∥n;②若m,n⊂α,m∥β,n∥β,则α∥β;③若 m ⊥α,n ⊥β,m ∥n ,则 α∥β;④ m ,n 是两条异面直线,若 m ∥α,m ∥β,n ∥α,n ∥β,则 α∥β. 上面的命题中,真命题的序号是 .(写出所有真命题的序号) 21. 已知 m 、n 是不同的直线,α、β 是不重合的平面,给出下列命题:①若 m ∥α,则 m 平行于平面 α 内的任一条直线; ②若 α∥β,m ⊂α,n ⊂β,则 m ∥n ; ③若 m ⊥α,n ⊥β,m ∥n ,则 α∥β; ④若 α∥β,m ⊂α,则 m ∥β.上面的命题中,真命题的序号是 .(写出所有真命题的序号) 22. 一个六棱锥的体积为 2√3,其底面是边长为 2 的正六边形,侧棱长都相等,则该六棱锥的侧面积为 .23. 由一个长方体和两个 14 圆柱体构成的几何体的三视图如图,则该几何体的体积为 .24. 如图,正方体 ABCD −A 1B 1C 1D 1 的棱长为 1,E ,F 分别为线段 AA 1,B 1C 上的点,则三棱锥D 1−EDF 的体积为 .25. 三棱锥 P −ABC 中,D ,E 分别为 PB ,PC 的中点,记三棱锥 D −ABE 的体积为 V 1,P −ABC的体积为 V 2,则 V1V 2= .26. 下列四个命题中,真命题的序号有 (写出所有真命题的序号).①将函数 y =∣x +1∣ 的图象按向量 v ⃗=(−1,0) 平移,得到的图象对应的函数表达式为 y =∣x ∣; ②圆 x 2+y 2+4x +2y +1=0 与直线 y =12x 相交,所得的弦长为 2;③若 sin (α+β)=12,sin (α−β)=13,则 tanα⋅cotβ=5;④如图,已知正方体 ABCD −A 1B 1C 1D 1,P 为底面 ABCD 内一动点,P 到平面 AA 1D 1D 的距离与到直线 CC 1 的距离相等,则 P 点的轨迹是抛物线的一部分.27. 如图,已知正三棱柱ABC−A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成角的正弦值为.三、解答题(共22小题;共286分)28. 在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆Oʹ的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;AC=2√3,AB=BC.求二面角F−BC−A的余弦值.(2)已知EF=FB=1229. 如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120∘得到的,G是DF⏜的中点.⏜上的一点,且AP⊥BE,求∠CBP的大小;(1)设P是CE(2)当AB=3,AD=2时,求二面角E−AG−C的大小.30. 由四棱柱ABCD−A1B1C1D1截去三棱锥C1−B1CD1后得到的几何体如图所示,四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.AD,E,F分别为线段31. 如图,四棱锥P−ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面PAC.32. 如图,三棱台DEF−ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.33. 在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E,G,F分别为MB,PB,PC的中点,且AD=PD=2MA.(1)求证:平面EFG⊥平面PDC;(2)求三棱锥P−MAB与四棱锥P−ABCD的体积之比.34. 如图,在四棱锥P−ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4√5.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P−ABCD的体积.35. 在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90∘,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A−BF−C的大小.36. 在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60∘,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F−BD−C的余弦值.37. 如图,在四棱柱ABCD−A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60∘,AB=2CD=2,M是线段AB的中点.(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=√3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.38. 在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G、H分别是EC和FB的中点,求证:GH∥平面ABC.39. 如图,在直四棱柱ABCD−A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)求证:D1C⊥AC1;(2)设E是DC上一点,试确定E的位置,使D1E∥平面A1BD,并说明理由.40. 如图,在四棱台ABCD−A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四边形,AB=2AD,AD=A1B1,∠BAD=60∘.(1)证明:AA1⊥BD;(2)证明:CC1∥平面A1BD.41. 如图,在五棱锥P−ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45∘,AB=2√2,BC=2AE=4,三角形PAB是等腰三角形.(1)求证:平面PCD⊥平面PAC;(2)求直线PB与平面PCD所成角的大小;(3)求四棱锥P−ACDE的体积.42. 如图,在直四棱柱ABCD−A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.(1)设E是DC的中点,求证:D1E∥平面A1BD;(2)求二面角A1−BD−C1的余弦值.43. 如图,在直四棱柱ABCD−A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分别是棱AD,AA1的中点.(1)设F是棱AB的中点,证明:直线EE1∥平面FCC1;(2)证明:平面D1AC⊥平面BB1C1C.44. 如图,在直四棱柱ABCD−A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F分别是棱AD,AA1,AB的中点.(1)证明:直线EE1∥平面FCC1;(2)求二面角B−FC1−C的余弦值.45. 如图,在三棱台DEF−ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45∘,求平面FGH与平面ACFD所成的角(锐角)的大小46. 如图,已知平面A1B1C1平行于三棱锥V−ABC的底面ABC,等边△AB1C所在的平面与底面ABC垂直,且∠ACB=90∘,设AC=2a,BC=a.(1)求证直线B1C1是异面直线AB1与A1C1的公垂线;(2)求点A到平面VBC的距离;(3)求二面角A−VB−C的大小.47. 如图,已知四棱锥P−ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60∘,E、F分别是BC、PC的中点.(1)证明:AE⊥PD;,求二面角E−AF−C (2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为√62的余弦值.48. 如图,已知四棱锥P−ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=√2,PB⊥PD.(1)求异面直线PD与BC所成角的余弦值;(2)求二面角P−AB−C的大小;=λ,问λ为何值时,PC⊥平面BMD.(3)设点M在棱PC上,且PMMC49. 如图,在长方体ABCD−A1B1C1D1中,AB=2,AA1=1,直线BD与平面AA1B1B所成的角为30∘,AE垂直BD于E,F为A1B1的中点.(1)求异面直线AE与BF所成的角;(2)求平面BDF与平面A1AB所成的二面角(锐角)的大小;(3)求点A到平面BDF的距离.答案第一部分1. A 【解析】“直线a和直线b相交”⇒“平面α和平面β相交”;“平面α和平面β相交”⇒“直线a 和直线b相交”.所以“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.2. B 【解析】由正视图得出四棱锥的底面边长与高,进而求出侧面积与体积.由正视图知:四棱锥的底面是边长为2的正方形,四棱锥的高为2,所以V=13×22×2=83.四棱锥的侧面是全等的等腰三角形,底为2,高为√5,所以S侧=4×12×2×√5=4√5.(如图).3. A4. B5. D6. C7. D 【解析】由题意知,该几何体上方为一个半径为1的球,下方是一个底面半径为1、高为3的圆柱,故它的表面积为2π⋅12+2π⋅1⋅3+4π⋅12=12π.8. D 9. D 【解析】几何体由上面的半球加下面的圆锥组成,其中圆锥的母线长和高分别为5和4,则可计算出圆锥的底面半径为3,故球的半径为3.因此几何体的表面积是2π⋅32+12⋅(2π⋅3)⋅5= 33π.10. C【解析】由三视图可知,上面是半径为√22的半球,体积为V1=12×43π×(√22)3=√2π6,下面是底面积为1,高为1得四棱锥,体积V2=13×1×1=13.11. B 【解析】设三棱柱的高为ℎ,则√34×(√3)2×ℎ=94,解得ℎ=√3.设三棱柱中底面ABC的中心为Q,则PQ=√3,AQ=23×√32×√3=1.在Rt△APQ中,∠PAQ为直线PA与平面ABC所成的角,且tan∠PAQ=√3,所以∠PAQ=π3.12. B 【解析】如图所示,过点P作PO⊥平面ABC于点O,由V=S△ABC⋅AA1=94得AA1=PO=√3,而AO=1,所以tan∠PAO=√3,所以PA与平面ABC所成角为π3.13. B 14. C 【解析】提示:分析知,围成的几何体为如图所示一个圆柱挖去一个圆锥.15. B16. C 【解析】该几何体为一组合体,下部为一个圆柱,上部为一个正四棱锥,且棱锥的底面内接于圆柱的上底面.17. C 【解析】三棱锥 P −DCE 是一个正四面体,取 CE 的中点 E ,连接 PN ,DN ,做三棱锥的高 PM ,交底面与点 M ,设球的球心为 O ,则 PM =√63,DM =√33,所以有 (√63−r)2+(√33)2=r 2,解得r =√64,所以外接球的体积 V =43πR 3=√6π8.第二部分 18. 16【解析】在正方体 ABCD −A 1B 1C 1D 1 中,B 1C ∥平面A 1ADD 1,所以 E 在线段 B 1C 上任何一点到面 ADD 1 的距离都相等,且为 1,所以 V A−DED 1=V E−ADD 1=13×12×1×1×1=16. 19.√217【解析】提示:运用等积法,即 V B 1―ABC 1=V C 1―ABB 1 求解. 20. ③④【解析】① α∥β,m ,n 两条直线可能异面;②若 m ,n 两条直线平行,则平面 α,β 可能相交. 21. ③④ 22. 12【解析】因为一个六棱锥的体积为 2√3,其底面是边长为 2 的正六边形,侧棱长都相等,所以棱锥是正六棱锥,设棱锥的高为 ℎ,则 13×6×√34×22⋅ℎ=2√3,所以 ℎ=1,棱锥的斜高为:√ℎ2+(√32×2)2=√1+3=2,该六棱锥的侧面积为:6×13×2×2=12.23. 2+π224. 16【解析】法1:因为 E 点在线段 AA 1 上, 所以 S △DED 1=12×1×1=12, 又因为 F 点在线段 B 1C 上,所以点 F 到平面 DED 1 的距离为 1,即 ℎ=1,所以 V D 1−EDF =V F−DED 1=13×S △DED 1×ℎ=13×12×1=16.法2:(使用特殊点的位置进行求解)令 E 点在 A 点处,F 点在 C 点处, 则 V D 1−EDF =V D 1−ADC =13×S △ADC ×DD 1=13×12×1×1×1=16. 25. 14 【解析】V E−ABDV C−ABP=13×S △ABD ×ℎ113×S △ABP ×ℎ2=14.26. ③④【解析】①函数 y =∣x +1∣ 按向量 v ⃗=(−1,0) 平移后所得图象对应的函数为 y =∣(x +1)+1∣=∣x +2∣,故①错;②因为圆心 (−2,−1) 在直线 y =12x 上,所以直线 y =12x 被圆所截得的弦长为 2r =4,故②错; ③由 {sin (α+β)=12,sin (α−β)=13 解得,sinαcosβ=512,cosαsinβ=112,所以 tanαcotβ=5,故③正确; ④ P 到平面 AA 1D 1D 的距离即为 P 到直线 AD 的距离,P 到 CC 1 的距离即为 P 到 C 的距离,故结合题意可知,点 P 到直线 AD 的距离等于点 P 到 C 的距离,由抛物线的定义可知,点 P 的轨迹是以点 C 为焦点以直线 AD 为准线的抛物线在平面 ABCD 内的部分,故④正确. 27. 45【解析】如图,先证出B1D⊥平面AC1,过A点作AG⊥CD于G,证AG⊥平面B1DC,可知∠ADG即为直线AD与平面B1DC所成角,求其正弦值即可.第三部分28. (1)设FC的中点为I,连接GI,HI,在△CEF中,因为G是CE的中点,所以GI∥EF,又EF∥OB,所以GI∥OB,在△CFB中,因为H是FB的中点,所以HI∥BC,又HI∩GI=I,BC,OB交于点B,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.(2)解法一:连接OOʹ,则OOʹ⊥平面ABC,又AB=BC,且AC是圆O的直径,所以 BO ⊥AC .以 O 为坐标原点,建立如图所示的空间直角坐标系 O −xyz ,由题意得 B(0,2√3,0),C(−2√3,0,0),过点 F 作 FM 垂直 OB 于点 M , 所以 FM =√FB 2−BM 2=3, 可得 F(0,√3,3).故 BC⃗⃗⃗⃗⃗⃗=(−2√3,−2√3,0),BF ⃗⃗⃗⃗⃗⃗=(0,−√3,3). 设 m ⃗⃗⃗=(x,y,z ) 是平面 BCF 的一个法向量. 由 {m ⃗⃗⃗⋅BC⃗⃗⃗⃗⃗⃗=0,m ⃗⃗⃗⋅BF ⃗⃗⃗⃗⃗⃗=0,可得 {−2√3x −2√3y =0,−√3y +3z =0,可得平面 BCF 的一个法向量 m ⃗⃗⃗=(−1,1,√33). 因为平面 ABC 的一个法向量 n ⃗⃗=(0,0,1), 所以 cos⟨m ⃗⃗⃗,n ⃗⃗⟩=m⃗⃗⃗⃗⋅n ⃗⃗∣m⃗⃗⃗⃗∣∣n ⃗⃗∣=√77. 所以二面角 F −BC −A 的余弦值为 √77. 解法二:连接 OOʹ,过点 F 作 FM ⊥OB 于点 M ,则有 FM ∥OOʹ, 又 OOʹ⊥平面ABC , 所以 FM ⊥平面ABC , 可得 FM =√FB 2−BM 2=3,过点 M 作 MN 垂直 BC 于点 N ,连接 FN , 可得 FN ⊥BC ,从而 ∠FNM 为二面角 F −BC −A 的平面角.又 AB =BC ,AC 是圆 O 的直径, 所以 MN =BMsin45∘=√62, 从而 FN =√422,可得 cos∠FNM =√77. 所以二面角 F −BC −A 的余弦值为 √77.29. (1) 因为 AP ⊥BE ,AB ⊥BE ,且 AB,AP ⊂平面ABP ,AB ∩AP =A , 所以 BE ⊥平面ABP ,又 BP ⊂平面ABP , 所以 BE ⊥BP ,又 ∠EBC =120∘, 因此 ∠CBP =30∘; (2) 解法一、取 EC⏜ 的中点 H ,连接 EH ,GH ,CH ,因为 ∠EBC =120∘, 所以四边形 BECH 为菱形,所以 AE =GE =AC =GC =√32+22=√13. 取 AG 中点 M ,连接 EM ,CM ,EC , 则 EM ⊥AG ,CM ⊥AG ,所以 ∠EMC 为所求二面角的平面角. 又 AM =1,所以 EM =CM =√13−1=2√3. 在 △BEC 中,由于 ∠EBC =120∘,由余弦定理得:EC 2=22+22−2×2×2×cos120∘=12, 所以 EC =2√3,因此 △EMC 为等边三角形, 故所求的角为 60∘ .解法二、以 B 为坐标原点,分别以 BE ,BP ,BA 所在直线为 x ,y ,z 轴建立空间直角坐标系.由题意得:A (0,0,3),E (2,0,0),G(1,√3,3),C(−1,√3,0), 故 AE ⃗⃗⃗⃗⃗⃗=(2,0,−3),AG ⃗⃗⃗⃗⃗⃗=(1,√3,0),CG ⃗⃗⃗⃗⃗⃗=(2,0,3). 设 m ⃗⃗⃗=(x 1,y 1,z 1) 为平面 AEG 的一个法向量, 由 {m ⃗⃗⃗⋅AE⃗⃗⃗⃗⃗⃗=0,m ⃗⃗⃗⋅AG ⃗⃗⃗⃗⃗⃗=0, 得 {2x 1−3z 1=0,x 1+√3y 1=0, 取 z 1=2,得 m ⃗⃗⃗=(3,−√3,2);设 n ⃗⃗=(x 2,y 2,z 2) 为平面 ACG 的一个法向量, 由 {n ⃗⃗⋅AG ⃗⃗⃗⃗⃗⃗=0,n ⃗⃗⋅CG ⃗⃗⃗⃗⃗⃗=0, 可得 {x 2+√3y 2=0,2x 2+3z 2=0, 取 z 2=−2,得 n ⃗⃗=(3,−√3,−2).所以 cos⟨m ⃗⃗⃗,n ⃗⃗⟩=m ⃗⃗⃗⃗⋅n ⃗⃗∣m⃗⃗⃗⃗∣∣n ⃗⃗∣=12. 所以二面角 E −AG −C 的大小为 60∘. 30. (1) 取 B 1D 1 中点 G ,连接 A 1G ,CG ,因为四边形 ABCD 为正方形,O 为 AC 与 BD 的交点,所以四棱柱 ABCD −A 1B 1C 1D 1 截去三棱锥 C 1−B 1CD 1 后,A 1G ∥OC ,A 1G =OC , 所以四边形 OCGA 1 是平行四边形, 所以 A 1O ∥CG ,因为 A 1O ⊄平面B 1CD 1,CG ⊂平面B 1CD 1, 所以 A 1O ∥平面B 1CD 1.(2) 四棱柱 ABCD −A 1B 1C 1D 1 截去三棱锥 C 1−B 1CD 1 后,BD ∥B 1D 1,BD =B 1D 1, 因为 M 是 OD 的中点,O 为 AC 与 BD 的交点,E 为 AD 的中点,A 1E ⊥平面ABCD , 又 BD ⊂平面ABCD , 所以 BD ⊥A 1E ,因为四边形 ABCD 为正方形,O 为 AC 与 BD 的交点, 所以 AO ⊥BD ,因为 M 是 OD 的中点,E 为 AD 的中点,所以EM⊥BD,因为A1E∩EM=E,所以BD⊥平面A1EM,因为BD∥B1D1,所以B1D1⊥平面A1EM,因为B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.31. (1)设AC∩BE=O,连接OF,EC.由于E为AD的中点,AD,AD∥BC,AB=BC=12所以AE∥BC,AE=AB=BC,因此四边形ABCE为菱形,所以O为AC的中点.又F为PC的中点,因此在△PAC中,可得AP∥OF.由OF⊂平面BEF,AP⊄平面BEF,所以AP∥平面BEF.(2)由题意知ED∥BC,ED=BC,所以四边形BCDE为平行四边形,因此BE∥CD .又AP⊥平面PCD,所以AP⊥CD,因此AP⊥BE,因为四边形ABCE为菱形,所以BE⊥AC .又AP∩AC=A,AP⊂平面PAC,AC⊂平面PAC,所以BE⊥平面PAC.32. (1)证法一:如图,连接DG,CD,设CD∩GF=O,连接OH.在三梭台DEF−ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则O为CD的中点.又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF−ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)如图,连接HE.因为G,H分别为AC,BC的中点,所以GH∥AB.由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形.所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.33. (1)因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,因此BC⊥平面PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,因此GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.(2)设MA=1,则PD=AD=2,因为PD⊥平面ABCD,四边形ABCD为正方形,所以V P−ABCD=13S正方形ABCD⋅PD=13×2×2×2=83.由题意知DA⊥平面MAB,且PD∥MA,所以DA即为点P到平面MAB的距离,所以V P−MAB=13S△MAB⋅DA=13×12×1×2×2=23.所以V P−MAB:V P−ABCD=23:83=1:4.34. (1)在△ABD中,由于AD=4,BD=8,AB=4√5,因为AD2+BD2=AB2,所以AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面PAD,又BD⊂平面MBD,故平面MBD⊥平面PAD.(2)过P作PO⊥AD交AD于O,由于平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因此PO为四棱锥P−ABCD的高,又△PAD是边长为4的等边三角形,因此PO=√32×4=2√3.因为在底面四边形ABCD中,AB∥DC,AB=2DC,所以四边形ABCD是梯形.在Rt△ADB中,斜边AB边上的高为4√5=8√55,所以四边形ABCD的面积为S=2√5+4√52×8√55=24.故四棱锥P−ABCD的体积为V P−ABCD=13×24×2√3=16√3.35. (1)由于EF∥AB,AB=2EF,所以可延长BF交AE于点P.而FG∥BC,EG∥AC,则P∈BF⊂平面BFGC,P∈AE⊂平面AEGC,即P∈平面BFGC∩平面AEGC=GC,于是BF,CG,AE三线共点,FG∥BC,FG=12 BC,因为M是线段AD的中点,而AD∥BC,AD=BC,则FG∥AM,FG=AM,所以四边形AMGF为平行四边形,所以GM∥AF,又AF⊂平面ABFE,GM⊄平面ABFE,所以GM∥平面ABFE.(2)解法一:取AB的中点H,连接CH.因为AC=BC,所以CH⊥AB,因为EA⊥平面ABCD,CH⊂平面ABCD,所以EA⊥CH又因为EA∩AB=A所以CH⊥平面ABFE,作HT⊥BF于T,连接CT.则CT⊥BF,于是∠CTH为二面角A−BF−C的平面角.由AC=BC=2AE,设AE=1,则AC=BC=2,AB=2√2,CH=√2,H 为AB的中点,tan∠FBA=AEAB−EF=2AEAB=2√2=√22,sin∠FBA=√3 3,所以HT=BHsin∠ABF=√2×√33=√63,在Rt△CHT中,tan∠CTH=CHHT=√3,则∠CTH=60∘,即二面角A−BF−C的大小为60∘.解法二:由四边形ABCD为平行四边形,∠ACB=90∘,EA⊥平面ABCD,可得以点A为坐标原点,AC,AD,AE所在直线分别为x,y,z轴建立空间直角坐标系,由 AC =BC =2AE ,设 AE =1,则 AC =BC =2,C (2,0,0),E (0,0,1),B (2,−2,0),F (1,−1,1),则BC⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗=(0,2,0),BF⃗⃗⃗⃗⃗⃗=(−1,1,1),AB⃗⃗⃗⃗⃗⃗=(2,−2,0), 设 n 1⃗⃗⃗⃗⃗=(x 1,y 1,z 1),n 2⃗⃗⃗⃗⃗=(x 2,y 2,z 2) 分别为平面 ABF 与平面 CBF 的法向量,则{2x 1−2y 1=0,−x 1+y 1+z 1=0,令 x 1=1,则 y 1=1,z 1=0,n 1⃗⃗⃗⃗⃗=(1,1,0);{2y 2=0,−x 2+y 2+z 2=0,令 x 2=1,则 y 2=0,z 2=1,n 2⃗⃗⃗⃗⃗=(1,0,1).于是cos ⟨n 1⃗⃗⃗⃗⃗,n 2⃗⃗⃗⃗⃗⟩=n 1⃗⃗⃗⃗⃗⋅n 2⃗⃗⃗⃗⃗∣n 1⃗⃗⃗⃗⃗∣⋅∣n 2⃗⃗⃗⃗⃗∣=12, 则⟨n 1⃗⃗⃗⃗⃗,n 2⃗⃗⃗⃗⃗⟩=60∘, 即二面角 A −BF −C 的大小为 60∘.36. (1) 因为四边形 ABCD 是等腰梯形,AB ∥CD ,∠DAB =60∘,所以 ∠ADC =∠BCD =120∘.又 CB =CD ,所以 ∠CDB =30∘,因此 ∠ADB =90∘,AD ⊥BD ,又 AE ⊥BD ,且 AE ∩AD =A ,AE,AD ⊂平面 AED ,所以 BD ⊥平面 AED .(2) 解法一:由(1)知 AD ⊥BD ,所以 AC ⊥BC .又 FC ⊥平面 ABCD ,因此 CA ,CB ,CF 两两垂直,以 C 为坐标原点,分别以 CA ,CB ,CF 所在的直线为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.不妨设 CB =1,则 C (0,0,0),B (0,1,0),D (√32,−12,0),F (0,0,1).因此 BD ⃗⃗⃗⃗⃗⃗⃗=(√32,−32,0),BF ⃗⃗⃗⃗⃗⃗=(0,−1,1). 设平面 BDF 的法向量为 m ⃗⃗⃗=(x,y,z ),则 m ⃗⃗⃗⋅BD ⃗⃗⃗⃗⃗⃗⃗=0,m ⃗⃗⃗⋅BF⃗⃗⃗⃗⃗⃗=0, 所以 x =√3y =√3z ,取 z =1,则 m ⃗⃗⃗=(√3,1,1).由于 CF⃗⃗⃗⃗⃗⃗=(0,0,1) 是平面 BDC 的一个法向量,则 cos⟨m ⃗⃗⃗,CF⃗⃗⃗⃗⃗⃗⟩=m ⃗⃗⃗⋅CF ⃗⃗⃗⃗⃗⃗∣m ⃗⃗⃗∣∣∣CF ⃗⃗⃗⃗⃗⃗∣∣=√5=√55. 所以二面角 F −BD −C 的余弦值为 √55.解法二:如图,取 BD 的中点 G ,连接 CG ,FG .由于 CB =CD ,因此 CG ⊥BD .又 FC ⊥平面 ABCD ,BD ⊂平面 ABCD ,所以 FC ⊥BD .由于 FC ∩CG =C ,FC,CG ⊂平面 FCG ,所以 BD ⊥平面 FCG ,故 BD ⊥FG ,所以 ∠FGC 为二面角 F −BD −C 的平面角.在等腰三角形 BCD 中,由于 ∠BCD =120∘,因此 CG =12CB . 又 CB =CF ,所以 GF =√CG 2+CF 2=√5CG ,故 cos∠FGC =√55,因此二面角 F −BD −C 的余弦值为 √55. 37. (1) 因为四边形 ABCD 是等腰梯形,且 AB =2CD ,所以 AB ∥DC .又由 M 是 AB 中点,因此 CD ∥MA 且 CD =MA .连接 AD 1,在四棱柱 ABCD −A 1B 1C 1D 1 中,因为 CD ∥C 1D 1,CD =C 1D 1,可得 C 1D 1∥MA ,C 1D 1=MA ,所以四边形 AMC 1D 1 为平行四边形,因此 C 1M ∥D 1A .又 C 1M ⊄ 平面 A 1ADD 1,D 1A ⊂ 平面 A 1ADD 1,所以 C 1M ∥ 平面 A 1ADD 1.(2) 由(1)知,平面 D 1C 1M ∩ 平面 ABCD =AB .过 C 向 AB 作垂线交 AB 于 N ,连接 D 1N .由 CD 1⊥面ABCD ,可得 D 1N ⊥AB ,故 ∠D 1NC 为二面角 C 1−AB −C 的平面角.在 Rt △D 1CN 中,BC =1,∠NBC =60∘,可得 CN =√32,所以 ND 1=√CD 12+CN 2=√152. 在 Rt △D 1CN 中,cos∠D 1NC =CN D 1N =√32√152=√55, 所以平面 C 1D 1M 和平面 ABCD 所成的角(锐角)的余弦值为 √55.38. (1) 因为 EF ∥BD ,所以 EF 与 BD 确定一个平面.因为 AE =EC ,E 为 AC 的中点,所以 DE ⊥AC ;同理可得 BD ⊥AC .又因为 BD ∩DE =D ,所以 AC ⊥平面BDEF ,又因为 FB ⊂平面BDEF ,所以 AC ⊥FB .(2) 设 FC 的中点为 I ,连接 GI ,HI .在 △CEF 中,因为 G 是CE 的中点,所以GI∥EF.又EF∥DB,所以GI∥DB;在△CFB中,因为H是FB的中点,所以HI∥BC.又GI∩HI=I,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.39. (1)在直四棱柱ABCD−A1B1C1D1中,连接C1D.∵DC=DD1,∴四边形DCC1D1是正方形.∴DC1⊥D1C.又AD⊥DC,AD⊥DD1,DC∩DD1=D,∴AD⊥平面DCC1D1,D1C⊂平面DCC1D1,∴AD⊥D1C.∵AD,DC1⊂平面ADC1,且AD∩DC1=D,∴D1C⊥平面ADC1,又AC1⊂平面ADC1,∴D1C⊥AC1.(2)连接AD1,AE.设AD1∩A1D=M,BD∩AE=N,连接MN.∵平面AD1E∩平面A1BD=MN,要使D1E∥平面A1BD,须使MN∥D1E,又M是AD1的中点,∴N是AE的中点.又易知△ABN≌△EDN,∴AB=DE.即E是DC的中点.综上所述,当E是DC的中点时,可使D1E∥平面A1BD.40. (1)因为AB=2AD,所以设AD=a,则AB=2a,又因为∠BAD=60∘,所以在△ABD中,由余弦定理得:BD2=(2a)2+a2−2a×2a×cos60∘=3a2,所以BD=√3a,所以AD2+BD2=AB2,故BD⊥AD,又因为D1D⊥平面ABCD,所以D1D⊥BD,又因为AD∩D1D=D,所以BD⊥平面ADD1A1,故AA1⊥BD.(2)如图,连接AC,设AC∩BD=O,连接A1O,由底面ABCD是平行四边形得,O是AC的中点,由四棱台ABCD−A1B1C1D1知,平面ABCD∥平面A1B1C1D1,因为这两个平面同时都和平面ACC1A1相交,交线分别为AC,A1C1,故AC∥A1C1,又因为AB=2a,BC=a,∠ABC=120∘,所以可由余弦定理计算得AC=√7a,又因为A1B1=a,B1C1=a2,∠A1B1C1=120∘,所以可由余弦定理计算得A 1C 1=√72a, 所以 A 1C 1∥OC 且 A 1C 1=OC ,故四边形 OCC 1A 1 是平行四边形,所以 CC 1∥A 1O , 又 CC 1⊄ 平面 A 1BD ,A 1O ⊂ 平面 A 1BD ,所以 CC 1 ∥ 平面 A 1BD .41. (1) 在 △ABC 中,因为 ∠ABC =45∘,BC =4,AB =2√2,所以AC 2=AB 2+BC 2−2AB ⋅BC ⋅cos45∘=8.因此 AC =2√2,故 BC 2=AC 2+AB 2,所以 ∠BAC =90∘.又 PA ⊥平面 ABCDE ,AB ∥CD ,所以 CD ⊥PA ,CD ⊥AC .又 PA,AC ⊂平面 PAC ,且 PA ∩AC =A ,所以 CD ⊥平面 PAC .又 CD ⊂平面 PCD ,所以 平面 PCD ⊥平面 PAC .(2) 解法一:因为 △APB 是等腰三角形,所以 PA =AB =2√2,因此 PB =√PA 2+AB 2=4,又 AB ∥CD ,所以点 B 到平面 PCD 的距离等于点 A 到平面 PCD 的距离.由于 CD ⊥平面 PAC ,在 Rt △PAC 中,PA =2√2,AC =2√2,所以 PC =4,故 PC 边上的高为2.此即为点 A 到平面 PCD 的距离,所以 B 到平面 PCD 的距离为 ℎ=2.设直线 PB 与平面 PCD 所成的角为 θ,则 sinθ=ℎPB =24=12,又 θ∈[0,π2],所以 θ=π6. 解法二:由(1)知 AB ,AC ,AP 两两相互垂直.分别以 AB ,AC ,AP 为 x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.由于 △PAB 是等腰三角形,所以 PA =AB =2√2.又 AC =2√2,因此A (0,0,0),B(2√2,0,0),C(0,2√2,0),P(0,0,2√2).因为 AC ∥DE ,CD ⊥AC ,所以四边形 ACDE 是直角梯形.因为 AE =2,∠ABC =45∘,AE ∥BC ,所以 ∠BAE =135∘.因此 ∠CAE =45∘,故CD =AE ⋅sin45∘=2×√22=√2, 所以 D(−√2,2√2,0),因此CP ⃗⃗⃗⃗⃗⃗=(0,−2√2,2√2),CD⃗⃗⃗⃗⃗⃗=(−√2,0,0), 设 m ⃗⃗⃗=(x,y,z ) 是平面 PCD 的一个法向量,则m ⃗⃗⃗⋅CP ⃗⃗⃗⃗⃗⃗=0,m ⃗⃗⃗⋅CD⃗⃗⃗⃗⃗⃗=0, 解得 x =0,y =z ,取 y =1,得 m ⃗⃗⃗=(0,1,1),又 BP⃗⃗⃗⃗⃗⃗=(−2√2,0,2√2),设 θ 表示向量 BP ⃗⃗⃗⃗⃗⃗ 与平面 PCD 的法向量 m ⃗⃗⃗ 所成的角,则cosθ=m ⃗⃗⃗⋅BP ⃗⃗⃗⃗⃗⃗∣m ⃗⃗⃗∣∣∣BP ⃗⃗⃗⃗⃗⃗∣∣=12, 所以 θ=π3,因此直线 PB 与平面 PCD 所成的角为 π6.(3) 因为 AC ∥ED ,CD ⊥AC ,所以四边形 ACDE 是直角梯形, 因为 AE =2,∠ABC =45∘,AE ∥BC ,所以 ∠BAE =135∘, 因此 ∠CAE =45∘,故CD =AE ⋅sin45∘=2×√22=√2,ED=AC −AE ⋅cos45∘=2√2−2×√22=√2,所以S 四边形ACDE =√2+2√22×√2=3. 又 PA ⊥ 平面 ABCDE ,所以V P−ACDE =13×3×2√2=2√2.42. (1) 连结 BE ,则四边形 DABE 为正方形, ∴BE =AD =A 1D 1,且 BE ∥AD ∥A 1D 1, ∴ 四边形 A 1D 1EB 为平行四边形, ∴D 1E ∥A 1B .∵D 1E ⊄平面 A 1BD ,A 1B ⊂平面 A 1BD , ∴D 1E ∥平面 A 1BD .(2) 以 D 为原点,DA 、 DC 、 DD 1 所在直线分别为 x 轴、 y 轴、 z 轴,建立空间直角坐标系.设 AD =1,则 A (1,0,0),B (1,1,0),C 1(0,2,2),A 1(1,0,2),从而DA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=(1,0,2),DB ⃗⃗⃗⃗⃗⃗⃗=(1,1,0).设 n ⃗⃗=(x,y,z ) 为平面 A 1BD 的一个法向量,则{n ⃗⃗⊥DA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗,n ⃗⃗⊥DB ⃗⃗⃗⃗⃗⃗⃗,得{x +2z =0,x +y =0,取 z =1,则 n ⃗⃗=(−2,2,1).设 m ⃗⃗⃗=(x 1,y 1,z 1) 为平面 C 1BD 的一个法向量,则{m ⃗⃗⃗⊥DC⃗⃗⃗⃗⃗⃗,m ⃗⃗⃗⊥DB ⃗⃗⃗⃗⃗⃗⃗,得{2y 1+2z 1=0,x 1+y 1=0,取 z 1=1,则 m ⃗⃗⃗=(1,−1,1). 于是cos <m ⃗⃗⃗,n ⃗⃗>=m ⃗⃗⃗⋅n ⃗⃗∣m⃗⃗⃗∣∣n ⃗⃗∣=−√33. 由于该二面角 A 1−BD −C 1 为锐角,因此,所求的二面角 A 1−BD −C 1 的余弦值为 √33. 43. (1) 证法一:取 A 1B 1 的中点为 F 1,连接 FF 1,C 1F 1.由于 FF 1∥BB 1∥CC 1,所以 F 1∈ 平面 FCC 1, 因此,平面 FCC 1 即为平面 C 1CFF 1,连接 A 1D ,F 1C ,由于 A 1F 1∥D 1C 1∥CD ,A 1F 1=D 1C 1=CD .所以,四边形 A 1DCF 1 为平行四边形,因此,A 1D ∥F 1C .又 EE 1∥A 1D ,得 EE 1∥F 1C ,而 EE 1⊄ 平面 FCC 1,F 1C ⊂ 平面 FCC 1, 故 EE 1∥ 平面 FCC 1. 证法二:因为 F 为 AB 的中点,CD =2,AB =4,AB ∥CD ,所以 CD ∥AF ,CD =AF .因此,四边形 AFCD 为平行四边形,所以 AD ∥FC .又 CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂ 平面 FCC 1,CC 1⊂ 平面 FCC 1,所以,平面 ADD 1A 1∥ 平面 FCC 1,又 EE 1⊂ 平面 ADD 1A 1,所以 EE 1∥ 平面 FCC 1. (2) 连接 AC .在△FBC中,FC=BC=FB,又F为AB的中点,所以AF=FC=FB,因此∠ACB=90∘,即AC⊥BC.又AC⊥CC1,且CC1∩BC=C,所以AC⊥平面BB1C1C,而AC⊂平面D1AC,故平面D1AC⊥平面BB1C1C.44. (1)证法一:取A1B1的中点F1,连接FF1,C1F1.由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此,平面FCC1即为平面C1CFF1,连接A1D,F1C,由于A1F1∥D1C1∥CD,A1F1=D1C1=CD,所以四边形A1DCF1为平行四边形,因此A1D∥F1C.又EE1∥A1D,得EE1∥F1C,而EE1⊄平面FCC1,F1C⊂平面FCC1,故EE1∥平面FCC1.证法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD∥AF,CD=AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC⊂平面FCC1,CC1⊂平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1⊂平面ADD1A1,所以EE1∥平面FCC1.(2)解法一:取FC的中点H,过H作HG⊥C1F于G,连接BH、BG.由于 FC =BC =FB ,所以 BH ⊥FC . 又 BH ⊥CC 1,所以 BH ⊥ 平面 FCC 1. 由于 HG ⊥C 1F ,BH ⊥ 平面 FCC 1, 所以 C 1F ⊥ 平面 BHG ,因此 BG ⊥C 1F ,所以 ∠BGH 为所求二面角的平面角.在 Rt △BHG 中,BH =√3,又 FH =1,且 △FCC 1 为等腰直角三角形,所以HG =√22,BG =√3+12=√142, 因此cos∠BGH =GH BG =√22√142=√77,即所求二面角的余弦值为 √77. 解法二:过 D 作 DR ⊥CD 交 AB 于 R ,以 D 为坐标原点建立如图所示的空间直角坐标系,则F(√3,1,0),B(√3,3,0),C (0,2,0),C 1(0,2,2),所以FB ⃗⃗⃗⃗⃗⃗=(0,2,0),BC 1⃗⃗⃗⃗⃗⃗⃗⃗=(−√3,−1,2),DB ⃗⃗⃗⃗⃗⃗⃗=(√3,3,0).由 FB =CB =CD =DF ,所以 DB ⊥FC .又 CC 1⊥ 平面 ABCD ,所以 DB ⃗⃗⃗⃗⃗⃗⃗ 为平面 FCC 1 的一个法向量. 设平面 BFC 1 的一个法向量为 n ⃗⃗=(x,y,z ),则由{n ⃗⃗⊥FB ⃗⃗⃗⃗⃗⃗,n ⃗⃗⊥BC 1⃗⃗⃗⃗⃗⃗⃗⃗,得{2y =0,−√3x −y +2z =0.取 x =1,因此n ⃗⃗=(1,0,√32), 所以cos⟨DB ⃗⃗⃗⃗⃗⃗⃗,n ⃗⃗⟩=DB ⃗⃗⃗⃗⃗⃗⃗⋅n ⃗⃗∣∣DB ⃗⃗⃗⃗⃗⃗⃗∣∣×∣n⃗⃗∣=√3√3+9×√1+34=√77. 故所求二面角的余弦值为 √77. 45. (1) 证法一:如图,连接 DG ,CD ,设 CD ∩GF =O ,连接 OH .在三棱台 DEF −ABC 中,AB =2DE ,G 为 AC 的中点,可得 DF ∥GC ,DF =GC , 所以四边形 DFCG 为平行四边形,则 O 为 CD 的中点. 又 H 为 BC 的中点, 所以 OH ∥BD .又 OH ⊂平面FGH ,BD ⊄平面FGH , 所以 BD ∥平面FGH . 证法二:在三棱台 DEF −ABC 中,由 BC =2EF ,H 为 BC 的中点,EF ∥BC . 可得 BH ∥EF ,BH =EF ,所以四边形 BHFE 为平行四边形,可得 BE ∥HF . 在 △ABC 中,G 为 AC 的中点,H 为 BC 的中点,所以 GH ∥AB . 又 GH ∩HF =H ,所以平面 FGH ∥平面ABED . 因为 BD ⊂平面ABED , 所以 BD ∥平面FGH . (2) 解法一: 设 AB =2,则 CF =1.在三棱台 DEF −ABC 中,G 为 AC 的中点,由 DF =12AC =GC ,可得四边形 DGCF 为平行四边形,因此 DG ∥FC .又 FC ⊥平面ABC , 所以 DG ⊥平面ABC .在 △ABC 中,因为 AB ⊥BC ,∠BAC =45∘,G 是 AC 的中点, 所以 AB =BC ,GB ⊥GC ,因此 GB ,GC ,GD 两两垂直. 以 G 为坐标原点建立如图所示的空间直角坐标系 G −xyz ,所以 G (0,0,0),B(√2,0,0),C(0,√2,0),D (0,0,1). 可得 H (√22,√22,0),F(0,√2,1),故 GH ⃗⃗⃗⃗⃗⃗⃗=(√22,√22,0),GF ⃗⃗⃗⃗⃗⃗=(0,√2,1).设 n ⃗⃗=(x,y,z ) 是平面 FGH 的一个法向量,则由 {n ⃗⃗⋅GH ⃗⃗⃗⃗⃗⃗⃗=0,n ⃗⃗⋅GF ⃗⃗⃗⃗⃗⃗=0, 可得 {√22x +√22y =0,√2y +z =0.令 x =1,可得平面 FGH 的一个法向量 n ⃗⃗=(1,−1,√2). 因为 GB ⃗⃗⃗⃗⃗⃗ 是平面 ACFD 的一个法向量,GB⃗⃗⃗⃗⃗⃗=(√2,0,0), 所以 cos⟨GB ⃗⃗⃗⃗⃗⃗,n ⃗⃗⟩=GB ⃗⃗⃗⃗⃗⃗⋅n ⃗⃗∣GB ⃗⃗⃗⃗⃗⃗∣∣n ⃗⃗∣=√22√2=12. 所以平面 FGH 与平面 ACFD 所成角(锐角)的大小为 60∘. 解法二:如图,作 HM ⊥AC 于点 M ,作 MN ⊥GF 于点 N ,连接 NH .设AB=2,则CF=1.由FC⊥平面ABC,得HM⊥FC.又FC∩AC=C,所以HM⊥平面ACFD.因此GF⊥NH,所以∠MNH为所求的角.在△BGC中,MH∥BG,MH=12BG=√22.由△GNM∽△GCF,可得MNFC =GMGF,从而MN=√66.由HM⊥平面ACFD,MN⊂平面ACFD,得HM⊥MN,因此tan∠MNH=HMMN=√3,所以∠MNH=60∘.所以平面FGH与平面ACFD所成角(锐角)的大小为60∘.46. (1)∵B1C1∥BC,A1C1∥AC,BC⊥AC,∴B1C1⊥A1C1.∵平面AB1C⊥平面ABC,平面AB1C∩平面ABC=AC,∴BC⊥平面AB1C,∴BC⊥AB1.又B1C1∥BC,∴B1C1⊥AB1,∴B1C1为AB1与A1C1的公垂线.(2)如图,过A作AD⊥B1C于D.∵△AB1C为正三角形,∴D为B1C的中点.∵BC⊥平面AB1C,∴BC⊥AD,又B1C∩BC=C,∴AD⊥平面VBC,则线段AD的长即为点A到平面VBC的距离.在边长为2a的正三角形AB1C中,AD=√3a.∴点A到平面VBC的距离为√3a.(3)如图,过D点作DH⊥VB于H,连接AH,由三垂线定理,得AH⊥VB,则∠AHD是二面角A−VB−C的平面角.在Rt△B1BC中,由△B1DH∼△B1BC,得DH BC =B1D B1B.解得DH=B1D⋅BCB1B=√55a.从而,在Rt△AHD中,tan∠AHD=ADDH=√15.即∠AHD=arctan√15.因此,二面角A−VB−C的大小为arctan√15.47. (1)由四边形ABCD为菱形,∠ABC=60∘,可得△ABC为正三角形.因为E为BC的中点,所以AE⊥BC.又BC∥AD,因此AE⊥AD.因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.且PA,AD⊂平面PAD,又PA∩AD=A,所以AE⊥平面PAD,又PD⊂平面PAD,所以AE⊥PD.(2)设AB=2,H为PD上任意一点,连接AH,EH.由(1)知 AE ⊥ 平面 PAD ,则 ∠EHA 为 EH 与平面 PAD 所成的角. 在 Rt △EAH 中,AE =√3,所以当 AH 最短时,∠EHA 最大,即当 AH ⊥PD 时,∠EHA 最大,此时 tan∠EHA =AE AH =√3AH =√62, 因此 AH =√2,又 AD =2,则 ∠ADH =45∘,所以PA =2.法一:因为 PA ⊥ 平面 ABCD ,PA ⊂ 平面 PAC ,所以平面 PAC ⊥ 平面 ABCD . 过 E 作 EO ⊥AC 于 O ,则 EO ⊥ 平面 PAC ,从而有 EO ⊥AF .过 O 作 OS ⊥AF 于 S ,连接 ES ,则有 AF ⊥平面EOS ,从而有 AF ⊥ES , 从而 ∠ESO 为二面角 E −AF −C 的平面角. 在 Rt △AOE 中,EO=AE ⋅sin30∘=√32,AO =AE ⋅cos30∘=32.又 AC =2=PA ,F 是 PC 的中点,在 Rt △ASO 中,SO =AO ⋅sin45∘=3√24,从而SE =√EO 2+SO 2=√34+98=√304.在 Rt △ESO 中,cos∠ESO =SO SE =3√24√304=√155,即所求二面角的余弦值为 √155. 法二:由(1)知 AE ,AD ,AP 两两垂直,以 A 为坐标原点,建立如图所示的空间直角坐标系,又 E 、F 分别为 BC 、PC 的中点,所以 A (0,0,0),B(√3,−1,0),C(√3,1,0),D (0,2,0),P (0,0,2),E(√3,0,0),F (√32,12,1),所以AE ⃗⃗⃗⃗⃗⃗=(√3,0,0),AF⃗⃗⃗⃗⃗⃗=(√32,12,1).设平面 AEF 的一个法向量为 m ⃗⃗⃗=(x 1,y 1,z 1),由{m ⃗⃗⃗⋅AE⃗⃗⃗⃗⃗⃗=0,m ⃗⃗⃗⋅AF⃗⃗⃗⃗⃗⃗=0,得{√3x 1=0,√32x 1+12y 1+z 1=0, 取 z 1=−1,则m ⃗⃗⃗=(0,2,−1).因为 BD ⊥AC ,BD ⊥PA ,PA ∩AC =A ,所以 BD ⊥ 平面 AFC ,故 BD ⃗⃗⃗⃗⃗⃗⃗=(−√3,3,0) 为平面 AFC 的一个法向量. 所以cos⟨m ⃗⃗⃗,BD⃗⃗⃗⃗⃗⃗⃗⟩=m ⃗⃗⃗⋅BD ⃗⃗⃗⃗⃗⃗⃗∣m ⃗⃗⃗∣⋅∣∣BD ⃗⃗⃗⃗⃗⃗⃗∣∣=√5×√12=√155. 因为二面角 E −AF −C 为锐角,所以所求二面角的余弦值为 √155. 48. (1) ∵ PO ⊥平面 ABCD , ∴PO ⊥BD .又 PB ⊥PD ,BO =2,PO =√2,由平面几何知识,得 OD =1,PD =√3,PB =√6. 过 D 作 DE ∥BC 交于 AB 于 E ,连结 PE ,如图所示,。
山东各地2019年高考数学(文科)最新试题分类大汇编18:立体几何(2)
![山东各地2019年高考数学(文科)最新试题分类大汇编18:立体几何(2)](https://img.taocdn.com/s3/m/a8a07d182e3f5727a5e962ef.png)
山东各地2019年高考数学(文科)最新试题分类大汇编18:立体几何(2)C.假设βαβα//,,则⊥⊥m mD.假设βαβα⊥⊂⊥则,,m m【答案】〔4〕答案:A 解析:由m //,n αα⋂β=无法得到m ,n 的确切位置关系. 【山东省日照市2018届高三12月月考文】〔7〕以下四个几何体中,各几何体的三视图有且仅有两个视图相同的是A.①②B.②③C.②④D.①③ 【答案】〔7〕答案:C 解析:①的三个视图都相同:②的主视图与左视图相同,与俯视图不同;③的三个视图互不相同;④的主视图与左视图相同,而与俯视图不同.【山东省日照市2018届高三12月月考文】如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD=DC=4,AD=2,E 为PC 的中点.〔I 〕求证:AD ⊥PC ;〔II 〕求三棱锥P-ADE 的体积;〔III 〕在线段AC 上是否存在一点M ,使得PA//平面EDM ,假设存在,求出AM 的长;假设不存在,请说明理由.【答案】〔20〕〔I 〕证明:因为PD ⊥平面ABCD.所以PD ⊥AD.又因为ABCD 是矩形,所以AD ⊥CD.…………………………………………………………………2分因为,D CD PD =⋂所以AD ⊥平面PCD.又因为⊂PC 平面PCD ,所以AD ⊥PC.………………………………4分〔II 〕解:因为AD ⊥平面PCD ,V P-ADE =V A-PDE ,…………………………………6分 所以AD 是三棱锥A —PDE 的高.因为E 为PC 的中点,且PD=DC=4,所以.444212121=⎪⎭⎫ ⎝⎛⨯⨯⨯==∆A PDC PDES S又AD=2, 所以.38423131=⨯⨯=⋅=∆-PDE PDEA S AD V ………………………………8分 〔IIII 〕取AC 中点M ,连结EM 、DM ,因为E 为PC 的中点,M 是AC 的中点,所以EM//PA ,又因为EM ⊂平面EDM ,PA ⊄平面EDM ,所以PA//平面EDM.…………………………………………………………10分 所以.521==AC AM 即在AC 边上存在一点M ,使得PA//平面EDM ,AM 的长为5.………12分【山东省青岛市2018届高三期末检测文】8.a 、b 、c 为三条不重合的直线,下面有三个结论:①假设c a b a ⊥⊥,那么b ∥c ;②假设c a b a ⊥⊥,那么b ⊥c ;③假设a ∥,b b ⊥c 那么c a ⊥. 其中正确的个数为 A 、0个B 、1个C 、2个D 、3个【答案】B【山东省青岛市2018届高三期末检测文】13.长方体从同一顶点出发的三条棱的长分别为1、2、3,那么这个长方体的外接球的表面积为.【答案】14π【山东省青岛市2018届高三期末检测文】20.〔本小题总分值12分〕如图,四边形ABCD 为矩形,DA ⊥平面.M AEBDCFABE ,2AE EB BC ===,BF ⊥平面ACE 于点F ,且点F 在CE 上.〔Ⅰ〕求证:DE BE ⊥;〔Ⅱ〕求四棱锥E ABCD -的体积;〔Ⅲ〕设点M 在线段AB 上,且AM MB =, 试在线段CE 上确定一点N ,使得//MN 平面DAE . 【答案】解〔Ⅰ〕因为DA ⊥平面ABE ,BC ∥DA 所以AE BC ⊥,DA BE ⊥ 因为BF ⊥平面ACE 于点F ,AE BF ⊥………………………………………2分因为BCBF B =,所以AE ⊥面BEC ,那么AE BE ⊥ 因为AEAD A =,所以BE ⊥面DAE ,那么DE BE ⊥…………………………………………………………………………4分 〔Ⅱ〕作EH AB ⊥,因为面ABCD ⊥平面ABE ,所以EH ⊥面AC 因为AE BE ⊥,2AE EB BC ===,所以EH =…………………………6分1182333E ABCD ABCD V EH S -=⋅=⨯=…………………………………8分〔Ⅲ〕因为BE BC =,BF ⊥平面ACE 于点F ,所以F 是EC 的中点设P 是BE 的中点,连接,MP FP …………………………………………………10分 所以MP ∥AE ,FP ∥DA 因为AEDA A =,所以MF ∥面DAE ,那么点N 就是点F …………………12分【山东省青岛市2018届高三期末检测文】5.某个几何体的三视图如下,根据图中标出的尺寸〔单位:cm 〕,可得这个几何体的体积是A、34000cm 3B、38000cm 3C、正视图侧视图俯视图.M AEBDCFH P32000cmD、34000cm【答案】B【山东省济宁市2018届高三上学期期末检测文】7.l 、m 表示直线,α、β、γ表示平面,那么以下命题中不.正确的选项是 A.假设,,,βα⊂⊂⊥m l m l 那么βα⊥ B.假设,//,γβγ⊥l 那么βα⊥ C.假设,,,βα⊂⊥⊥m l m l 那么βα⊥D.假设,,,βα⊥⊥⊥m l m l 那么βα⊥【答案】D【山东省济宁市2018届高三上学期期末检测文】9.如图,某简单几何体的正〔主〕视图与侧〔左〕视图都是连长为1的正方形,且其体积为4π,那么该几何体的俯视图可以是【答案】D【山东省济宁市2018届高三上学期期末检测文】19.〔本小题总分值12分〕如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥面ABCD ,E 是PD 的中点.〔I 〕求证:平面PDC ⊥平面PDA ;〔II 〕求几何体P —ABCD 被平面ACE 分得的两部分的体积比ACDE V :.PABCE V【答案】19.证明:〔I 〕∵⊥PA 平面ABCD ,⊂CD 平面ABCD.∴CO PA ⊥…………………………………………………………………………2分∵四边形ABCD 是矩形.∴CD AD ⊥∴⊥CD 平面PAD ………………………………………………4分 又∵CD ⊂平面PDC ,∴平面PDC ⊥平面PAD …………………………………6分 〔II 〕由()412312131=∙∙⎪⎭⎫⎝⎛∙⋅=∆∆--PA S PA S V V ACD ACD ABCDP ACD E ………………………………………4分∴31=PABCE ACDE V V ………………………………………………………………………12分【山东省济南一中2018届高三上学期期末文】19.〔本小题总分值12分〕如下图,平面PAD ⊥平面A B C D ,ABCD 为正方形,PA AD ⊥,且2 , , P A A D E F G ==分别是线段 , , PA PD CD 的中点。
山东省济南市第一中学2021年高考数学立体几何多选题专项练习附解析
![山东省济南市第一中学2021年高考数学立体几何多选题专项练习附解析](https://img.taocdn.com/s3/m/66ada3182cc58bd63086bda7.png)
山东省济南市第一中学2021年高考数学立体几何多选题专项练习附解析一、立体几何多选题1.在正三棱柱111ABC A B C -中,AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+-B .三棱锥11D ABC -的体积为6C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为AD ===11111122DB C S BB B C =⨯⨯=,所以1111111133226D AB C A DB C DB C V V AD S --==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.2.已知三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,其长度分别为a ,b ,c .点A 在底面BCD 内的射影为O ,点A ,B ,C ,D 所对面的面积分别为A S ,B S ,C S ,D S .在下列所给的命题中,正确的有( ) A .2A BCO D S SS ⋅=; B .3333A B C D S S S S <++;C .若三条侧棱与底面所成的角分别为1α,1β,1γ,则222111sin sin sin 1αβγ++=;D .若点M 是面BCD 内一个动点,且AM 与三条侧棱所成的角分别为2α,2β,2γ,则22cos α+2222cos cos 1βγ+=.【答案】ACD 【分析】由Rt O OA '与Rt O AD '相似,得边长关系,进而判断A 正确;当M 与O 重合时,注意线面角与线线角的关系,即可得C 正确;构造长方体,建立直角坐标系,代入夹角公式计算可得D 正确;代入特殊值,可得B 错误. 【详解】由三棱锥A BCD -的三条侧棱AB ,AC ,AD 两两垂直,则将三棱锥A BCD -补成长方体ABFC DGHE -,连接DO 并延长交BC 于O ', 则AO BC ⊥.对A :由Rt O OA '与Rt O AD '相似,则2O A O O O D '''=⨯ 又12A S BC O D '=⋅,12BCOS BC O O '=⋅, 22221124DS BC O A BC O A ⎛⎫''=⋅=⋅ ⎪⎝⎭所以2A BCOD S SS ⋅=,故A 正确.对B :当1a b c ===时,33318B C D S S S ===,则33338B C D S S S ++=,而33328A S ⎛==> ⎝⎭,此时3333A B C D S S S S >++,故B 不正确. 对D :分别以AB ,AC ,AD 为x ,y ,z 轴,建立空间直角坐标系.设(),,M x y z ,则(),,AM x y z =,AM =(),0,0AB a =,()0,,0AC b =,()0,0,AD c =所以222222222cos cos cos AM AB AM AC AM AD AM ABAM ACAM ADαβγ⎛⎫⎛⎫⎛⎫⋅⋅⋅++=++ ⎪ ⎪ ⎪ ⎪⎪⎪⋅⋅⋅⎝⎭⎝⎭⎝⎭2222221x y z AMAMAM=++=,所以D 正确.对C :当M 与O 重合时,AO ⊥面BCD ,由D 有222222cos cos cos 1αβγ++=,由各侧棱与底面所成角与侧棱与所AO 成角互为余角,可得C 正确. 故选:ACD.【点睛】关键点睛:本题考查空间线面角、线线角、面积关系的问题,计算角的问题关键是建立空间直角坐标系,写出点的坐标,利用数量积的公式代入计算,解决这道题目还要结合线面角与线线角的关系判断.3.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义;(2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.4.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球心,6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.5.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直D .四边形1BFDE 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E的面积最大,,可判断D 正确. 【详解】如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.6.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQSPS PQ PS PQ π=⋅=⋅,13sin 234PQRSPQ PR PQ PR π=⋅=⋅, ()3S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅, ∴()33sin 1212PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 的最小值为355B .DP 5C .1AP PC +6D .1AP PC +170【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-,所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F , 连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD 【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 2C .正四棱锥S -BCDE 的内切球半径为212a ⎛- ⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+- 得2222222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r ,易求得侧面面积为2213sin 234S a a π=⋅=, 由等体积法得222121134333a a r r =⋅+⋅⋅ 解得624a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222223321cos 2332aBF DF BDBFD BF DF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎫⎪⎝⎭2222222331cos 2332a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故AS ED BC故正四棱锥S-BCDE与正三棱锥A-SBE拼成的多面体是一个三棱柱,所以////D正确故选:ABD【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。
(2007—2012)6年山东高考数学(文理)分类汇总 -立体几何
![(2007—2012)6年山东高考数学(文理)分类汇总 -立体几何](https://img.taocdn.com/s3/m/6f24f7d1c1c708a1284a444c.png)
立体几何(一)选择题1.(08山东卷6)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(A)9π (B )10π (C)11π (D)12π 答案:D2. (2009山东卷理)一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 23π+D. 4π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面 边长为2,高为3,所以体积为2133⨯⨯=所以该几何体的体积为23π+.答案:C【命题立意】:本题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地计算出.几何体的体积.3. (2009山东卷理)已知α,β表示两个不同的平面,m 为平面α内的 一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m β⊥,则αβ⊥,反过来则不一定.所以“αβ⊥”是“m β⊥”的必要不充分条件.答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.4. (2009山东卷文)已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m β⊥,则αβ⊥,反过来则不一定.所以“αβ⊥”是“m β⊥”的必要不充分条件.答案:B.侧(左)视图正(主)视图俯视图【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念. 5、(2010山东数)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 【答案】D【解析】由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案。
山东省济南第一中学2021年高考数学的立体几何多选题附解析
![山东省济南第一中学2021年高考数学的立体几何多选题附解析](https://img.taocdn.com/s3/m/29e27b0f33d4b14e8424684d.png)
山东省济南第一中学2021年高考数学的立体几何多选题附解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED ,∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =43,∴A'M =23,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角, DN =DA'=4,A'N =A'M =23,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,A'B=22121627A N BN +=+=',∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()()22222433x x R +=++=, 解得23x =, ∴244371699R ⨯=+=,237R ∴=,故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.如图,在棱长为2的正方体1111ABCD A B C D -,中,E 为棱1CC 上的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F ,B ,E ,G ,H 为过三点B ,E ,F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .//HF BEB .三棱锥的体积14B BMN V -=C .直线MN 与平面11A B BA 所成的角为45︒D .11:1:3D G GC = 【答案】ABD 【分析】面面平行性质定理可得出A 正确;等体积法求得B 正确;直线MN 与平面11A B BA 所成的角为1B MN ∠,求其正切值不等于1即可得出C 错误;利用面面平行性质定理和中位线求出11,D G GC 长度即可得出D 正确. 【详解】解:对于A.在正方体1111ABCD A B C D -中平面11//ADA D 平面11BCB C , 又平面11ADA D 平面BMN HF =,平面11BCB C ⋂平面BMN BE =,有平面与平面平行的性质定理可得//HF BE ,故正确; 对于B.因为1:1:2A F FA =,所以111332B M A B ==, 又E 为棱1CC 上的中点,所以14B N =, 所以1111234432B BMN N B BM V V --⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭,故正确; 对于C.由题意及图形可判定直线MN 与平面11A B BA 所成的角为1B MN ∠, 结合B 选项可得1114tan 13B N B MN B M ∠==≠,故错误; 对于D.同A 选项证明方法一样可证的11//GC B M ,因为E 为棱1CC 上的中点,1C 为棱1B N 上的中点,所以1113=22GC B M = 所以11G=2D ,所以11:1:3D G GC =,故正确. 故选:ABD 【点睛】求体积的常用方法:(1)直接法:对于规则的几何体,利用相关公式直接计算;(2)等体积法:选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换;(3)割补法:首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算.4.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.5.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥ B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π 【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断;对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可. 【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM = 由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC +-⋅⋅∠整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+ 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =,故22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确. 故选:BD. 【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.6.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点P 在线段B 1C 上运动,则( )A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°] D .直线C 1P 与平面A 1C 1D 6【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1, ∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1, ∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确; 在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n CP n ⋅⋅=∴当a =12时,直线C 1P 与平面A 1C 1D ,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.7.如图,已知P 为棱长为1的正方体对角线1BD 上的一点,且()()10,1BP BD λλ=,下面结论中正确结论的有( )A .11A D C P ⊥;B .当1A P PD +取最小值时,23λ=;C .若()0,1λ∈,则7,312APC ππ⎛⎫∠∈⎪⎝⎭; D .若P 为1BD 的中点,四棱锥11P AA D D -的外接球表面积为94π. 【答案】ABD 【分析】以D 为坐标原点建立如图空间直角坐标系,利用向量关系可判断ABC ;根据几何体外接球关系建立方程求出球半径即可判断D. 【详解】以D 为坐标原点建立如图空间直角坐标系, 则()1,1,0B ,()10,0,1D ,设(),,P x y z ,()()10,1BP BD λλ=,1BP BD λ∴=,即()()1,1,1,1,1x y z λ--=--,则可解得()1,1,P λλλ--, 对A ,()()()111,0,1,0,0,0,0,1,1A D C ,()11,0,1A D ∴=--,()11,,1C P λλλ=---,则()()()()11110110A D C P λλλ⋅=-⨯-+⨯-+-⨯-=,则11A D C P ⊥,故A 正确;对B ,()()()()()2222221111111A P PD λλλλλλ+=--+-+--+-+222223422333λλλ⎛⎫=-+=-+ ⎪⎝⎭则当23λ=时,1A P PD +取最小值,故B 正确; 对C ,()()1,0,0,0,1,0A C ,(),1,PA λλλ∴=--,()1,,PC λλλ=--,则222321cos 1321321PA PCAPC PA PC λλλλλλ⋅-∠===--+-+⋅, 01λ<<,则2232123λλ≤-+<,则2111123212λλ-≤-<-+, 即11cos 22APC -≤∠<,则2,33APC ππ⎛⎤∠∈ ⎥⎝⎦,故C 错误; 对于D ,当P 为1BD 中点时,四棱锥11P AA D D -为正四棱锥,设平面11AA D D 的中心为O ,四棱锥11P AA D D -的外接球半径为R ,所以222122R R ⎛⎫-+= ⎪⎝⎭⎝⎭,解得34R =, 故四棱锥11P AA D D -的外接球表面积为94π,所以D 正确. 故选:ABD.【点睛】关键点睛:本题考查空间相关量的计算,解题的关键是建立空间直角坐标系,利用向量建立关系进行计算.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形,因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为62, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.9.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D D D .四边形1BFD E 6【答案】BCD 【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 的面积最小为62.【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E , 如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E 平面11ABB A BE =.平面1BFD E平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为16232=D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.10.如图,正四棱锥S -BCDE 底面边长与侧棱长均为a ,正三棱锥A -SBE 底面边长与侧棱长均为a ,则下列说法正确的是( )A .AS ⊥CDB .正四棱锥S -BCDE 的外接球半径为22C .正四棱锥S -BCDE 的内切球半径为212a ⎛- ⎝⎭ D .由正四棱锥S -BCDE 与正三棱锥A -SBE 拼成的多面体是一个三棱柱 【答案】ABD 【分析】取BE 中点H ,证明BE ⊥平面SAH 即可证AS CD ⊥;设底面中心为1O ,有1122O B O S a ==,可求得球半径为22a ;用等体积法求内切球半径即可判断;由////SA DE BC 且==SA DE BC 可知多面体是一个三棱柱.【详解】 如图所示:A 选项:取BE 中点H 连接,AH SH ,正三棱锥A SBE -中,,AH BE SH BE ⊥⊥ 又AHSH H =,所以BE ⊥平面SAH ,则BE AS ⊥,又//BE CD 所以AS CD ⊥ ,故A 正确;B 选项:设底面中心为1O ,球心为O 半径为R ,因为正四棱锥S -BCDE 外接球球心在1O S 上,所以OS OB R ==,因为,正四棱锥S -BCDE 底面边长与侧棱长均为a所以112O B O S ==,由()22211OB O B O S OS =+- 得2222222R a R ⎛⎫⎛⎫=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得2R =,故B 正确; C 选项:设内切球半径为r ,易求得侧面面积为2213sin 234S a a π=⋅=, 由等体积法得222121134333a a r r =⋅+⋅⋅ 解得624a r = ,故C 错;D 选项:取SE 中点F ,连结AF ,DF ,BF ,则BFD ∠和BFA ∠分别是D SE B --和A SE B --的二面角的平面角,由)22222223321cos 2332aBF DF BDBFD BF DF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===-⋅⎫⎪⎝⎭2222222331cos 2332a AF BF BA AFD AF BF ⎫⎫+-⎪⎪+-⎝⎭⎝⎭∠===⋅⎫⎪⎝⎭,故BFD ∠与BFA ∠互补,所以ASDE 共面,又因为AS AE ED SD ===,则ASDE 为平行四边形,故AS ED BC故正四棱锥S-BCDE与正三棱锥A-SBE拼成的多面体是一个三棱柱,所以////D正确故选:ABD【点睛】求外接球半径的常用方法:(1)补形法:侧面为直角三角形或正四面体或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;(2)利用球的性质:几何体在不同面均对直角的棱必然是球的直径;(3)定义法:到各个顶点距离均相等的点为球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。
(完整版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)
![(完整版)—高考全国卷Ⅰ文科数学立体几何专题复习(附详细解析)](https://img.taocdn.com/s3/m/e3529dd2a5e9856a57126066.png)
2012-2018年新课标全国卷Ⅰ文科数学汇编立体几何一、选择题【2017,6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是()【2016,7】如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是() A .17π B .18π C .20π D .28π【2016,11】平面α过正方体1111ABCD A BC D -的顶点A ,α∥平面11CB D ,α平面ABCD m =,α平面11ABB A n =,则,m n 所成角的正弦值为()A .3 B .22C .3D .13【2015,6】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委M 依垣内角,下周八尺,高五尺,问”积及为M 几何?”其意思为:“在屋内墙角处堆放M (如图,M 堆为一个圆锥的四分之一),M 堆底部的弧长为8尺,M 堆的高为5尺,M 堆的体积和堆放的M 各位多少?”已知1斛M 的体积约为1.62立方尺,圆周率约为3,估算出堆放的M 有( ) A .14斛 B .22斛 C .36斛 D .66斛【2015,11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( ) B A .1 B .2 C .4 D .8【2015,11】【2014,8】【2013,11】【2012,7】【2014,8】如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱【2013,11】某几何体的三视图如图所示,则该几何体的体积为().A .16+8π B.8+8π C.16+16π D.8+16π【2012,7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A .6B .9C .12D .15【2012,8】平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为()A .6πB .43πC .46πD .63π【2018,5】已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,该圆柱的表面积为A. 12π B. 12π C. 8π D. 10π【2018,9】某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A 。
2024届新高考数学大题精选30题--立体几何含答案
![2024届新高考数学大题精选30题--立体几何含答案](https://img.taocdn.com/s3/m/5bf702436ad97f192279168884868762cbaebb06.png)
大题立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,M是BC的中点,N是AB1的中点,P是B1C1的中点.(1)证明:MN⎳平面A1CP;(2)求点P到直线MN 的距离.2(2024·安徽合肥·二模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,M是侧棱PC的中点,侧面PAD为正三角形,侧面PAD⊥底面ABCD.(1)求三棱锥M-ABC的体积;(2)求AM与平面PBC所成角的正弦值.2024届新高考数学大题精选30题--立体几何3(2023·福建福州·模拟预测)如图,在三棱柱ABC-A1B1C1中,平面AA1C1C⊥平面ABC,AB= AC=BC=AA1=2,A1B=6.(1)设D为AC中点,证明:AC⊥平面A1DB;(2)求平面A1AB1与平面ACC1A1夹角的余弦值.4(2024·山西晋中·三模)如图,在六面体ABCDE中,BC=BD=6,EC⊥ED,且EC=ED= 2,AB平行于平面CDE,AE平行于平面BCD,AE⊥CD.(1)证明:平面ABE⊥平面CDE;(2)若点A到直线CD的距离为22,F为棱AE的中点,求平面BDF与平面BCD夹角的余弦值.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC-A1B1C1中,A1在平面ABC内的射影O在棱AC的中点处,P为棱A1B1(包含端点)上的动点.(1)求点P到平面ABC1的距离;(2)若AP⊥平面α,求直线BC1与平面α所成角的正弦值的取值范围.6(2024·重庆·模拟预测)在如图所示的四棱锥P-ABCD中,已知AB∥CD,∠BAD=90°,CD= 2AB,△PAB是正三角形,点M在侧棱PB上且使得PD⎳平面AMC.(1)证明:PM=2BM;(2)若侧面PAB⊥底面ABCD,CM与底面ABCD所成角的正切值为311,求二面角P-AC-B的余弦值.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.8(2024·重庆·模拟预测)如图,ACDE为菱形,AC=BC=2,∠ACB=120°,平面ACDE⊥平面ABC,点F在AB上,且AF=2FB,M,N分别在直线CD,AB上.(1)求证:CF⊥平面ACDE;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC=60°,MN为直线CD,AB的公垂线,求ANAF的值;(3)记直线BE与平面ABC所成角为α,若tanα>217,求平面BCD与平面CFD所成角余弦值的范围.9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF 上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1 ,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.13(2024·广东广州·一模)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,△DCP是等边三角形,∠DCB=∠PCB=π4,点M,N分别为DP和AB的中点.(1)求证:MN⎳平面PBC;(2)求证:平面PBC⊥平面ABCD;(3)求CM与平面PAD所成角的正弦值.14(2024·广东梅州·二模)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,底面ABCD 为直角梯形,△PAD为等边三角形,AD⎳BC,AD⊥AB,AD=AB=2BC=2.(1)求证:AD⊥PC;(2)点N在棱PC上运动,求△ADN面积的最小值;(3)点M为PB的中点,在棱PC上找一点Q,使得AM⎳平面BDQ,求PQQC的值.15(2024·广东广州·模拟预测)如图所示,圆台O1O2的轴截面A1ACC1为等腰梯形,AC=2AA1= 2A1C1=4,B为底面圆周上异于A,C的点,且AB=BC,P是线段BC的中点.(1)求证:C1P⎳平面A1AB.(2)求平面A1AB与平面C1CB夹角的余弦值.16(2024·广东深圳·二模)如图,三棱柱ABC-A1B1C1中,侧面BB1C1C⊥底面ABC,且AB= AC,A1B=A1C.(1)证明:AA1⊥平面ABC;(2)若AA1=BC=2,∠BAC=90°,求平面A1BC与平面A1BC1夹角的余弦值.17(2024·河北保定·二模)如图,在四棱锥P -ABCD 中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD 所成的角的正切值为32,PA =BC =23,CD =2AB =4.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足PE =2ED ,求二面角P -EF -B 的正弦值.18(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,PO =6,AC =4.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且OM =2,求直线DM 与平面ABE 所成角的正弦值.19(2024·湖南岳阳·三模)已知四棱锥P -ABCD 的底面ABCD 是边长为4的菱形,∠DAB =60°,PA =PC ,PB =PD =210,M 是线段PC 上的点,且PC =4MC .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20(2024·湖南·二模)如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,∠ABC =60°,BD 1⊥平面A 1C 1D .(1)求四棱柱ABCD -A 1B 1C 1D 1的体积;(2)设点D 1关于平面A 1C 1D 的对称点为E ,点E 和点C 1关于平面α对称(E 和α未在图中标出),求平面A 1C 1D 与平面α所成锐二面角的大小.21(2024·山东济南·二模)如图,在四棱锥P-ABCD中,四边形ABCD为直角梯形,AB∥CD,∠DAB=∠PCB=60°,CD=1,AB=3,PC=23,平面PCB⊥平面ABCD,F为线段BC的中点,E为线段PF上一点.(1)证明:PF⊥AD;(2)当EF为何值时,直线BE与平面PAD夹角的正弦值为74.22(2024·山东潍坊·二模)如图1,在平行四边形ABCD中,AB=2BC=4,∠ABC=60°,E为CD 的中点,将△ADE沿AE折起,连结BD,CD,且BD=4,如图2.(1)求证:图2中的平面ADE⊥平面ABCE;(2)在图2中,若点F在棱BD上,直线AF与平面ABCE所成的角的正弦值为3010,求点F到平面DEC 的距离.23(2024·福建·模拟预测)如图,在三棱锥P-ABC中,PA⊥PB,AB⊥BC,AB=3,BC=6,已知二面角P-AB-C的大小为θ,∠PAB=θ.(1)求点P到平面ABC的距离;(2)当三棱锥P-ABC的体积取得最大值时,求:(Ⅰ)二面角P-AB-C的余弦值;(Ⅱ)直线PC与平面PAB所成角.24(2024·浙江杭州·二模)如图,在多面体ABCDPQ中,底面ABCD是平行四边形,∠DAB=60°, BC=2PQ=4AB=4,M为BC的中点,PQ∥BC,PD⊥DC,QB⊥MD.(1)证明:∠ABQ=90°;(2)若多面体ABCDPQ的体积为152,求平面PCD与平面QAB夹角的余弦值.25(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD为平行四边形,PA⊥平面ABCD,PA∥QD,BC=2AB=2PA=2,∠ABC=60°.(1)证明:平面PCD⊥平面PAC;(2)若PQ=22,求平面PCQ与平面DCQ夹角的余弦值.26(2024·浙江绍兴·二模)如图,在三棱锥P-ABC中,AB=4,AC=2,∠CAB=60°,BC⊥AP.(1)证明:平面ACP⊥平面ABC;(2)若PA=2,PB=4,求二面角P-AB-C的平面角的正切值.27(2024·河北沧州·一模)如图,在正三棱锥A -BCD 中,BC =CD =BD =4,点P 满足AP=λAC ,λ∈(0,1),过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且AD ⎳α,BC ⎳α.(1)证明:∀λ∈(0,1),四边形PQST 总是矩形;(2)若AC =4,求四棱锥C -PQST 体积的最大值.28(2024·湖北·二模)如图1.在菱形ABCD 中,∠ABC =120°,AB =4,AE =λAD ,AF =λAB(0<λ<1),沿EF 将△AEF 向上折起得到棱锥P -BCDEP .如图2所示,设二面角P -EF -B 的平面角为θ.(1)当λ为何值时,三棱锥P -BCD 和四棱锥P -BDEF 的体积之比为95(2)当θ为何值时,∀λ∈0,1 ,平面PEF 与平面PFB 的夹角φ的余弦值为5529(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,AB =1,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足PQ ⎳α,PQ ⊥n 且PQ ⊥m ,(i )求直线m ,n 与平面α的夹角之和;(ii )设PQ =d 0<d <1 ,求点P 到平面α距离的最大值关于d 的函数f d .30(2024·浙江绍兴·模拟预测)如图所示,四棱台ABCD -A 1B 1C 1D 1,底面ABCD 为一个菱形,且∠BAD =120°. 底面与顶面的对角线交点分别为O ,O 1. AB =2A 1B 1=2,BB 1=DD 1=392,AA 1与底面夹角余弦值为3737.(1)证明:OO 1⊥平面ABCD ;(2)现将顶面绕OO 1旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与DC 1的夹角正弦值为64343,此时求θ的值(θ<90°);(3)求旋转后AA 1与BB 1的夹角余弦值.大题 立体几何1(2024·黑龙江·二模)如图,已知正三棱柱ABC -A 1B 1C 1的侧棱长和底面边长均为2,M 是BC 的中点,N 是AB 1的中点,P 是B 1C 1的中点.(1)证明:MN ⎳平面A 1CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析(2)3【分析】(1)建立如图空间直角坐标系A -xyz ,设平面A 1CP 的一个法向量为n=(x ,y ,z ),利用空间向量法证明MN ⋅n=0即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,AA 1⊥平面ABC ,∠BAC =60°,而AB ⊂平面ABC ,所以AA 1⊥AB ,在平面ABC 内过点A 作y 轴,使得AB ⊥y 轴,建立如图空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (1,3,0),A 1(0,0,2),B 1(2,0,2),得M 32,32,0,N (1,0,1),P 32,32,2,所以A 1C =(1,3,-2),A 1P =32,32,0 ,MN =-12,-32,1 ,设平面A1CP 的一个法向量为n=(x ,y ,z ),则n ⋅A 1C=x +3y -2z =0n ⋅A 1P =32x +32y =0,令x =1,得y =-3,z =-1,所以n=(1,-3,-1),所以MN ⋅n =-12×1+-32×(-3)+1×(-1)=0,又MN 不在平面A 1CP 内即MN ⎳平面A 1CP ;(2)如图,连接PM ,由(1)得PM =(0,0,-2),则MN ⋅PM =-2,MN =2,PM =2,所以点P 到直线MN 的距离为d =PM 2-MN ⋅PMPM2= 3.2(2024·安徽合肥·二模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,M 是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M -ABC 的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12(2)3311.【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD 的距离为32,进而由锥体体积公式求出答案;(2)证明出BO ⊥AD ,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为△PAD 是正三角形,所以PO ⊥AD .又因为平面PAD ⊥底面ABCD ,PO ⊂平面PAD ,平面PAD ∩平面ABCD =AD ,所以PO ⊥平面ABCD ,且PO =3.又因为M 是PC 的中点,M 到平面ABCD 的距离为32,S △ABC =12×2×2×sin 2π3=3,所以三棱锥M -ABC 的体积为13×3×32=12.(2)连接BO ,BD ,因为∠BAD =π3,所以△ABD 为等边三角形,所以BO ⊥AD ,以O 为原点,OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则P 0,0,3 ,A 1,0,0 ,B 0,3,0 ,C -2,3,0 ,所以M -1,32,32 ,AM =-2,32,32,PB =0,3,-3 ,BC =-2,0,0 .设平面PBC 的法向量为n=x ,y ,z ,则PB ⋅n =0BC ⋅n =0,即3y -3z =0-2x =0 ,解得x =0,取z =1,则y =1,所以n=0,1,1 .设AM 与平面PBC 所成角为θ,则sin θ=cos AM ,n =AM ⋅nAM ⋅n=-2,32,32 ⋅0,1,14+34+34×1+1=3311.即AM 与平面PBC 所成角的正弦值为3311.3(2023·福建福州·模拟预测)如图,在三棱柱ABC -A 1B 1C 1中,平面AA 1C 1C ⊥平面ABC ,AB =AC =BC =AA 1=2,A 1B =6.(1)设D 为AC 中点,证明:AC ⊥平面A 1DB ;(2)求平面A 1AB 1与平面ACC 1A 1夹角的余弦值.【答案】(1)证明见解析;(2)55【分析】(1)根据等边三角形的性质得出BD ⊥AC ,根据平面ACC 1A 1⊥平面ABC 得出BD ⊥平面ACC 1A 1,BD ⊥A 1D ,利用勾股定理得出AC ⊥A 1D ,从而证明AC ⊥平面A 1DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面A 1AB 1的法向量和平面ACC 1A 1的一个法向量,利用向量求平面A 1AB 1与平面ACC 1A 1的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且AB =AC =BC =2,所以在△ABC 中,有BD ⊥AC ,且BD =3,又平面ACC 1A 1⊥平面ABC ,且平面ACC 1A 1∩平面ABC =AC ,BD ⊂平面ABC ,所以BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,则BD ⊥A 1D ,由A 1B =6,BD =3,得A 1D =3,因为AD =1,AA 1=2,A 1D =3,所以由勾股定理,得AC ⊥A 1D ,又AC ⊥BD ,A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1DB ,所以AC ⊥平面A 1DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D -xyz ,可得A (1,0,0),A 1(0,0,3),B (0,3,0),则AA 1 =-1,0,3 ,AB=-1,3,0 ,设平面A 1AB 1的法向量为n=(x ,y ,z ),由n ⋅AA 1=-x +3z =0n ⋅AB=-x +3y =0,令x =3,得y =1,z =1,所以n=3,1,1 ,由(1)知,BD ⊥平面ACC 1A 1,所以平面ACC 1A 1的一个法向量为BD=(0,-3,0),记平面A 1AB 1与平面ACC 1A 1的夹角为α,则cos α=|n ⋅BD ||n ||BD |=35×3=55,所以平面A 1AB 1与平面ACC 1A 1夹角的余弦值为55.4(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC =BD =6,EC ⊥ED ,且EC =ED =2,AB 平行于平面CDE ,AE 平行于平面BCD ,AE ⊥CD .(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为22,F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析(2)10535【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接ME ,MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ∥ME .同理AE ∥MB ,所以四边形ABME 是平行四边形,故AE ∥MB ,AB ∥ME .因为CD ⊥AE ,AE ∥MB ,所以CD ⊥MB ,又BC =BD =6,所以M 为棱CD 的中点在△CDE 中,EC =ED ,MC =MD ,所以CD ⊥ME ,由于AB ∥ME ,故CD ⊥AB .而CD ⊥AE ,AB ∩AE =A ,AB ,AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面CDE .(2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD ⊥AM .而点A 到直线CD 的距离为22,故AM =2 2.在等腰直角三角形CDE 中,由EC =ED =2,得CD =2,MC =MD =ME =1.在等腰三角形BCD 中,由MC =MD =1,BC =BD =6,得BM = 5.在平行四边形ABME 中,AE =BM =5,AB =EM =1,AM =22,由余弦定理得cos ∠MEA =EM 2+AE 2-AM 22EM ·AE=-55,所以cos ∠BME =55,所以BE =BM 2+EM 2-2BM ·EM cos ∠BME =2.因为BE 2+ME 2=22+12=5 2=BM 2,所以BE ⊥ME .因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面CDE .如图,以E 为坐标原点,EC ,ED ,EB 分别为x ,y ,z 轴正方向,建立空间直角坐标系.则E 0,0,0 ,C 2,0,0 ,D 0,2,0 ,B 0,0,2 ,A -22,-22,2 ,F -24,-24,1.所以CD =-2,2,0 ,DB =0,-2,2 ,FB =24,24,1 .设平面BCD 的法向量为m=x 1,y 1,z 1 ,则m ⋅CD=0m ⋅DB =0,即-2x 1+2y 1=0-2y 1+2z 1=0 .则可取x 1=2,得m=2,2,2 .设平面BDF 的法向量为n =x 2,y 2,z 2 ,则n ⋅FB =0n ⋅DB=0,即24x 2+24y 2+z 2=0-2y 2+2z 2=0.取z 2=1,则n=-32,2,1 .设平面BDF 与平面BCD 的夹角为θ,则cos θ=m ⋅n m ⋅n =-3210×21=10535.所以平面BDF 与平面BCD 夹角的余弦值为10535.5(2024·辽宁·二模)棱长均为2的斜三棱柱ABC -A 1B 1C 1中,A 1在平面ABC 内的射影O 在棱AC 的中点处,P 为棱A 1B 1(包含端点)上的动点.(1)求点P 到平面ABC 1的距离;(2)若AP ⊥平面α,求直线BC 1与平面α所成角的正弦值的取值范围.【答案】(1)23913;(2)25,104.【分析】(1)以O 为原点建立空间直角坐标系,求出平面ABC 1的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,A 1O ⊥平面ABC ,OB ⊥AC (底面为正三角形),且A 1O =OB =3,以O 为原点,OB ,OC ,OA 1的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图,则O (0,0,0),A (0,-1,0),B (3,0,0),C (0,1,0),A 1(0,0,3),C 1(0,2,3),AC 1 =(0,3,3),BC 1 =(-3,2,3),AA 1 =(0,1,3),由A 1B 1⎳AB ,A 1B 1⊄平面ABC 1,AB ⊂平面ABC 1,则A 1B 1⎳平面ABC 1,即点P 到平面ABC 1的距离等于点A 1到平面ABC 1的距离,设n =(x ,y ,z )为平面ABC 1的一个法向量,由n ⋅AC 1=3y +3z =0n ⋅BC 1=-3x +2y +3z =0,取z =3,得n=(1,-3,3),因此点A 1到平面ABC 1的距离d =|AA 1 ⋅n||n |=2313=23913,所以点P 到平面ABC 1的距离为23913.(2)设A 1P =λA 1B 1 ,λ∈[0,1],则AP =AA 1 +A 1P =AA 1 +λAB=(0,1,3)+λ(3,1,0)=(3λ,1+λ,3),由AP ⊥α,得AP为平面α的一个法向量,设直线BC 1与平面α所成角为θ,则sin θ=|cos ‹BC 1 ,AP ›|=|BC 1 ⋅AP||BC 1 ||AP |=|5-λ|10⋅3λ2+(1+λ)2+3=5-λ25⋅2λ2+λ+2,令t =5-λ,则λ=5-t ,t ∈[4,5],则sin θ=t 25⋅2(5-t )2+(5-t )+2=t25⋅2t 2-21t +57=125⋅2-21t+57t 2=125571t-7382+576,由t ∈[4,5],得1t ∈15,14 ,于是571t -738 2+576∈225,516,25⋅571t -738 2+576∈2105,52 ,则sin θ∈25,104,所以直线BC 1与平面α所成角的正弦值的取值范围是25,104.6(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB ∥CD ,∠BAD =90°,CD =2AB ,△PAB 是正三角形,点M 在侧棱PB 上且使得PD ⎳平面AMC .(1)证明:PM =2BM ;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD 所成角的正切值为311,求二面角P -AC -B 的余弦值.【答案】(1)证明见解析;(2)1010.【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB CD=EBED ,由线面平行的性质得PD ∥EM ,根据三角形相似可得EB ED =BM PM=12,即PM =2BM(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在△PAB 中过点M 作MF ∥PO 交AB 于点F ,得MF ⊥底面ABCD ,则∠MCF 为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG ⊥AC 于点G ,则∠PGO 是二面角P -AC -B 的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在△EAB 与△ECD 中,∵AB ∥CD ,∴AB CD=EBED ,由CD =2AB ,得ED =2EB ,又∵PD ⎳平面AMC ,而平面PBD ∩平面AMC =ME ,PD ⊂平面PBD ,∴PD ∥EM ,∴在△PBD 中,EB ED =BM PM=12,∴PM =2BM ;(2)设AB 的中点O ,在正△PAB 中,PO ⊥AB ,而侧面PAB ⊥底面ABCD ,侧面PAB ∩底面ABCD =AB ,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在△PAB 中过点M 作MF ⎳PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴∠MCF 为CM 与底面ABCD 所成角,∴MF CF=311,设AB =6a ,则MF=3a,∴CF=11a,BF=MF3=a,则在直角梯形ABCD中,AF=5a,而CD=12a,则AD=11a2-12a-5a2=62a,在底面ABCD上过点O作OG⊥AC于点G,则∠PGO是二面角P-AC-B的平面角,易得OA=3a,AC=66a,在梯形ABCD中,由OAOG=ACAD⇒3aOG=66a62a,得OG=3a,在Rt△POG中,PG=30a,∴cos∠PGO=OGPG=1010.7(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG-CDEHF是一个放置在地面上的蔬菜大棚钢架,四边形ABCD是矩形,AB=8m,AD=4m,ED=CF=1m,且ED,CF都垂直于平面ABCD,GA=GB=5m,HE=HF,平面ABG⊥平面ABCD.(1)求点H到平面ABCD的距离;(2)求平面BFHG与平面AGHE所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取AB,CD的中点M,N,证得平面ADE⎳平面MNHG,得到AE⎳GH,再由平面ABG⎳平面CDEHG,证得AG⎳EH,得到平行四边形AGHE,得到GH=AE,求得HN=4,结合HN⊥平面ABCD,即可求解;(2)以点N为原点,建立空间直角坐标系,分别求得平面BFHG和平面AGHE的法向量n =(1,3,4)和m =(1,-3,4),结合向量的夹角公式,即可求解.【详解】(1)如图所示,取AB,CD的中点M,N,连接GM,MN,HN,因为GA=GB,可得GM⊥AB,又因为平面ABG⊥平面ABCD,且平面ABG∩平面ABCD=AB,GM⊂平面ABG,所以GM⊥平面ABCD,同理可得:HN⊥平面ABCD,因为ED⊥平面ABCD,所以ED⎳HN,又因为ED⊄平面MNHG,HN⊂平面MNHG,所以ED⎳平面MNHG,因为MN⎳AD,且AD⊄平面MNHG,MN⊂平面MNHG,所以AD⎳平面MNHG,又因为AD∩DE=D,且AD,DE⊂平面ADE,所以平面ADE⎳平面MNHG,因为平面AEHG与平面ADE和平面MNHG于AE,GH,可得AE⎳GH,又由GM⎳HN,AB⎳CD,且AB∩GM=M和CD∩HN=N,所以平面ABG⎳平面CDEHG,因为平面AEHG与平面ABG和平面CDEHF于AG,EH,所以AG⎳EH,可得四边形AGHE 为平行四边形,所以GH =AE ,因为AE =AD 2+DE 2=42+12=17,所以GH =17,在直角△AMG ,可得GM =GB 2-AB 22=52-42=3,在直角梯形GMNH 中,可得HN =3+17-42=4,因为HN ⊥平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以NM ,NC ,NH 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则E (0,-4,1),F (0,4,1),G (4,0,3),H (0,0,4),可得HE =(0,-4,-3),HF =(0,4,-3),HG=(4,0,-1),设平面BFHG 的法向量为n=(x ,y ,z ),则n ⋅HG=4x -z =0n ⋅HF=4y -3z =0,取z =4,可得x =1,y =3,所以n=(1,3,4),设平面AGHE 的法向量为m=(a ,b ,c ),则m ⋅HG=4a -c =0m ⋅HE=-4b -3c =0,取c =4,可得a =1,b =-3,所以m=(1,-3,4),则cos m ,n =m ⋅n m n=1-9+161+9+16⋅1+9+16=413,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8(2024·重庆·模拟预测)如图,ACDE 为菱形,AC =BC =2,∠ACB =120°,平面ACDE ⊥平面ABC ,点F 在AB 上,且AF =2FB ,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若∠EAC =60°,MN 为直线CD ,AB 的公垂线,求ANAF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>217,求平面BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)AN AF=913(3)528,255 【分析】(1)先通过余弦定理及勾股定理得到CF ⊥AC ,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,利用向量的坐标运算根据MN ⋅CD =0MN ⋅AF =0,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>217列不等式求解.【详解】(1)AB 2=AC 2+BC 2-2AC ⋅BC ⋅cos ∠ACB =12,AB =23,AF =2FB ,所以AF =433,CF=13CA +23CB ,CF 2=19CA 2+49CB 2+49CA ⋅CB =43,AC 2+CF 2=4+43=163=AF 2,则CF ⊥AC ,又因为平面ACDE ⊥平面ABC ,平面ACDE ∩平面ABC =AC ,CF ⊂面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C -xyz ,由∠EAC =60°,可得∠DCA =120°,DC =2,所以C 0,0,0 ,D -1,0,3 ,A 2,0,0 ,F 0,233,0 所以AF =-2,233,0 ,CD =-1,0,3 ,设AN =λAF =-2λ,233λ,0 ,则N 2-2λ,233λ,0 ,设CM =μCD ,则M -μ,0,3μ ,MN =2-2λ+μ,233λ,-3μ ,由题知,MN ⋅CD=0MN ⋅AF =0 ⇒2λ-2-μ-3μ=04λ-4-2μ+43λ=0 ,解得λ=913,μ=-213,故AN AF=913;(3)B -1,3,0 ,设∠EAC =θ,则E 2-2cos θ,0,2sin θ ,BE=3-2cos θ,-3,2sin θ ,可取平面ABC 的法向量n=0,0,1 ,则sin α=cos n ,BE=n ⋅BEn ⋅BE =2sin θ 3-2cos θ 2+3+4sin 2θ=sin θ4-3cos θ,cos α=4-3cos θ-sin 2θ4-3cos θ,则tan α=sin θ4-3cos θ-sin 2θ>217,整理得10cos 2θ-9cos θ+2<0,故cos θ∈25,12,CF =0,23,0,CD =-2cos θ,0,2sin θ ,CB =-1,3,0 ,记平面CDF 的法向量为n 1 =x ,y ,z ,则有n 1 ⋅CD =0n 1 ⋅CF =0 ⇒-2x cos θ+2z sin θ=023y =0,可得n 1=sin θ,0,cos θ ,记平面CBD 的法向量为n 2 =a ,b ,c ,则有n 2 ⋅CD=0n 2 ⋅CB =0 ⇒-2a cos θ+2c sin θ=0-a +3b =0,可得n 2=3sin θ,sin θ,3cos θ ,记平面BCD 与平面CFD 所成角为γ,则cos γ=cos n 1 ,n 2 =33+sin 2θ,cos θ∈25,12 ,所以sin 2θ∈34,2125 ,3+sin 2θ∈152,465 ,故cos γ=33+sin 2θ∈528,255 .9(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90°,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为DF上一点,若二面角C -AM -E 的余弦值为13,求∠MAD .【答案】(1)证明见解析(2)∠MAD =45°【分析】(1)根据面面与线面垂直的性质可得BD ⊥AF ,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设∠MAD =α,AB =1,利用空间向量法求出二面角C -AM -E 的余弦值,建立方程1-sin αcos α1+sin 2α1+cos 2α=13,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF ⊥AB ,平面ABCD ∩平面ABEF =AB ,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD ⊥AF ,因为ABCD 是正方形,所以BD ⊥AC ,AC ,AF ⊂平面ACF ,AC ∩AF =A ,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设∠MAD =α,AB =1,则A 0,0,0 ,M cos α,sin α,0 ,C 1,0,1 ,E 0,1,1 ,故AM =cos α,sin α,0 ,AC =1,0,1 ,AE =0,1,1设平面AMC 的法向量为m =x 1,y 1,z 1 ,则m ⋅AC =0,m ⋅AM=0故x 1+z 1=0x 1cos α+y 1sin α=0,取x 1=sin α,则y 1=-cos α,z 1=-sin α所以m=sin α,-cos α,-sin α设平面AME 的法向量为n =x 2,y 2,z 2 ,n ⋅AE =0,n ⋅AM=0故y 2+z 2=0x 2cos α+y 2sin α=0,取x 2=sin α,则y 2=-cos α,z 2=cos α所以n=sin α,-cos α,cos α ,所以cos m ,n =1-sin αcos α1+sin 2α1+cos 2α,由已知得1-sin αcos α1+sin 2α1+cos 2α=13,化简得:2sin 22α-9sin2α+7=0,解得sin2α=1或sin2α=72(舍去)故α=45°,即∠MAD =45°.10(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆O 1的直径,C 是圆O 1上异于A ,B 的点,D 是圆台上底面圆O 2上的点,且平面DAC ⊥平面ABC ,DA =DC =AC =2,BC =4,E 是CD 的中点,BF =2FD .(1)证明:DO 2⎳BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析(2)68585【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证DO 2⎳OO 1,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量n =1,-12,3 与方向向量DB =(-1,4,-3)的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,OO 1,O 1O 2,∵DA =DC ,O 为AC 中点,∴DO ⊥AC ,又平面DAC ⊥平面ABC ,且平面DAC ∩平面ABC =AC ,DO ⊂平面DAC ,∴DO ⊥平面ABC ,∴DO ⎳O 1O 2,DO =O 1O 2,故四边形DOO 1O 2为矩形,∴DO 2⎳OO 1,又O ,O 1分别是AC ,AB 的中点,∴OO 1⎳BC ,∴DO 2⎳BC ;(2)∵C 是圆O 1上异于A ,B 的点,且AB 为圆O 1的直径,∴BC ⊥AC ,∴OO 1⊥AC ,∴如图以O 为原点建立空间直角坐标系,由条件知DO =3,∴A (1,0,0),B (-1,4,0),C (-1,0,0),D (0,0,3),∴E -12,0,32 ,设F (x ,y ,z ),∴BF =(x +1,y -4,z ),FD=(-x ,-y ,3-z ),由BF =2FD ,得F -13,43,233 ,∴AF =-43,43,233 ,∴DB =(-1,4,-3),AE =-32,0,32 ,设平面AEF 法向量为n=(x 1,y 1,z 1),则n ⋅AE=-32x 1+32z 1=0n ⋅AF =-43x 1+43y 1+233z 1=0,取n =1,-12,3 ,设直线BD 与平面AEF 所成角为θ,则sin θ=|cos <n ,DB>|=625⋅172=68585∴直线BD 与平面AEF 所成角的正弦值为68585.11(2024·黑龙江哈尔滨·一模)正四棱台ABCD -A 1B 1C 1D 1的下底面边长为22,A 1B 1=12AB ,M 为BC 中点,已知点P 满足AP =1-λ AB +12λ⋅AD +λAA 1,其中λ∈0,1 .(1)求证D 1P ⊥AC ;(2)已知平面AMC 1与平面ABCD 所成角的余弦值为37,当λ=23时,求直线DP 与平面AMC 1所成角的正弦值.【答案】(1)证明见解析(2)241391【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵A 1B 1=12AB ,∴AA 1 ⋅AB =AA 1 ⋅AD =22×22=2.∵D 1A =-12AD-AA 1∴D 1P =D 1A +AP =1-λ AB +12λ-12AD+λ-1 AA 1∴D 1P ⋅AC =1-λ AB +12λ-12AD +λ-1 AA 1 ⋅AB +AD =1-λ AB 2+12λ-12 AD2+λ-1 AB ⋅AA 1 +λ-1 AD ⋅AA 1=81-λ +812λ-12+4λ-1 =0.∴D 1P ⊥AC ,即D 1P ⊥AC .方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h ,则有 A 2,-2,0 ,B 2,2,0 ,C -2,2,0 ,D -2,-2,0 ,A 122,-22,h ,C 1-22,22,h ,D 1-22,-22,h ,M 0,2,0 ,AC =-22,22,0AP =1-λ 0,22,0 +12λ-22,0,0 +λ-22,22,0 =-322λ,22-322λ,λhD 1A =322,-22,-h ,D 1P =D 1A +AP =-322λ+322,-322λ+322,λh -h .故AC ⋅D 1P=0,所以D 1P ⊥AC .(2)设平面ABCD 的法向量为n=0,0,1 ,设平面AMC 1的法向量为m =x ,y ,z ,AM =-2,22,0 ,AC 1 =-322,322,h ,则有AM ⋅m=0AC 1 ⋅m=0 ,即-2x +22y =0-322x +322y +hz =0,令x =22h ,则m=22h ,2h ,3 .又题意可得cos m ,n =38h 2+2h 2+9=37,可得h =2.因为λ=23,经过计算可得P 0,0,43 ,D 1-22,-22,2 ,D 1P =2,2,43.将h =2代入,可得平面AMC 1的法向量m=42,22,3 .设直线DP 与平面AMC 1所成角的为θsin θ=cos DP ,m =8+4+42+2+16932+8+9=241391.12(2024·辽宁·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面ACC 1A 1⊥底面ABC ,AC =AA 1=2,AB =1,BC =3,点E 为线段AC 的中点.(1)求证:AB 1∥平面BEC 1;(2)若∠A 1AC =π3,求二面角A -BE -C 1的余弦值.【答案】(1)证明见详解(2)-22【分析】(1)连接BC 1,交B 1C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,△AA 1C 为等边三角形,故A 1E ⊥AC ,利用面面垂直的性质定理可证得A 1E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接BC 1,交B 1C 于点N ,连接NE ,因为侧面BCC 1B 1是平行四边形,所以N 为B 1C 的中点,又因为点E 为线段AC 的中点,所以NE ⎳AB 1,因为AB 1⊄面BEC 1,NE ⊂面BEC 1,所以AB 1⎳面BEC 1.(2)连接A 1C ,A 1E ,因为∠A 1AC =π3,AC =AA 1=2,所以△AA 1C 为等边三角形,A 1C =2,因为点E 为线段AC 的中点,所以A 1E ⊥AC ,因为侧面ACC 1A 1⊥底面ABC ,平面ACC 1A 1∩平面ABC =AC ,A 1E ⊂平面ACC 1A 1,所以A 1E ⊥底面ABC ,过点E 在底面ABC 内作EF ⊥AC ,如图以E 为坐标原点,分布以EF ,EC ,EA 1 的方向为x ,y ,z 轴正方向建立空间直角坐标系,则E 0,0,0 ,B 32,-12,0 ,C 10,2,3 ,所以EB =32,-12,0 ,EC 1 =0,2,3 ,设平面BEC 1的法向量为m=x ,y ,z ,则m ⋅EB =32x -12y =0m ⋅EC 1=2y +3z =0,令x =1,则y =3,z =-2,所以平面BEC 1的法向量为m=1,3,-2 ,又因为平面ABE 的法向量为n=0,0,1 ,则cos m ,n =-21+3+4=-22,经观察,二面角A -BE -C 1的平面角为钝角,所以二面角A -BE -C 1的余弦值为-22.13(2024·广东广州·一模)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,△DCP 是等边三角形,∠DCB =∠PCB =π4,点M ,N 分别为DP 和AB 的中点.(1)求证:MN ⎳平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)33.【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ ⊥BC 于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接ME ,BE ,由M 为DP 中点,N 为AB 中点,得ME ⎳DC ,ME =12DC ,又BN ⎳CD ,BN =12CD ,则ME ⎳BN ,ME =BN ,因此四边形BEMN 为平行四边形,于是MN ⎳BE ,而MN ⊄平面PBC ,BE ⊂平面PBC ,所以MN ⎳平面PBC .(2)过P 作PQ ⊥BC 于点Q ,连接DQ ,由∠DCB =∠PCB =π4,CD =PC ,QC =QC ,得△QCD ≌△QCP ,则∠DQC =∠PQC =π2,即DQ ⊥BC ,而PQ =DQ =2,PQ 2+DQ 2=4=PD 2,因此PQ ⊥DQ ,又DQ ∩BC =Q ,DQ ,BC ⊂平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线QC ,QD ,QP 两两垂直,以点Q 为原点,直线QC ,QD ,QP 分别为x ,y ,z 轴建立空间直角坐标系,则C (2,0,0),P (0,0,2),D (0,2,0),M 0,22,22,A (-2,2,0),CM =-2,22,22,AD =(2,0,0),DP =(0,-2,2),设平面PAD 的一个法向量n =(x ,y ,z ),则n ⋅AD=2x =0n ⋅DP=-2y +2z =0,令y =1,得n=(0,1,1),设CM 与平面PAD 所成角为θ,sin θ=|cos ‹CM ,n ›|=|CM ⋅n||CM ||n |=23⋅2=33,所以CM 与平面PAD 所成角的正弦值是33.14(2024·广东梅州·二模)如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,△PAD 为等边三角形,AD ⎳BC ,AD ⊥AB ,AD =AB =2BC =2.(1)求证:AD ⊥PC ;(2)点N 在棱PC 上运动,求△ADN 面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得AM ⎳平面BDQ ,求PQQC的值.【答案】(1)证明见解析(2)2217(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH ⊥AD ,再由PH ⊥AD ,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到CG AG=12,再根据线面平行的性质得到CF FM =12,在△PBC 中,过点M 作MK ⎳PC ,即可得到MKCQ=2,最后由PQ =2MK 即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则AH ⎳BC 且AH =BC ,又AD ⊥AB ,所以四边形ABCH 为矩形,所以CH ⊥AD ,又△PAD 为等边三角形,所以PH ⊥AD ,PH ∩CH =H ,PH ,CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD ⊥PC .(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD ⊥HN ,所以S △ADH =12AD ⋅HN =HN ,要使△ADN 的面积最小,即要使HN 最小,当且仅当HN ⊥PC 时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH ⊥HC ,在Rt △HPC 中,CH =2,PH =3,所以PC =CH 2+PH 2=7,当HN ⊥PC 时HN =PH ⋅CH PC =237=2217,所以△ADN 面积的最小值为2217.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为AD ⎳BC 且AD =2BC =2,所以△CGB ∽△AGD ,所以CG AG =BC AD=12,因为AM ⎳平面BDQ ,又AM ⊂平面ACM ,平面BDQ ∩平面ACM =GF ,所以GF ⎳AM ,所以CF FM =CG AG=12,在△PBC 中,过点M 作MK ⎳PC ,则有MK CQ =MF CF=2,所以PQ =2MK ,所以PQ =2MK =4CQ ,即PQQC=415(2024·广东广州·模拟预测)如图所示,圆台O 1O 2的轴截面A 1ACC 1为等腰梯形,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点,且AB =BC ,P 是线段BC 的中点.(1)求证:C 1P ⎳平面A 1AB .(2)求平面A 1AB 与平面C 1CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接A 1H ,PH ,证明四边形A 1C 1PH 为平行四边形,进而得C 1P ⎳A 1H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接A1H ,PH ,如图所示,因为P 为BC 的中点,所以PH ⎳AC ,PH =12AC .在等腰梯形A 1ACC 1中,A 1C 1⎳AC ,A 1C 1=12AC ,所以HP ⎳A 1C 1,HP =A 1C 1,所以四边形A 1C 1PH 为平行四边形,所以C 1P ⎳A 1H ,又A 1H ⊂平面A 1AB ,C 1P ⊄平面A 1AB ,所以C 1P ⎳平面A 1AB .(2)因为AB =BC ,故O 2B ⊥AC ,以直线O 2A ,O 2B ,O 2O 1分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高为h =AA 21-AC -A 1C 122= 3.因为A 1C 1=12AC ,A 1C 1⎳AC ,。
山东省济宁市第一中学高考数学的立体几何多选题含答案
![山东省济宁市第一中学高考数学的立体几何多选题含答案](https://img.taocdn.com/s3/m/5437799c336c1eb91b375d27.png)
山东省济宁市第一中学高考数学的立体几何多选题含答案一、立体几何多选题1.如图,在棱长为2的正方体ABCD A B C D ''''-中,M 为BC 边的中点,下列结论正确的有( )A .AM 与DB ''10 B .过三点A 、M 、D 的正方体ABCD A BCD ''''-的截面面积为92C .四面体A C BD ''的内切球的表面积为3π D .正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是椭圆 【答案】AB 【分析】构建空间直角坐标系,由异面直线方向向量的夹角cos ,||||AM D B AM D B AM D B ''⋅''<>=''为AM 与D B ''所成角的余弦值判断A 的正误;同样设(,,0)P x y 结合向量夹角的坐标表示,2221543x y =++⨯P 的轨迹知D 的正误;由立方体的截面为梯形,分别求,,,MN AD AM D N '',进而得到梯形的高即可求面积,判断B 的正误;由四面体的体积与内切球半径及侧面面积的关系求内切球半径r ,进而求内切球表面积,判断C 的正误. 【详解】A :构建如下图所示的空间直角坐标系:则有:(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D '', ∴(1,2,0),(2,2,0)AM D B ''==-,10cos ,10||||58AM D B AM D B AM D B ''⋅''<>===''⨯,故正确.B :若N 为CC '的中点,连接MN ,则有//MN AD ',如下图示,∴梯形AMND’为过三点A 、M 、D 的正方体ABCD A B C D ''''-的截面, 而2,2,5MN AD AM D N ''====322, ∴梯形的面积为132932222S =⨯=,故正确. C :如下图知:四面体A C BD ''的体积为正方体体积减去四个直棱锥的体积,∴118848323V =-⨯⨯⨯=,而四面体的棱长都为22,有表面积为142222sin 8323S π=⨯⨯⨯⨯=,∴若其内切圆半径为r ,则有188333r ⨯⋅=,即33r =,所以内切球的表面积为2443r ππ=.故错误. D :正方体ABCD A B C D ''''-中,点P 在底面A B C D ''''(所在的平面)上运动且MAC PAC ''∠=∠,即P 的轨迹为面A B C D ''''截以AM 、AP 为母线,AC’为轴的圆锥体侧面所得曲线,如下图曲线GPK ,构建如下空间直角坐标系,232(0,0,2),(2),(0,22,0)22A M C '-,若(,,0)P x y ,则232(,,0),(0,22,2),(,,2)22AM AC AP x y '=-=-=-,∴15cos ||||512AMAC MAC AM AC '⋅'∠==='⨯,2222cos ||||43AP AC y PAC AP AC x y '⋅+'∠=='++⨯,即222215543y x y +=++⨯,整理得22(102)9216(0)y x y +-=>,即轨迹为双曲线的一支,故错误.故选:AB 【点睛】关键点点睛:应用向量的坐标表示求异面直线的夹角,并结合等角的余弦值相等及向量数量积的坐标表示求动点的轨迹,综合立方体的性质求截面面积,分割几何体应用等体积法求内切球半径,进而求内切球的表面积.2.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 的平面截正方体所得的截面面积最大为5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误; 平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为6,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.3.已知正方体1111ABCD A B C D -的棱长为2,点O 为11A D 的中点,若以O 为球心,6为半径的球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H ,则下列结论正确的是( )A .11//A D 平面EFGHB .1AC ⊥平面EFGHC .11A B 与平面EFGH 所成的角的大小为45°D .平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7 【答案】ACD 【分析】如图,计算可得,,,E F G H 分别为所在棱的中点,利用空间中点线面的位置关系的判断方法可判断A 、B 的正确与否,计算出直线AB 与平面EFGH 所成的角为45︒后可得C 正确,而几何体BHE CGF -为三棱柱,利用公式可求其体积,从而可判断D 正确与否. 【详解】如图,连接OA ,则2115OA AA =+=,故棱1111,,,A A A D D D AD 与球面没有交点.同理,棱111111,,A B B C C D 与球面没有交点. 因为棱11A D 与棱BC 之间的距离为26>BC 与球面没有交点.因为正方体的棱长为2,而26<球面与正方体1111ABCD A B C D -的棱有四个交点E ,F ,G ,H , 所以棱11,,,AB CD C C B B 与球面各有一个交点, 如图各记为,,,E F G H .因为OAE △为直角三角形,故22651AE OE OA -=-=,故E 为棱AB 的中点. 同理,,F G H 分别为棱11,,CD C C B B 的中点.由正方形ABCD 、,E F 为所在棱的中点可得//EF BC , 同理//GH BC ,故//EF GH ,故,,,E F G H 共面. 由正方体1111ABCD A B C D -可得11//A D BC ,故11//A D EF因为11A D ⊄平面EFGH ,EF ⊂平面EFGH ,故11//A D 平面EFGH ,故A 正确.因为在直角三角1BA C 中,1A B =2BC = ,190A BC ∠=︒, 1A C 与BC 不垂直,故1A C 与GH 不垂直,故1A C ⊥平面EFGH 不成立,故B 错误.由正方体1111ABCD A B C D -可得BC ⊥平面11AA B B ,而1A B ⊂平面11AA B B , 所以1BC A B ⊥,所以1EF A B ⊥在正方形11AA B B 中,因为,E H 分别为1,AB BB 的中点,故1EH A B ⊥, 因为EFEH E =,故1A B ⊥平面EFGH ,所以BEH ∠为直线AB 与平面EFGH 所成的角,而45BEH ∠=︒, 故直线AB 与平面EFGH 所成的角为45︒,因为11//AB A B ,故11A B 与平面EFGH 所成的角的大小为45°.故C 正确. 因为,,,E F G H 分别为所在棱的中点,故几何体BHE CGF -为三棱柱, 其体积为111212⨯⨯⨯=,而正方体的体积为8, 故平面EFGH 将正方体1111ABCD A B C D -分成两部分的体积的比为1:7,故D 正确. 故选:ACD. 【点睛】本题考查空间中线面位置的判断、空间角的计算和体积的计算,注意根据球的半径确定哪些棱与球面有交点,本题属于中档题.4.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC 【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键. (2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.5.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =.则下列结论正确的是( )A .三棱锥A BEF -的体积为定值B .当E 向1D 运动时,二面角A EF B --逐渐变小C .EF 在平面11ABB A 内的射影长为12D .当E 与1D 重合时,异面直线AE 与BF 所成的角为π4【答案】AC 【分析】对选项分别作图,研究计算可得. 【详解】选项A:连接BD ,由正方体性质知11BDD B 是矩形,1112212224BEF S EF BB ∆∴=⋅=⨯⨯=连接AO 交BD 于点O由正方体性质知AO ⊥平面11BDD B ,所以,AO 是点A 到平面11BDD B 的距离,即22AO =11221334212A BEF BEF V S AO -∆∴=⨯=⨯⨯=A BEF V -∴是定值.选项B:连接11A C 与11B D 交于点M ,连接11,AD AB , 由正方体性质知11AD AB =,M 是11B D 中点,AM EF ∴⊥ ,又1BB EF ⊥,11//BB AAA EFB ∴--的大小即为AM 与1AA 所成的角,在直角三角形1AA M 中,12tan 2MAA ∠=为定值. 选项C:如图,作1111,,,FH A B EG A B ET EG ⊥⊥⊥ 在直角三角形EFT 中,221cos 45222FT EF =⨯=⨯=12HG FT ∴== 选项D:当E 与1D 重合时,F 与M 重合,连接AC 与BD 交于点R ,连接1D R ,1//D R BM 异面直线AE 与BF 所成的角,即为异面直线1AD 与1D R 所成的角, 在三角形1AD R 中,22111132,2AD D R MB BB M B ===+=22AR = 由余弦定理得13cos AD R ∠= 故选:AC 【点睛】本题考查空间几何体性质问题.求解思路:关键是弄清(1)点的变化,点与点的重合及点的位置变化;(2)线的变化,应注意其位置关系的变化;(3)长度、角度等几何度量的变化.求空间几何体体积的思路:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法;若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.6.已知棱长为1的正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,以下结论正确的是( ) A .四边形1BFD E 不一定是平行四边形 B .平面α分正方体所得两部分的体积相等 C .平面α与平面1DBB 不可能垂直 D .四边形1BFD E 2 【答案】BD 【分析】由平行平面的性质可判断A 错误;利用正方体的对称性可判断B 正确;当E 、F 为棱中点时,通过线面垂直可得面面垂直,可判断C 错误;当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积最大,2,可判断D 正确. 【详解】 如图所示,对于选项A,因为平面1111//ABB A CC D D ,平面1BFD E 平面11ABB A BE =,平面1BFD E平面111CC D D D F =,所以1//BE D F ,同理可证1//D E BF ,所以四边形1BFD E 是平行四边形,故A 错误; 对于选项B,由正方体的对称性可知,平面α分正方体所得两部分的体积相等,故B 正确; 对于选项C,在正方体1111ABCD A B C D -中,有1,AC BD AC BB ⊥⊥, 又1BD BB B ⋂=,所以AC ⊥平面1BB D , 当E 、F 分别为棱11,AA CC 的中点时, 有//AC EF ,则EF ⊥平面1BB D , 又因为EF ⊂平面1BFD E ,所以平面1BFD E ⊥平面1BB D ,故C 错误;对于选项D,四边形1BFD E 在平面ABCD 内的投影是正方形ABCD , 当E 与A 重合,F 与1C 重合时,四边形1BFD E 的面积有最大值, 此时1212S D E BE =⋅=⋅=,故D 正确; 故选:BD. 【点睛】本题考查了正方体的几何性质与应用问题,也考查了点线面的位置关系应用问题,属于中档题.7.如图所示,在长方体1111ABCD A B C D -中,11,2,AB BC AA P ===是1A B 上的一动点,则下列选项正确的是( )A .DP 35B .DP 5C .1AP PC +6D .1AP PC +的最小值为1705【答案】AD 【分析】DP 的最小值,即求1DA B △底边1A B 上的高即可;旋转11A BC 所在平面到平面11ABB A ,1AP PC +的最小值转化为求AC '即可.【详解】求DP 的最小值,即求1DA B △底边1A B 上的高,易知115,2A B A D BD ===,所以1A B 边上的高为355h =,连接111,AC BC ,得11A BC ,以1A B 所在直线为轴,将11A BC 所在平面旋转到平面11ABB A ,设点1C 的新位置为C ',连接AC ',则AC '即为所求的最小值,易知11122,2,cos 10AA AC AAC ''==∠=-, 所以217042222()105AC '=+-⨯⨯⨯-=. 故选:AD. 【点睛】本题考查利用旋转求解线段最小值问题.求解翻折、旋转问题的关键是弄清原有的性质变化与否, (1)点的变化,点与点的重合及点的位置变化;(2)线的变化,翻折、旋转前后应注意其位置关系的变化;(3)长度、角度等几何度量的变化.8.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形ABCD ,11BCC B 的中心.则下列结论正确的是( )A .平面1D MN 与11BC 的交点是11B C 的中点 B .平面1D MN 与BC 的交点是BC 的三点分点 C .平面1D MN 与AD 的交点是AD 的三等分点 D .平面1D MN 将正方体分成两部分的体积比为1∶1 【答案】BC 【分析】取BC 的中点E ,延长DE ,1D N ,并交于点F ,连FM 并延长分别交,BC AD 于,P Q ,连1,D Q PN 并延长交11B C 与H ,平面四边形1D HPQ 为所求的截面,进而求出,,P Q H 在各边的位置,利用割补法求出多面体11QPHD C CD 的体积,即可求出结论.【详解】如图,取BC 的中点E ,延长DE ,1D N ,并交于点F ,连接FM 并延长,设FM BC P ⋂=,FM AD Q ⋂=, 连接PN 并延长交11B C 于点H .连接1D Q ,1D H ,则平面四边形1D HPQ 就是平面1D MN 与正方体的截面,如图所示.111111////,22NE CC DD NE CC DD ==,NE ∴为1DD F ∆的中位线,E ∴为DF 中点,连BF , ,,90DCE FBE BF DC AB FBE DCE ∴∆≅∆==∠=∠=︒, ,,A B F ∴三点共线,取AB 中点S ,连MS ,则12//,,23BP FB MS BP MS BC MS FS =∴==, 22111,33236BP MS BC BC PE BC ∴==⨯=∴=, E 为DF 中点,11//,233PE DQ DQ PE BC AD ∴===N 分别是正方形11BCC B 的中心,11113C H BP C B ∴==所以点P 是线段BC 靠近点B 的三等分点, 点Q 是线段AD 靠近点D 的三等分点, 点H 是线段11B C 靠近点1C 的三等分点. 做出线段BC 的另一个三等分点P ', 做出线段11A D 靠近1D 的三等分点G ,连接QP ',HP ',QG ,GH ,1H QPP Q GHD V V '--=, 所以111113QPHD C CD QPHQ DCC D V V V -==多面体长方体正方体 从而平面1D MN 将正方体分成两部分体积比为2∶1. 故选:BC.【点睛】本题考查直线与平面的交点及多面体的体积,确定出平面与正方体的交线是解题的关键,考查直观想象、逻辑推理能力,属于较难题.9.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A .棱的高与底边长的比为22B .侧棱与底面所成的角为4π C .棱锥的高与底面边长的比为2 D .侧棱与底面所成的角为3π 【答案】AB 【分析】设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a=,然后可得侧面积为242108a a+,运用导数可求出当32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案. 【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a=所以其侧面积为2222244215410842244a a a h a a a a⋅⋅+=+=+ 令()242108f a a a =+,则()23321084f a a a⨯'=- 令()233210840f a a a⨯'=-=得32a = 当()0,32a ∈时()0f a '<,()f a 单调递减当()32,a ∈+∞时()0f a '>,()f a 单调递增所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小 此时3h =所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误故选:AB 【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.10.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则( )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 所成角的正弦值为2 【答案】BCD 【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断. 【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾, 所以A 错;对于B ,补齐八个角构成棱长为2的正方体,则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=,所以B 对;对于C ,取正方形ACPM 对角线交点O , 即为该二十四等边体外接球的球心, 其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS , 所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
山东省高考数学文科汇总--立体几何精编版
![山东省高考数学文科汇总--立体几何精编版](https://img.taocdn.com/s3/m/7cd9da0a10661ed9ac51f331.png)
近年山东文科高考分类汇编---立体几何部分【2016山东(文)】18.在如图所示的几何体中,D是AC的中点,EF∥DB.(Ⅰ)已知AB=BC,AE=EC,求证:AC⊥FB;(Ⅱ)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.【解析】(Ⅰ)证明:如图所示,∵D是AC的中点,AB=BC,AE=EC,∴△BAC、△EAC 都是等腰三角形,∴BD⊥AC,ED⊥AC.∵EF∥DB,∴E、F、B、D四点共面,这样,AC垂直于平面EFBD内的两条相交直线ED、BD,∴AC⊥平面EFBD.显然,FB⊂平面EFBD,∴AC⊥FB.(Ⅱ)已知G,H分别是EC和FB的中点,再取CF的中点O,则OG∥EF,∵OG∥BD,∴OG∥BD,而BD⊂平面ABC,∴OG∥平面ABC.同理,OH∥BC,而BC⊂平面ABC,∴OH∥平面ABC.∵OG∩OH=O,∴平面OGH∥平面ABC,∴GH∥平面ABC.【解析】(I )证法一:连接,.DG CD 设CD GF M ⋂=,连接MH ,在三棱台DEF ABC -中,2AB DE G =,分别为AC 的中点,可得//,DF GC DF GC =,所以四边形DFCG 是平行四边形,则M 为CD 的中点,又H 是BC 的中点,所以//HM BD , 又HM ⊂平面FGH ,BD ⊄平面FGH ,所以//BD 平面FGH .证法二:在三棱台DEF ABC -中,由2,BC EF H =为BC 的中点, 可得//,,BH EF BH EF =所以HBEF 为平行四边形,可得//.BE HF 在ABC ∆中,G H ,分别为AC BC ,的中点, 所以//,GH AB 又GH HF H ⋂=, 所以平面//FGH 平面ABED , 因为BD ⊂平面ABED , 所以//BD 平面FGH .(II)证明:连接HE .因为G H ,分别为AC BC ,的中点,所以//,GH AB 由,AB BC ⊥得GH BC ⊥,又H 为BC 的中点,所以//,,EF HC EF HC =因此四边形EFCH 是平行四边形,所以//.CF HE 又CF BC ⊥,所以HE BC ⊥.又,HE GH ⊂平面EGH ,HE GH H ⋂=,所以BC ⊥平面EGH , 又BC ⊂平面BCD ,所以平面BCD ⊥平面.EGH 考点:1.平行关系;2.垂直关系.【2014山东(文)】(18)(本小题满分12分)如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 21==,F E ,分别为线段PC AD ,的中点。
山东各地2019高考数学(文科)最新试题分类大汇编17:立体几何(1)
![山东各地2019高考数学(文科)最新试题分类大汇编17:立体几何(1)](https://img.taocdn.com/s3/m/df98d5797375a417876f8f07.png)
山东各地2019高考数学(文科)最新试题分类大汇编17:立体几何(1)〔Ⅰ〕假设F 为DE 的中点,求证:BE //平面ACF ; 〔Ⅱ〕求直线BE 与平面ABCD 所成角的正弦值、 【答案】20、解:〔Ⅰ〕设AC 与BD 相交于G ,连结GF 、 正方形ABCD ,GD BG =∴,又DF EF = , BE GF //,2分⊂GF 平面ACF ,⊄BE 平面ACF ,//BE ∴平面ACF 3分〔Ⅱ〕解法一:过E 点作EH ⊥AD ,垂足为H ,连结BH 1分⊥AE 平面CDE ,CD AE ⊥∴,又AD CD ⊥ ,A AD AE = ,⊥∴CD 平面ADE ,EH CD ⊥∴,D AD CD = ,⊥∴EH 平面ABCD, 所以EBH ∠是直线BE 与平面ABCD 所成的角、4分Rt ADE ∆中,AE =3,DE =4,512,5==∴EH AD 、34,,//=∴⊥∴BE AE AB CD AB , .85346sin ==∠∴BE HE EBH 所以直线BE 与平面ABCD 所成角的正弦值为.85346、 4分解法二:⊥AE 平面CDE ,CD AE ⊥∴,又AD CD ⊥ ,A AD AE = ,⊥∴CD 平面ADE , DE CD ⊥∴,34,,//=∴⊥∴BE AE AB CD AB , Rt ADE∆中,AE =3,DE =4,,5=∴AD ADC E CDE A V V --= ,即h S AE S ADC CDE ⋅=⋅∆∆3131,512=∴h 设直线BE 与平面ABCD 所成角为θ,.85346sin ==∴BE h θ所以直线BE 与平面ABCD 所成角的正弦值为.85346、4分【山东省济宁市鱼台二中2018届高三11月月考文】3、m ,n 是两条不同直线,α、βA 、假设//,,//m n m n ααβ=则 B 、假设//,,m n m n αα⊥⊥则C 、假设,,//m m αβαβ⊥⊥则D 、假设,,m m αβαβ≠⊥⊂⊥则【答案】A【山东省济宁市汶上一中2018届高三11月月考文】2、关于直线a 、b 、l 及平面α、β,以下命题中正确的选项是〔〕 A 、假设a ∥α,b ∥β,那么a ∥bB 、假设a ∥α,b ⊥a ,那么b ⊥αC 、假设a ⊂α,b ⊂α,且l ⊥a ,l ⊥b ,那么l ⊥αAFEDC BGDCBAPD 、假设a ⊥α,a ∥β,那么α⊥β【答案】D【山东省济宁市汶上一中2018届高三11月月考文】19、〔16分〕如图,在底面是直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠DAB=90º,PA ⊥平面ABCD ,PA=AB=BC=1,AD=2,M 是PD 的中点。
第六篇 山东高考试题立体几何汇编.
![第六篇 山东高考试题立体几何汇编.](https://img.taocdn.com/s3/m/a189cee20c22590102029daf.png)
第六篇立体几何1. (2007)下列几何体各自的三视图中,有且仅有两个视图相同的是()A .①②B .①③C .①④D .②④ 2, 。
(2007)(本小题满分12分)如图,在直四棱柱1111ABCD ABCD -中,已知122DC DD AD AB ===,AD DC ⊥,AB DC ∥.(Ⅰ)设E 是DC 的中点,求证:1D E ∥平面11A BD ;(Ⅱ)求二面角11A BD C --的余弦值.3. (2008)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是(D (A9π (B )10π (C11π π4. (2008)(本小题满分12分如图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,60ABC ∠=︒, E ,F 分别是BC , PC 的中点.(Ⅰ)证明:AE ⊥PD ;(Ⅱ)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为2求二面角E —AF —C 的余弦值.①正方形②圆锥③三棱台④正四棱锥 BD A1A 1D1C1BE5(2009. 一空间几何体的三视图如图所示, 则该几何体的体积为( .A. 2π+B. 4π+C. 2πD. 4π+6.(2009. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的(A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 7.(2009(本小题满分12分)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB的中点。
(1)证明:直线EE 1//平面FCC 1;(2)求二面角B-FC 1-C 的余弦值。
8.(2010在空间,下列命题正确的是(A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行(C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 9.(2010(本小题满分12分)如图,在五棱锥P —ABCDE 中,⊥PA 平面ABCDE ,AB//CD,AC//ED,AE//BC,42,22, 45===︒=∠AE BC AB ABC ,三角形PAB是等腰三角形。
山东各地2019高考数学最新联考试题分类汇编(8)立体几何
![山东各地2019高考数学最新联考试题分类汇编(8)立体几何](https://img.taocdn.com/s3/m/a74114c0dd88d0d233d46afb.png)
山东各地2019高考数学最新联考试题分类汇编(8)立体几何8、(山东省临沂市2018年3月高三教学质量检测文科)具有如下图的正视图和俯视图的几何体中,体积最大的几何体的表面积为(C)72π(D)147. (山东省日照市2018年3月高三第一次模拟理)右图是一个几何体的正〔主〕视图和侧〔左〕视图,其俯视图是面积为.那么该几何体的表面积是 A.20+B.24+C.8D.16(7)解析:答案A.由俯视图是矩形,那么该几何体为一个三棱柱,根据三视图的性质, 俯视图的矩形宽为由面积4,那么1+2=24+2S S S =⨯⨯⨯⨯侧底()22820+.选A.4. (山东省日照市2018年3月高三第一次模拟文)设a,b 是平面α内两条不同的直线,l 是平面α外的一条直线,那么“,l a l b ⊥⊥”是 “l α⊥”的 A.充分条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要条件(4)解析:答案C ,假设直线,a b 相交,那么能推出l α⊥,假设直线,a b 不相交,那么不能推出l α⊥,所以“l a ⊥,l b ⊥”是“l α⊥”的必要不充分条件,选C.8、(山东省临沂市2018年3月高三教学质量检测理科)具有如下图的正视图和俯视图的几何体中,体积最大的几何体的表面积为(C)72π(D)14【答案】D5. (山东省青岛市2018年3月高三第一次模拟文) m ,n 为两条不同的直线,α、β为A 、假设l m ⊥,l n ⊥,且,m n α⊂,那么l α⊥B 、假设平面α内有不共线的三点到平面β的距离相等,那么βα//C 、假设n m m ⊥⊥,α,那么α//nD 、假设,那么α⊥m 【答案】D14、(山东省潍坊市2018年3月高三第一次模拟理)一圆柱内接于球O,且圆柱的底面直径与母线长均为2,那么球为O的表面积为。
【答案】8π【三】解答题:19、(山东省潍坊市2018年3月高三第一次模拟理)〔本小题总分值12分〕如图,四边形ABCD中,AB AD⊥,AD∥BC,AD=6,BC=4,AB=2,点E,F分别在BC,AD上,且E为BC中点,EF∥AB。
2024届高考数学专项立体几何大题含答案
![2024届高考数学专项立体几何大题含答案](https://img.taocdn.com/s3/m/7a530a1fe418964bcf84b9d528ea81c759f52e52.png)
立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年-2014年山东高考文科数学立体几何大题及答案(08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC ==(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积.(09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB//CD ,AB=4, BC=CD=2,AA 1=2, E 、E 1分别是棱AD 、AA 1的中点(Ⅰ)设F 是棱AB 的中点,证明:直线EE 1//平面FCC 1; (Ⅱ)证明:平面D1AC ⊥平面BB1C1C.(10年)(本小题满分12分)在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ;(II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比.(11年)(本小题满分12分) 如图,在四棱台1111ABCD A B C D -中,1D D ABCD⊥平面,底面ABCD是平行四边形,112,,60AB AD AD A B BAD ==∠=(Ⅰ)证明:1AA BD⊥;(Ⅱ)证明:11//CC A BD 平面. ABC MPD EABCFE1AB1C1DDD B1D1 C1 C BAA1(12年) (本小题满分12分)如图,几何体E ABCD -是四棱锥,△ABD 为正三角形,,CB CD EC BD =⊥.(Ⅰ)求证:BE DE =;(Ⅱ)若∠120BCD =︒,M 为线段AE 的中点, 求证:DM ∥平面BEC .(13年)(本小题满分12分)如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。
(Ⅰ)求证,CE ∥平面PAD;(Ⅱ)求证,平面EFG ⊥平面EMN 。
(14年)(本小题满分12分)如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 21==,F E ,分别为线段PC AD ,的中点。
(Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ PACDE答案 08年解:(Ⅰ)证明:在ABD △中, 由于4AD =,8BD =,AB = 所以222AD BD AB +=.故AD BD ⊥.又平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,BD ⊂平面ABCD , 所以BD ⊥平面PAD , 又BD ⊂平面MBD ,故平面MBD ⊥平面PAD .(Ⅱ)解:过P 作PO AD ⊥交AD 于O , 由于平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD .因此PO 为四棱锥P ABCD -的高, 又PAD △是边长为4的等边三角形.因此4PO == 在底面四边形ABCD 中,AB DC ∥,2AB DC =,所以四边形ABCD 是梯形,在Rt ADB △中,斜边AB5=, 此即为梯形ABCD 的高, 所以四边形ABCD的面积为24S ==.故1243P ABCD V -=⨯⨯=09年解:(Ⅰ)证明:在直四棱柱ABCD-A 1B 1C 1D 1中,取A 1B 1的中点F 1, 连接A 1D ,C 1F 1,CF 1,因为AB=4, CD=2,且AB//CD , 所以CD =//A 1F 1,A 1F 1CD 为平行四边形,所以CF 1//A 1D , 又因为E 、E 1分别是棱AD 、AA 1的中点,所以EE 1//A 1D ,所以CF 1//EE 1,又因为1EE ⊄平面FCC 1,1CF ⊂平面FCC 1, ABCM PD OEABCFE 1A 1B 1C 1D 1D F 1所以直线EE 1//平面FCC 1.(Ⅱ)连接AC,在直棱柱中,CC 1⊥平面ABCD,AC ⊂平面ABCD, 所以CC 1⊥AC,因为底面ABCD 为等腰梯形,AB=4, BC=2, F 是棱AB 的中点,所以CF=CB=BF ,△BCF 为正三角形,60BCF ∠=︒,△ACF 为等腰三角形,且30ACF ∠=︒所以AC ⊥BC, 又因为BC 与CC 1都在平面BB 1C 1C 内且交于点C, 所以AC ⊥平面BB 1C 1C,而AC ⊂平面D 1AC, 所以平面D 1AC ⊥平面BB 1C 1C.10年解:(I )证明:由已知ABCD,PD MA,MA ⊥平面∥ 所以PD ABCD ∈平面 又BC ABCD ⊂平面, 所以PD DC ⊥因为四边形ABCD 为正方形, 所以BC DC ⊥, 又PD DC=D ⋂, 因此BC PDC ⊥平面在PBC 中,因为G F 、分别为PB PC 、的中点, 所以GF PC ∥ 因此GF PDC ⊥平面 又GF EFG ⊂平面, 所以EFG PDC ⊥平面平面.(Ⅱ)解:因为PD ABCD ⊥平面,四边形ABCD 为正方形,不妨设MA=1, 则PD=AD=2,EABCFE 1 A 1B 1C 1D 1D所以P-ABCD ABCD 1V =S 3正方形·8PD=3 由于DA MAB ⊥面的距离,且PD MA ∥ 所以DA 即为点P 到平面MAB 的距离,三棱锥322212131V MAB -P =⨯⨯⨯⨯=所以4:1V V ABCD -P MAB -P =:11年解:(I )证法一:因为1D D⊥平面ABCD ,且BD ⊂平面ABCD ,所以1D D BD ⊥,又因为AB=2AD ,60BAD ∠=︒,在ABD ∆中,由余弦定理得22222cos603BD AD AB AD AB AD =+-⋅︒=,所以222AD BD AB +=,因此AD BD ⊥,又1,AD D D D =所以11.BD ADD A ⊥平面又1AA ⊂平面ADD 1A 1,故1.AA BD ⊥证法二: 因为1D D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以1.BDD D ⊥取AB 的中点G ,连接DG ,在ABD ∆中,由AB=2AD 得AG=AD ,又60BAD ∠=︒,所以ADG ∆为等边三角形。
因此GD=GB ,故DBG GDB ∠=∠,又60AGD ∠=︒1,D D ∠︒∠∠∠︒︒︒⊥=所以GDB=30,故ADB=ADG+GDB=60+30=90,所以BD AD.又AD D所以BD ⊥平面ADD 1A 1,又1AA ⊂平面ADD 1A 1,故1.AA BD ⊥(II )连接AC ,A 1C 1,设AC BD E =,连接EA 1因为四边形ABCD 为平行四边形,所以1.EC AC =由棱台定义及AB=2AD=2A 1B 1知A 1C 1//EC 且A 1C 1=EC ,所以边四形A 1ECC 1为平行四边形, 因此CC 1//EA 1,又因为EA 1⊂平面A 1BD ,1CC ⊂平面A 1BD ,所以CC 1//平面A 1BD 。
12年解: (I)设BD 中点为O ,连接OC ,OE ,则由BC CD =知,CO BD ⊥, 又已知CE BD ⊥,所以BD ⊥平面OCE .所以BD OE ⊥,即OE 是BD 的垂直平分线,所以BE DE =.(II)取AB 中点N ,连接,MN DN ,∵M 是AE 的中点,∴MN ∥BE , ∵△ABD 是等边三角形,∴DN AB ⊥.由∠BCD =120°知,∠CBD =30°,所以∠ABC =60°+30°=90°,即BC AB ⊥,所以ND ∥BC ,所以平面MND ∥平面BEC ,故DM ∥平面BEC .13年解:(1)证法一:取P A 的中点H ,连接EH ,DH .,因为E 为PB 的中点,所以EH ∥AB ,EH =12AB . 又AB ∥CD ,CD =12AB ,所以EH ∥CD ,EH =CD .因此四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面PAD ,CE 平面PAD ,因此CE ∥平面PAD .证法二:连接CF .因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形.因此CF ∥AD . 又CF 平面PAD ,所以CF ∥平面PAD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又EF 平面PAD ,所以EF ∥平面PAD . 因为CF ∩EF =F ,故平面CEF ∥平面PAD . 又CE ⊂平面CEF ,所以CE ∥平面PAD .(2)证明:因为E ,F 分别为PB ,AB 的中点,所以EF ∥PA . 又AB ⊥PA ,所以AB ⊥EF . 同理可证AB ⊥FG .又EF ∩FG =F ,EF ⊂平面EFG ,FG ⊂平面EFG ,因此AB ⊥平面EFG .又M ,N 分别为PD ,PC 的中点,所以MN ∥CD . 又AB ∥CD ,所以MN ∥AB . 因此MN ⊥平面EFG . 又MN ⊂平面EMN ,所以平面EFG ⊥平面EMN .14年解:(Ⅰ)连接AC 交BE 于点O ,连接OF ,不妨设AB=BC=1,则AD=2,//,BC AD BC AB = ∴四边形ABCE 为菱形AP OF PC AC F O //,,∴中点,分别为 又BEF AP BEF OF 平面,平面//∴⊂(Ⅱ)CD AP PCD CD PCD AP ⊥∴⊂⊥,平面,平面CD BE BCDE ED BC ED BC //,,//∴∴=为平行四边形, ,PA BE ⊥∴AC BE ABCE ⊥∴为菱形,又 PAC AC PA A AC PA 平面、又⊂=⋂, ,PAC BE 平面⊥∴。