中值定理证明方法总结(1)

合集下载

柯西中值定理的证明与应用

柯西中值定理的证明与应用

柯西中值定理的证明与应用柯西中值定理,又称为柯西中值定理定理定理,是微积分中非常重要的定理之一。

它不仅有着证明简单、适用范围广泛的特点,而且在实际中的应用非常广泛。

本文将从定理的定义、证明方法、以及实际应用等几个角度来详细介绍柯西中值定理。

一、定理的定义柯西中值定理可以理解为一种反映平均变化率和瞬时变化率之间关系的定理。

一般而言,它的表述可为:设函数f(z)在两条平行于实轴的直线ab间在开集Ω内连续,且在ab间的闭凸包内可导,且不恒为零,则存在z∈ab,使得[f(b)-f(a)]/[b-a]=f'(z)其中,a、b为ab间两点。

这个定理的意义比较简单,即对于在某一区间内可导的函数而言,其平均变化率在该区间内的某个点处一定等于它的瞬时变化率。

这个结论既是自然的,同时也具有了极广的适用性。

二、定理的证明方法证明柯西中值定理一般分为以下几个步骤:(1)取K=[f(b)-f(a)]/(b-a),即平均变化率;(2)构造函数g(z)=f(z)-K(z-a),即构造出了一个g(z),它与f(z)的平均变化率相同;(3)对g(z)应用拉格朗日中值定理,则存在z∈ab,使得g'(z)=0,即f'(z)=K,证毕。

其中,最关键的一步是构造函数g(z),通过这个函数的构造,使得我们有办法得到与f(z)平均变化率相同的函数g(z),然后对这个函数应用一下拉格朗日中值定理即可。

三、定理的实际应用在实际中,柯西中值定理是非常有用的,可以用它来解决许多问题。

以下列举一些比较常见的应用:(1)寻找函数的最值点如果一个函数在某一区间内可导,并且它的导数在该区间的两个端点不同,那么该函数一定会在该区间内有一个最大值或最小值。

通过柯西中值定理,我们可以求出该点的位置。

(2)证明微分方程的解对于一些微分方程,我们需要通过求解导数等式来得到它们的一些性质。

柯西中值定理可以帮助我们得到导数等式的解,从而证明微分方程的解是否存在。

高等数学-中值定理证明

高等数学-中值定理证明

若结论是
f '' 0
1.在不同区间用
罗尔找到 1,2
2.在 1,2 用一
次罗尔
柯西中值 定理
1.同一字母同一 侧,分别积分, 找原函数 F,G 2.对 F,G 用柯西
泰勒定理
1.在 题 目 出 现 的
某点泰勒展开
2.带入其他点,寻
找与结论之间的
1
关系(有时会结合
介值定理)
1.闭区间上连续函数定理 ① ② ③ ④ 2.微分中值定理 ①
(1) 存在(0,1)内两个不同的点 , ,使得 f ' ( ) f ' () 2 .
(2)
存在(0,1)内两个不同的点 , ,使得
1 f ' ( )
1 f ' ()
2 .
(3) 存在(0,1)内两个不同的点 , ,使得 f ' ( ) f ' () 1 .
f ' ( ) (4) 存在(0,1)内两个不同的点 , 及大于零的常数 ,使得 f ' () (5) 对于任意的正整数 n,存在(0,1)内两个不同的点 , 及常数 0 ,
3
5.若 f (x) 在[0,1] 上可导,且当 x [0,1] 时有 0 f (x) 1,且 f (x) 1,证明:在 (0,1) 内有且仅有一个点 使得 f ( )
6.设 f (x) 在[0,1]上连续,在(0,1)内可导,且 f (0) = f (1) =0, f (1 ) =1。试证 2



3.积分中值定理 ① ②
不等式证明思路 构造函数(利用极值) 拉格朗日中值定理 函数凹凸性定义
2
1.若 f (x) 在 [a,b] 上连续,在 (a,b) 上可导, f (a) f (b) 0 ,证明: R , (a,b) 使得: f ( ) f ( ) 0

关于高等数学常见中值定理证明及应用

关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数fx在闭区间a,b上连续,且在该区间的端点取不同的函数值fa=A及fb=B,那么对于A与B之间的任意一个数C,在开区间a,b内至少有一点ξ使得fξ=Ca<ξ<b.Ps:c是介于A、B之间的,结论中的ξ取开区间;介值定理的推论:设函数fx在闭区间a,b上连续,则fx在a,b上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈a,b, 使得fξ=C;闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值;此条推论运用较多Ps:当题目中提到某个函数fx,或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值;2、零点定理:设函数fx在闭区间a,b上连续,且fa与fb异号,即fa.fb<0,那么在开区间内至少存在一点ξ使得fξ=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数fx满足:1、在闭区间a,b上连续;2、在开区间a,b内可导;3、在区间端点处函数值相等,即fa=fb.那么在a,b内至少有一点ξ<aξ<b,使得f`x=0;4、 拉格朗日中值定理:如果函数fx 满足:1、在闭区间a,b 上连续;2、在开区间a,b 内可导;那么在a,b 内至少有一点ξ<a ξ<b,使得fb-fa=f`ξ.b-a.5、 柯西中值定理:如果函数fx 及gx 满足1、在闭区间a,b 上连续;2、在开区间a,b 内可导;3、对任一xa<x<b,g`x ≠0,那么在a,b 内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值;6、 积分中值定理:若函数fx 在a,b 上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba -=⎰ξPs :该定理课本中给的结论是在闭区间上成立;但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数fx 在a,b 上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f b a -=⎰ξ证明:设⎰=x a dx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导导函数即为)(x f ;则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得a b dxx f a b a F b F F b a -=--=⎰)()()()`(ξ而)()`(ξξf F =所以),(b a ∈∃ξ使得)()()(a b f dx x f ba -=⎰ξ;在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可;千万不可直接运用,因为课本给的定理是闭区间;定理运用:1、设)(x f 在0,3上连续,在0,3内存在二阶导函数,且⎰+==20)3()2()()0(2f f dx x f f . 证明:1)2,0(∈∃η使)0()(f f =η2)3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的;有的人明知这样还硬是这样做,最后只能是0分;具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合;1、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导. 则对)(x F 由拉格朗日中值定理有:2、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有fa=fb=fc,那么问题就解决了;第一问中已经在0,2内找到一点,那么能否在2,3内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤从而,M f f m ≤+≤2)3()2(,那么由介值定理就有: 则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf cPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来;2、设fx 在0,1上连续,在0,1内可导,且f0=0,f1=1.证明:ξξξ-=∈∃1)()1,0()1(f 使得、本题第一问较简单,用零点定理证明即可;1、首先构造函数:]1,0[,1)()(∈-+=x x x f x F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得2、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用;在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手;另外在说一点,在历年证明题中,柯西中值定理考的最少;本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1你题目做多了,肯定就知道事实就是这样.并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索;写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可;Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法;做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手;3、设函数fx 在闭区间0,1上连续,在开区间0,1内可导,且f0=0,f1=1/3.对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的;很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法;那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数而且题目中f1=1/3,貌似这样有点想法了,本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了:先来构造一个函数:0)`()`(=+ξηF F 刚好证明出来;Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键;做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理;说明真题出的还是很有技巧的;一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用;4.设fx 在区间-a,aa>0上具有二阶连续导数,f0=01、写出fx 的带拉格朗日余项的一阶麦克劳林公式2、证明在-a,a 上至少存在一点η使得⎰-=aa dx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础1、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++=2、第二问先将第一问的式子fx 代入看看有什么结果出来⎰⎰--⋅=a a aa dx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数;做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法;题目中说道fx 有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用;所以有:因为fx 有二阶连续导数,所以存在最大值和最小值,设为M,m 则对于区间-a,a,222)``(,)``(Mx x f mx M x f m ≤⋅≤≤≤ξ所以由介值定理有结论成立;Ps :本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用;题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用;5、设fx 在],0[π上连续,且0cos )(,0)(00=⋅=⎰⎰ππxdx x f dx x f .证明:在),0(π内至少存在两个不同点0)()(2121==ξξξξf f 使得、本题看似很简洁,但做起来去不容易;结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢;令:],0[,)()(0π∈=⎰x dt t f x F x ,0)()0(==πF F似乎只需在找出一点Fc=0即可;,如果一切如我们所想,证明也就完成了;0)(sin )(cos )(cos cos )(0000=⋅+⋅==⋅⎰⎰⎰ππππdx x F x x F x x xdF xdx x f 似乎已经找到这个点了;但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立;构造函数],0[,)(sin )(0π∈⋅=⎰x dt t F t x G x 具体的证明步骤和上面涉及到的一样,自己去证;证完后就得到所以有:),0(,0)()()0(ππ∈===c F c F F接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路;Ps :本题是02年左右的数一一道证明题,看看题目很简洁,但具体来做,如果对定理的运用不熟练,还是不好弄出来;本题中涉及到积分,而且又要证明等式成立且为0,容易想到积分中值定理,以及罗尔定理;但是积分中值定理是对于闭区间而言,而我们要用到开区间,只能自己构造函数来证明其在开区间内成立,如果在实际做题的时候你不证明直接用,估计一半的分都没了;本题关键的就是寻找这个点C,找出来了其他的都不是问题,既然是关键点,那得分点也肯定最多了,你不证明这个点,直接套用课本中定理如果用的话,得分类讨论了,硬是说C 点就成立,那估计一半的分都没了;对于中值定理这章,就先给出上面一些经典的题目,大家好好体会下,多做些题,多思考;下面来讲讲对于证明题中的,函数如何来构造:基本上都是从结论出发,运用求导或是积分,或是求微分方程,解出来也可;本人自己总结了一些东西,与大家交流下:首先我们来看看一些构造函数基本方法:一、要证明的等式是一阶导数与原函数之间的关系:一般都会构造出为任意常数或者或者n x e e XXX x g n x x ,)(-⋅=1、如果只是单纯导函数和原函数之间关系,想想构造带有x x e e -或者)()`(x f x f = 可以构造x e x f x g -⋅=)()(0)()`(=+x f x f 可构造x e x f x g ⋅=)()(λ=+)()`(x f x f 可构造x x e e x f x g ⋅-⋅=λ)()()()(x f dt t f xa =⎰这个也是原函数与一阶导函数问题,构造函数⎰⋅=-x a x dt t f e x g )()( 先将其变形下:x x f x f λλ-=-1)()`(左边是导函数与原函数关系可构造:x e x f λ-⋅)(右边可以看成是x x λ-`也成了导函数和原函数之间关系,如是可以构造:x e x λ-⋅从而要构造的函数就是:x e x x f x g λ--=))(()(2、如果还涉及到变量X,想想构造n x0)()`(=+x f x xf 可构造x x f x g ⋅=)()(xx f x f )(2)(-=可构造2)()(x x f x g ⋅= 0)()`(=+x nf x xf 可构造n x x f x g ⋅=)()(3、另外还可以解微分方程来构造函数:如0)`()(=+x f x xf二、二阶导数与原函数之间关系构造带有x x e e -或者如何构造如下:)()`()`()``(x f x f x f x f +=+对于此式子,你会不会有所想法呢,在上面讲到一阶导函数与原函数之间的构造方法,等式前面也可以看成是一阶导函数与原函数只不过原函数是)`(x f 之间关系,从而等式左边可以构造x e x f ⋅)`(等式右边可以构造x e x f ⋅)(总的构造出来函数为:x e x f x f x g ⋅-=))()`(()(另:如果这样变形:构造函数如下:x e x f x f x g -⋅+=))()`(()(,可以看上面原函数与导函数之间关系如何构造的;从而对于此函数构造有两种方法,具体用哪一种构造得看题目给的条件了;如果题目给了)()`(x f x f -为什么值可以考虑第一中构造函数,如果题目给了)()`(x f x f +,则可以考虑第二种构造方法;先变形:变成一阶导函数和原函数之间关系这个函数确实不好构造,如果用微分方程来求会遇到复数根;实际做的时候还得看题目是否给了)`(x f 的一些条件,如果在某个开区间内不为0,而构造出来的函数在闭区间端点取值相等,便可用罗而定理来证明;具体来看看题目:1、 设)(x f 在0,1上连续,在0,1内可导,且f0=f1=0,f1/2=1证明:2、存在1)()`(),,0(+-=∈ηηηξηf f 使得1、对一问直接构造函数用零点定理:x x f x F -=)()(具体详细步骤就不写了;2、该问主要问题是如何构造函数:如果熟练的话用上面所讲方法来构造: 1)()`(+-=ηηηf f 先变形 另:用微分方程求解法来求出要构造的函数把常数退换掉之后就是要构造的函数函数构造出来了,具体步骤自己去做;2、设)`(x f 在a,b 上连续,fx 在a,b 内二阶可导,fa=fb=0,0)(=⎰b a dx x f证明:1存在)`()(),`()(),(,221121ξξξξξξf f f f b a ==∈使得2存在)()``(,),,(21ηηξξηηf f b a =≠∈使得1、第一问中的函数构造:2、第二问中函数构造有两种构造方法,上面讲解中说道了我们在这用第一种原因在于第一问中)()`(x f x f -=0符合此题构造; 具体详细步骤自己去写写;3、设奇函数]1,1[)(-在x f 上具有二阶导数,且f1=1,证明:(1) 存在1)`(),1,0(=∈ξξf 使得(2) 存在1)`()``(),1,1(=+-∈ηηηf f 使得第一问中证明等式,要么用罗尔定理,要么介值定理,要么零点本题很容易想到用罗尔定理构造函数来求,因为涉及到了导函数1、x x f x F -=)()(,题目中提到奇函数,f0=0有F0=F1=0从而用罗尔定理就出来了;2、第二问中的结论出发来构造函数,从上面讲的方法来看,直接就可以写出要构造的函数先变形下:x xx e x f x G e e x f f f ⋅-==⋅=+)1)`(()()`(1)`()``(ηη函数构造出来,并且可以用到第一问的结论,我们只需要在-1,0之间在找一个点也满足1的结论即可;也即1)`(),0,1(=-∈ζζf从而可以对)1,1(),(-⊆∈ξζη运用罗尔定理即可;Ps :本题为13年数一真题,第一问基础题,但要看清题目为奇函数,在0点处函数值为0.第二问关键是构造函数,函数构造出来了就一步步往下做,缺什么条件就去找什么条件或者证明出来,13年考研前我给我的几个考研小伙伴们讲过构造函数的一些方法,考场上都很快就搞出来了;以上是关于中值定理这章的一些小小的讲解,由于科研实践很忙,这些都是今天抽出时间写出来的,Word 上写,真心费时间,如果大家还有什么问题,可以来讨论下;。

中值定理证明方法总结

中值定理证明方法总结

中值定理证明方法总结中值定理(Intermediate Value Theorem)是微积分中的一项重要定理,它表明如果一个连续函数$f(x)$在闭区间$[a,b]$上取两个不同的值$f(a)$和$f(b)$,那么在开区间$(a,b)$内,函数$f(x)$必然取到介于$f(a)$和$f(b)$之间的所有值。

中值定理的证明是通过构造一个辅助函数$g(x)$,它将闭区间$[a,b]$映射到实数区间$[f(a),f(b)]$上,并利用连续函数的性质来证明中值定理。

证明过程如下:1.首先,我们定义辅助函数$g(x)=f(x)-k$,其中$k$是一个常数。

我们的目标是证明如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$必然等于$0$。

2.根据函数$g(x)$的定义,我们可以得到$g(a)=(f(a)-k)$和$g(b)=(f(b)-k)$。

由于$g(a)$和$g(b)$异号,即$(f(a)-k)$和$(f(b)-k)$异号,所以$g(x)$在$[a,b]$上一定有一个根。

3. 接下来,我们要证明在开区间$(a,b)$内,$g(x)$没有其他根。

假设在$(a,b)$内存在一个根$x=c$,即$g(c)=0$。

根据连续函数的性质,我们有$\lim_{x \to c} g(x) = g(c) = 0$。

又因为$f(x)$是连续函数,所以$\lim_{x \to c} f(x) = f(c)$。

4. 根据极限的性质,我们有$\lim_{x \to c} g(x) = \lim_{x \to c} [f(x)-k] = f(c)-k$。

由于$\lim_{x \to c} g(x) = 0$,所以$f(c)-k=0$,即$f(c)=k$。

这意味着$f(c)-k=0$是$g(x)$的唯一根。

5.综上所述,我们可以得出结论,如果$g(a)$和$g(b)$异号,那么在开区间$(a,b)$内,$g(x)$的根只有$f(c)-k=0$。

中值定理证明方法总结(1)

中值定理证明方法总结(1)

可适当减弱.
例如, 设 f(x) 在(a,b) 内可导,且 f(a+ 0) = f(b− 0),
则至少存在一点 ξ∈(a,b), 使 f′(ξ) = 0 .
证:
设辅助函数
F(x)
=
⎪⎧ a⎨<ff(x(a<x+) ,b0),
x= a
⎪ x=⎩b f(b−
显然 F(x)在[a,b] 上0连) ,续, 在(a,b) 内可导, 由罗尔
=
h(a) h(b) 0 h′(ξ)
证: 按三阶行列式展开法有
f(a) f(b) f′(ξ) g(a) g(b) g′(ξ)
h(a) h(b)
g(a) h(a)
g(b) h(b)
f′(ξ)
−=h′fh(((ξaa)))
f(b) g′ h(b)
ξ(
)
f(a) f(b) h′(ξ) g(a) g(b)
+
f(a) a
x
显然 , ϕ(x) 在 [ a, b] 上连续 , 在 ( a, b) 内可导, 且
ϕ(a) = bf(a) − af(b)
=
ϕ思(b路),思由路罗思尔b路−定思a理路知:至利少用存逆在向一思点维逆向思维逆向思维逆向
思维找出一ξ个∈(满a,足b),罗使尔ϕ定′(ξ理) =条件0, 的即函定数理结论
y= f(x) 满足:
(1) 在区间 [ a, b] 上连续
o
(2) 在至区少间存在( a一, b点) 内ξ∈可(导a,b) ,
使
aξ f′(ξ) =
bx f(b) − f(a).
证: 问题转化为证 作辅助函数
f′(ξ) − f(b) − f(a) =
b− a

cauchy微分中值定理的多种探究式证明法

cauchy微分中值定理的多种探究式证明法

cauchy微分中值定理的多种探究式证明法拉普拉斯-库塞定理(Cauchy微分中值定理)是一个重要的微积分理论,它是由法国数学家拉普拉斯的研究得出的结论,引起了数学界的广泛关注,直到现在仍是数学家钟情的一个内容。

下面我们就介绍拉普拉斯-库塞定理(Cauchy微分中值定理)的多种探究式证明法:一、函数分段探究这种证明法指的是,对于拉普拉斯-库塞定理,我们可以先将给定函数f(x)分段,在分段函数中,我们将一段段连续函数用重叠的多个小段来表示,从而把原有的和拆分到每一小段上,然后在每一小段上分别证明,最后将结论进行卷积,可以得到统一的微分中值公式,证明完成。

二、导数探究对于拉普拉斯-库塞定理,也可以用导数探究法来证明。

它是指用初等函数的性质,只要能够得出函数f(x)在a和b之间的导数,都可以用来证明拉普拉斯-库塞定理,即可证明给定的函数f(x)在a和b之间的值的变化量可以由函数的导数决定,并且证明最终的结果一定正确。

三、条件反转探究这种证明方法指的是,我们可以用反证法来证明拉普拉斯-库塞定理,从而得出结论。

也就是说,我们假设这个结论是错误的,而当这个结论是错误的时候,有几种情况是不可能发生的,这时候就可以知道结论是正确的,这也可以被用来证明拉普拉斯-库塞定理。

四、分割探究这里用的是分割探究法,就是将函数f(x)在a,b之间进行分割成n个函数,在这n个函数之间进行分割点的选择,最终可以将n个分割点求和,得出给定的函数f(x)在a,b之间的值的变化量,这就得出了拉普拉斯-库塞定理的结论。

五、向量探究这种证明方法是通过用向量的性质,为拉普拉斯-库塞定理构造一个函数的关系,在探究中,可以将函数f(x)的变化量转化成一种向量计算,而在计算中就会知道向量的性质,可以得到结果,这就得出了拉普拉斯-库塞定理的结果。

总结:从上述介绍中可以看出,拉普拉斯-库塞定理几种证明方法有:函数分段探究、导数探究、条件反转探究、分割探究和向量探究等。

微分中值定理与导数的应用总结

微分中值定理与导数的应用总结

微分中值定理与导数的应用总结一、微分中值定理1.拉格朗日中值定理拉格朗日中值定理是微分中值定理的最基本形式,它表述为:如果函数f(x)在区间[a,b]上连续,在开区间(a,b)内可导,则在(a,b)内至少存在一个数c,使得f(b)-f(a)=f'(c)(b-a),其中c属于(a,b)。

拉格朗日中值定理的几何意义是:如果一条曲线在两个点a和b上的斜率相等,则在这两个点之间必然存在一点c,使得曲线在c点和a、b两点之间的切线斜率相等。

2.柯西中值定理柯西中值定理是微分中值定理的推广形式,它给出了两个函数的导数的关系。

设f(x)和g(x)在[a,b]上连续,在开区间(a,b)内可导且g'(x)≠0,则存在一个数c,使得[f(b)-f(a)]/[g(b)-g(a)]=[f'(c)]/[g'(c)]。

柯西中值定理的几何意义是:如果曲线f(x)和g(x)在两个点a和b上的切线斜率之比等于f'(c)和g'(c)的比,则在这两个点之间必然存在一点c,使得曲线f(x)和g(x)在c点的切线斜率之比等于f'(c)和g'(c)的比。

3.罗尔中值定理罗尔中值定理是微分中值定理的特殊形式,它给出了导数为零的充分条件。

设函数f(x)在[a,b]上连续,在开区间(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一个数c,使得f'(c)=0。

罗尔中值定理的几何意义是:如果一条曲线在两个端点上的函数值相等,则在这两个端点之间必然存在一个点c,使得曲线在c点的切线斜率为零。

微分中值定理的应用非常广泛,例如在证明极限存在或连续性、研究函数增减性和函数极值、解方程和不等式等问题中都有重要的作用。

在实际生活中,微分中值定理可以应用于求解速度、加速度、距离等问题,帮助我们更好地理解和解决实际问题。

二、导数的应用导数作为微积分的重要概念,具有很多实际应用。

广义积分中值定理的证明

广义积分中值定理的证明

广义积分中值定理的证明
广义积分中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)。

推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分。

积分中值定理:设函数f在[a,b]上可积,1:若函数g在[a,b]上递减,且g大于
等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分)。

2:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以(f在[d,b]推论:设函数f在[a,b]上可积。

若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘
以(f在[a,c]上的积分)加上g(b)乘以(f在[c,b]上的积分)。

:若函数g在[a,b]上递增,且g大于等于0,则存在一点d属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(b)乘以
(f在[d,b]上的积分).推论:设函数f在[a,b]上可积.若g为单调函数,则存在一点c属于[a,b],使得(f乘以g)的积分等于g(a)乘以(f在[a,c]上的积分)加上g(b)乘以(f在
[c,b]上的积分)证明太多。

中值定理知识点总结

中值定理知识点总结

中值定理知识点总结中值定理的表述:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),满足f'(c) = (f(b) - f(a))/(b - a)。

中值定理的证明比较简单,可以根据函数的连续性和可导性来进行推导。

接下来我们来详细介绍中值定理的知识点。

一、中值定理的条件中值定理的前提是函数在闭区间上连续,在开区间上可导。

这两个条件都是至关重要的,只有同时满足这两个条件,中值定理才成立。

1. 函数在闭区间上连续:闭区间[a, b]是一个包含了a和b的区间,函数在闭区间上连续意味着函数在这个区间内没有间断点,没有跳跃点,图象是一条连续的曲线。

一般来说,函数在有限区间上都是连续的,因此这个条件通常是满足的。

2. 函数在开区间上可导:开区间(a, b)是一个不含a和b的区间,函数在开区间上可导意味着函数在这个区间上具有导数。

可导性是指函数在这个区间内存在切线,即函数在这个区间内是光滑的。

这个条件比较严格,只有在一些特殊的情况下才能满足。

二、中值定理的应用中值定理主要用来描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。

它可以推导出一些重要的结论和定理,对于理解函数的性质和特点有很大的帮助。

1. 平均变化率和瞬时变化率:中值定理可以用来比较函数在闭区间上的平均变化率和在开区间上的瞬时变化率。

平均变化率指的是函数在某个区间内的整体变化情况,而瞬时变化率指的是函数在某一点的瞬间变化情况。

中值定理表明,这两者之间存在着某种联系,通过中值定理可以求得函数在某个区间内的平均变化率和在某一点的瞬时变化率之间的对应关系。

2. 函数的增减性:中值定理可以用来研究函数的增减性。

通过中值定理可以求得函数在某个区间内的导数值,在这个区间上的函数是增加还是减小。

这对于研究函数的极值和拐点有很大的帮助。

3. 函数的凹凸性:中值定理可以用来研究函数的凹凸性。

通过中值定理可以求得函数在某个区间内的二阶导数值,根据二阶导数的正负性可以判断函数在这个区间上的凹凸性,这对于求解函数的拐点和凹凸区间有很大的帮助。

求中值定理证明的几种构造函数的方法

求中值定理证明的几种构造函数的方法

求中值定理证明的几种构造函数的方法1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点1)将要证的结论中的换成;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数 . 例1:证明柯西中值定理分析:在柯西中值定理的结论中令,得,先变形为再两边同时积分得,令,有故为所求辅助函数. 例2:若, , ,…, 是使得的实数.证明方程在(0,1)内至少有一实根. 证:由于并且这一积分结果与题设条件和要证明的结论有联系,所以设(取),则 1)在[0,1]上连续 2)在(0,1)内可导 3) =0,故满足罗尔定理的条件,由罗尔定理,存在使,即亦即 . 这说明方程在(0,1)内至少有实根.2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数. 例3:设在[1,2]上连续,在(1,2)内可导,, .证明存在使 . 分析:结论变形为,不易凑成 .我们将换为,结论变形为,积分得: ,即,从而可设辅助函数为,有 .本题获证. 例4:设函数,在上连续,在内可微, .证明存在,使得: . 证:将变形为,将换为,则,两边关于积分,得: ,所以,其中,由可得 .由上面积分的推导可知,为一常数,故其导数必为零,从整个变形过程知,满足这样结论的的存在是不成问题的.因而令,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数. 例5:证明拉格朗日中值定理. 分析:通过弦两个端点的直线方程为,则函数与直线AB的方程之差即函数在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数. 例6:若在上连续且 .试证在内至少有一点,使 . 分析:由图可看出,此题的几何意义是说,连续函数的图形曲线必跨越这一条直线,而两者的交点的横坐标,恰满足 .进而还可由图知道,对上的同一自变量值,这两条曲线纵坐标之差构成一个新的函数,它满足 <0, >0,因而符合介值定理的条件.当为的一个零点时,恰等价于 .因此即知证明的关键是构造辅助函数 .4 常数k值法此方法构造辅助函数的步骤分为以下四点: 1)将结论变形,使常数部分分离出来并令为 . 2)恒等变形使等式一端为及构成的代数式,另一端为及构成的代数式. 3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为,相应的函数值改为 . 4)端点换变量的表达式即为辅助函数 . 例7:设在上连续,在内可导,,试证存在一点,使等式成立. 分析:将结论变形为,令,则有,令,可得辅助函数 . 例8:设在上存在,在,试证明存在,使得 . 分析:令,于是有,上式为关于,,三点的轮换对称式,令(or: ,or: ),则得辅助函数 .5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论. 例9:设函数在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点,使得 . 分析:所要证的结论可变形为: ,即,因此可构造函数,则对与在[0,1]上应用柯西中值定理即可得到证明. 例10:设函数在[0,1]上连续,在(0,1)内可导,且 =0,对任意有 .证明存在一点使(为自然数)成立. 分析:欲证其成立,只需证由于对任意有,故只需证: 即,于是引入辅助函数(为自然数). 例11:设函数在区间[0,+ ]上可导,且有个不同零点: .试证在[0,+ ]内至少有个不同零点.(其中,为任意实数)证明:欲证在[0,+ )内至少有个不同零点,只需证方程 =0在[0,+ ]内至少有个不同实根. 因为,,,故只需证方程在内至少有个不同实根. 引入辅助函数,易验证在区间[ ],[ ],…,[ ]上满足罗尔定理的条件,所以,分别在这个区间上应用罗尔定理,得,其中且以上说明方程在[ ] [ ] … [ ] [0,+ ]内至少有个不同实根,从而证明了方程 =0在[0,+ ]内至少有个不同实根。

费马定理中值定理的证明

费马定理中值定理的证明

费马定理中值定理的证明费马定理中值定理的证明费马定理是数学中的一个经典问题,它涉及到了整数解的存在性问题。

而其中值定理则是费马定理的一个重要部分,它是证明费马定理的关键所在。

本文将详细阐述值定理的证明过程。

一、引言费马定理指出,对于大于2的整数n,不存在正整数解x,y,z使得x^n+y^n=z^n成立。

而值定理则是针对这个方程式中x,y,z之间大小关系的一个问题。

二、定义对于方程式x^n+y^n=z^n,我们可以定义一个函数f(x,y,z)=|x|+|y|-|z|。

那么我们可以发现,在满足方程式条件下,f(x,y,z)一定为非负整数。

三、证明首先我们需要假设存在一组正整数解(a,b,c),其中a≤b≤c且a+b+c最小。

那么我们可以将这个假设转化为f(a,b,c)=0。

接下来我们需要考虑如何构造出另外一组解(x',y',z'),使得f(x',y',z')<f(a,b,c)且满足方程式条件。

1. a=1时如果a=1,则有1+b^n=c^n。

此时我们可以构造出另外一组解(1,b+1,c+1),满足(1,b+1,c+1)也是正整数解,并且f(1,b+1,c+1)=f(a,b,c)-2<0。

此时我们证明了当a=1时,值定理成立。

2. a>1时如果a>1,则有a^n+b^n=c^n。

此时我们可以将b和c看做两个变量,即b=s+t,c=s-t,则有a^n+b^n=c^n变为a^n+(s+t)^n=(s-t)^n。

展开后得到:an-1st+n(n-1)/2*a^(n-2)s^2t+(n-3)/3*n(n-1)/2*a^(n-4)s^4t^3+...=0其中an-1是费马小定理中的费马指数。

我们可以发现,在这个式子中,每一项都是非负的。

因此,如果存在一组正整数解(s,t)使得上述等式成立,则必然有s<t。

接下来我们可以构造出另外一组解(x',y',z')=(a,t+s,a+t),满足x'^n+y'^n=z'^n,并且f(x',y',z')=f(a,b,c)-2st<0。

第四章 微积分中值定理与证明

第四章  微积分中值定理与证明
在 上连续,所以 在 上连续,且

若 ,我们取 或 ,结论显然成立.若 ,则
根据零点定理, 有 ,所以有 .
(方法2:利用介值定理)由于 在 上连续,所以 在 上可以达到最
大值和最小值, 使得 ,当然 ,所以



从而有

根据介值定理, 有

所以有

例2设 在 上连续, ,证明: ,使得 .
证明引入辅助函数 ,则
4.设 , 在 上连续,在 可导,证明:在 内至少存在一
点 ,使得 .
(提示:对两个函数 和 在 上应用柯西中值定理)
5.设 在 上连续,在 可导,且 ,证明:在 ,使得 .
(提示:引入辅助函数 ,在 上满足罗尔定理条件)
6.设 在 上可导,且 ,证明:
(1) ,使得 .
(2)在 上存在 ,使得 .
所以
整理得到

例12设 在 上连续,且 ,证明:存在 满足

分析解方程 ,即 ,所以辅助函数为

例13和例14对数三考生不做要求:
例13若 在 上有三阶导数,且 ,设 ,证明:
在 内至少存在一个 使得 .
证明由于 具有三阶导数,于是
由于

所以 ,故

因为 ,所以 ,即存在一个 使得 .
例14设 在区间 上具有三阶连续导数,且 , ,
柯西中值定理,有
, ;
, .
将上面两式相除,整理得到

4.1练习
1.试证方程 ,其中 至少有一个正根并且不超过 .
(提示:只需证明函数 在 至少有一个根)
2.试证方程 恰有两个实根.
(提示:函数 是偶函数,关于 轴对称)

积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)的几种证明方法定理:设f 在[a,b ]上连续,则 (a,b),使得f (x) f ()在[a,b ]上连续,易证(可反证)(这还是书上例2的结论)(a,b),使得 F( ) f( ) f( ) 0,即 f ( ) f()。

x[证二]:令F(x) f (t)dt ,则F(x)在[a,b ]上满足拉格朗日中值定理的条件,故a(a,b),使得 F(b) F(a) F ( )(b a),即结论成立。

(注:书上在后面讲的微积分基本定理 )b[证三]:反证:假设不 (a,b),使得 f(x)dx f( )(b a),由积分第一中值定理, a知只能为a 或b ,不妨设为b ,即1bx (a,b), f (x) f (b) - a f(x)dx 。

b a a 由于 f 连续,故 x (a,b), f (x) f(b)(或 f (x) f(b)),(这一点是不是用介值定理来说明 )这样x b(上限 x 改为 b ) f (x)dx f (b)dx f (b)(b a).a a(这个严格不等号不太显然要用书上例 2结论来说明)矛盾。

[证四]:设f 在[a,b ]上的最大值为 M ,最小值为m 。

若m M ,则f c , 可任取。

b若 m M ,则 x - [a,b ],有 M f(x -) 0,故[M f (x)]dx 0,即ab f (x)dx M (b a).f(x)dx f( )(b a)。

[证一]:由积分第一中值定理(P217),b[a,b],使得 f (x)dx a f( )(b a)。

于是a 【f (X ) f ( )]dx 0.由于函数F(x)同理有m(b ba) & f(x)dx.由连续函数的介质定理知:1 b (a,b),使得f ( ) f (x)dx.。

b a a主:以上方法有的能推广到定理9.8的证明,有的不能,再思考吧!。

中值定理证明不等式

中值定理证明不等式

中值定理证明不等式中值定理是微积分中的一个重要定理,它与函数的连续性和可导性相关。

为了回答你的问题,我将从多个角度来证明中值定理。

首先,让我们回顾一下中值定理的陈述,设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),使得f'(c) = (f(b) f(a))/(b a)。

证明1,利用拉格朗日中值定理。

根据拉格朗日中值定理,如果函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一个点c∈(a, b),使得f'(c) =(f(b) f(a))/(b a)。

根据中值定理的陈述,我们可以直接得出不等式的证明。

因为f(x)在[a, b]上连续,在(a, b)上可导,所以根据拉格朗日中值定理,存在c∈(a, b),使得f'(c) = (f(b) f(a))/(b a)。

因此,不等式得证。

证明2,利用柯西中值定理。

根据柯西中值定理,如果函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导且g'(x)≠0,则存在一个点c∈(a, b),使得[f(b) f(a)]/g(b) g(a) = f'(c)/g'(c)。

我们可以将不等式转化为函数f(x)和g(x)的形式,然后利用柯西中值定理来证明。

考虑函数F(x) = f(x) [f(b) f(a)]/(g(b) g(a)) g(x),其中g(b) g(a)≠0。

首先,F(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,因为f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导。

其次,F(a) = f(a) [f(b) f(a)]/(g(b) g(a)) g(a) = 0,F(b) = f(b) [f(b) f(a)]/(g(b) g(a)) g(b) = 0。

根据柯西中值定理,存在一个点c∈(a, b),使得F'(c) = 0。

积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)证明的几种方法

积分中值定理(开区间)的几种证明方法定理:设f 在[,]a b 上连续,则(,)a b ξ∃∈,使得()()()ba f x dx fb a ξ=-⎰。

[证一]:由积分第一中值定理(P217),[,]a b ξ∃∈, 使得()()()b a f x dx f b a ξ=-⎰。

于是[()()]0.b af x f dx ξ-=⎰ 由于函数()()()F x f x f ξ=-在[,]a b 上连续,易证(可反证):(这还是书上例2的结论)(,)a b η∃∈,使得()()()0F f f ηηξ=-=,即()()f f ηξ=。

[证二]:令()()xa F x f t dt =⎰,则()F x 在[,]ab 上满足拉格朗日中值定理的条件,故(,)a b ξ∃∈,使得()()()()F b F a F b a ξ'-=-,即结论成立。

(注:书上在后面讲的微积分基本定理)[证三]:反证:假设不(,)a b ξ∃∈,使得 ()()()ba f x dx fb a ξ=-⎰,由积分第一中值定理,知ξ只能为a 或b ,不妨设为b ,即1(,),()()()b a x a b f x f b f x dx b a∀∈≠=-⎰。

由于f 连续,故(,),x a b ∀∈ ()()f x f b >(或()()f x f b <),(这一点是不是用介值定理来说明)这样(上限x 改为b )()()()().xba a f x dx fb dx f b b a >=-⎰⎰ (这个严格不等号不太显然要用书上例2结论来说明)矛盾。

[证四]:设f 在[,]a b 上的最大值为M ,最小值为m 。

若m M =,则f c ≡,ξ可任取。

若m M <,则1[,]x a b ∃∈,有1()0M f x ->,故[()]0b a M f x dx ->⎰,即 ()().ba f x d x Mb a<-⎰同理有()().ba mb a f x dx -<⎰ 由连续函数的介质定理知:(,)a b ξ∃∈,使得 1()().b a f f x dx b aξ=-⎰。

中值定理证明方法总结

中值定理证明方法总结

中值定理证明方法总结中值定理是微积分中的一个重要定理,它建立了一个函数在一些区间上连续的条件与其在该区间上取到的最大值和最小值之间的关系。

中值定理分为费马中值定理、罗尔中值定理和拉格朗日中值定理三种形式。

在实际问题中,通过中值定理可以推导出很多有用的结论,因此学好中值定理的证明方法对于掌握微积分知识非常重要。

下面对中值定理的证明方法进行总结。

1.费马中值定理的证明方法:费马中值定理是对实数集上的连续函数的最值及其存在性进行了精确的描述。

其证明方法如下:首先,假设函数f(x)在[a,b]上取得了极大值或者极小值。

如果f(x)在[a,b]的内点c处取得极值,那么根据极值点的定义,f'(c)=0。

我们可以通过数学归纳法证明,如果一个函数在[a,b]上的内点x处取得了极大值或者极小值,那么f'(x)=0。

假设f(x)在[a,b]的每个内点处都取得了极大值或者极小值,那么f'(x)=0在它们的闭区间上也成立。

根据极值点的定义,f(x)在[a,b]的端点处也取得了极大值或者极小值,因此f(x)在[a,b]上的每个内点处都取得了极大值或者极小值。

这与f(x)在[a,b]上连续的条件矛盾,所以假设错误,即f(x)在[a,b]上没有取得极大值或者极小值。

根据介值定理,f(x)在[a,b]上连续,所以在[a,b]上一定取到了最大值和最小值。

2.罗尔中值定理的证明方法:罗尔中值定理是对实数集上的可微函数的导数为0的点进行了描述。

其证明方法如下:首先,假设函数f(x)在[a,b]上满足f(a)=f(b)。

根据闭区间上连续函数的最值存在定理,f(x)在[a,b]上一定取到了最大值和最小值。

如果最大值和最小值不是在[a,b]的内点处取到的,那么它们一定是在[a,b]的端点处取到的。

根据最值点的定义,f(x)在[a,b]的端点处的导数等于0。

所以,如果f(x)在[a,b]的内点处取到了最大值或者最小值,那么根据费马中值定理,它们的导数等于0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证: 按三阶行列式展开法有
f (a) g(a) h(a)
f (b) g(b) h(b)
f ′(ξ ) g ( a ) g′(ξ ) = h ( a ) h′(ξ )
g(b) f ′(ξ ) h(b) f (b) h′(ξ ) g(b)
f (a) − h(a)
f (b) g′ ξ + f (a) ( ) h(b) g(a)
解题方法:
从结论入手, 利用逆向分析法, 选择有关中值定 理及适当设辅助函数 . (1) 证明含一个中值的等式或证根的存在 , 常用 罗尔定理 , 此时可用原函数法设辅助函数.
(2) 若结论中涉及到含一个中值的两个不同函数,
可考虑用柯西中值定理 .
(3) 若结论中含两个或两个以上中值 , 必须多次 使用中值定理 . (4) 若已知条件或结论中含高阶导数 , 多考虑用 泰勒公式 , 有时也可考虑对导数用中值定理 . (5) 若结论为恒等式 , 先证变式导数为 0 , 再利用
方程两边同时积分
解出积分常数 ,则
令辅助函数
(2)常数变易法 此法适用于常数已分离出来的命题, 构造辅助函数的步 骤如下:
思考: 柯西定理的下述证法对吗 ?
∵ f (b) − f (a) = f ′(ξ )(b−a), ξ ∈(a, b) F(b) −F(a) =F′(ξ )(b−a), ξ ∈(a, b)
两个 ξ 不 一定相同
上面两式相比即得结论.
错!
机动 目录 上页 下页 返回 结束
几个中值定理的关系
罗尔定理 f ′(ξ ) =0 y y= F( x) = x f (x) f (a) = f (b)
y
y = f (x)
o

b x
(3) f ( a ) = f ( b )
在( a , b ) 内至少存在一点 ξ , 使 f ′(ξ ) =0. 故在[ a , b ]上取得最大值 证: 因 f ( x) 在[a , b] 上连续,
M 和最小值 m.
若 M = m, 则 f ( x) ≡M,
x∈[a, b] ,
原函数法
f (b) − f (a) F( x) = f ( x) − g( x) g(b) −g(a)
* 中值定理的条件是充分的, 但非必要. 因此
可适当减弱. 例如, 设 f ( x) 在 (a, b) 内可导,且 f (a+0) = f (b−0),
则至少存在一点 ξ ∈(a, b) ,
证: 设辅助函数
o
f (a) = f (b)
拉格朗日中值定理
f ( b ) − f ( a ) f ′(ξ ) = b−a ) y n =0y=f(x F( x) =x
o 泰勒中值定理 aξ bx f (x) = f (x0 ) + f ′( x0 )(x−x0 )
1 f (n) ( x )( x−x ) n +⋯ +n 0 0 ! +(n+ f 1 1) ( ξ )( x−x )n+ 1 1)! (n+ 0
)
f ( x) g( x) h( x)
显然 F(x) 在[a , b] 上连续 , 在 (a , b)内可导, 且 F ′(ξ ) ,由罗尔定理知至少存在一点 f(a) =F( fb () b)=0 , f因此 g(a) g(b) ′(ξ ) (a) ) F′(g ) 0 , = h(即 f 使 ξg ∈ (a, b)g ,(b ξ′)(ξ = a) h(b) h(a) h(b) h′(ξ ) f (b) f ′(ξ ) f (a) (a )) fg (b ))g′ ξ g′(ξ+ f= (a0 ) f (b) h′(ξ ) (b ) F′(ξ ) = − fg (a ( ) h( a ) h ( b ) g ( a ) g ( b ) ′ h ( b ) h ( ξ ) h(a)
x→a+
lim f ( x) = lim f ( x)
x→b−
在( a , b ) 内至少存在一点 ξ , 使 f ′(ξ ) =0.
f (a+),
证明提示: 设 F( x) =
x =a
f ( x),
f (b−),
a <x <b
x =b
证 F(x) 在 [a , b] 上满足罗尔定理 .
机动 目录 上页 下页 返回 结束
柯西中值定理 f (b) − f (a) f ′(ξ ) = F′(ξ ) F(b) −F(a)

b x
证明中值定理的方法
直观分析 辅助函数法 逆向分析 例如, 证明拉格朗日定理 : f (b) − f (a) = f ′(ξ )(b−a) 要构造满足罗尔定理条件的辅助函数 . y = f ( x) 方法1. 直观分析 由 y 图可知 , 设辅助函数 f (b) − f (a) F( x) = f ( x) − x−C b−a o a ξ b (C 为任意常数 )
微分中值定理的应用与技巧
基本概念、内容、定理、公式
罗尔中值定理 拉
中值定理
推广
格朗日中值定理 柯西中值定理
泰勒公式
应用 研究函数性质及曲线性态 利用导数解决实际问题
中值定理
一、罗尔( Ro le )定理 二、
拉格朗日中值定理 三、柯西(Cauchy)中值定理
机动
目录
上页
下页
返回
结束
一、罗尔( Rolle )定理 y = f ( x) 满足: (1) 在区间 [a , b] 上连续 (2) 在区间 (a , b) 内可导
特殊点定常数 .
(6) 若结论为不等式 , 要注意适当放大或缩小的
技巧.
构造辅助函数的方法
(1)不定积分求积分常数法.
构造辅助函数 的步骤如下:
● 将欲证结论中的 改写为 ; ● 通过恒等变形将结论化为易消除导数符号的形式.(即易积 分形式);
● 利用观察法或不定积分法 , 方程两边同时积分; ( 或解微
(1) 在闭区间 [ a , b ] 上连续 (2) 在开区间 ( a , b ) 内可导 (3)在开区间 ( a , b ) 内 F′( x) ≠0
f (b) − f (a) = f ′(ξ ) . 至少存在一点 ξ ∈(a, b) , 使 F′(ξ ) F(b) −F(a) 分析: F(b) −F(a) =F′(η)(b−a) ≠0 a <η <b f (b) − f (a) F′(ξ ) − f ′(ξ ) F(b) =0 要证 ϕ′(ξ ) −F(a) ϕ( x) = f (b) − f (a) F( x) − f ( x) F(b) −F(a)
使 f ′(ξ ) =0 .
⎧f (a+0) , ⎪ F( x) =⎨f (x) , ⎪ ⎩f (b−0) ,
x =a a <x <b x =b
显然 F( x) 在 [a, b] 上连续, 在 (a, b) 内可导, 由罗尔 定理可知 , 存在一点ξ ∈(a, b) , 使 F′(ξ ) =0 , 即
x, ⎧ 0 ≤x <1 f ( x) = ⎨ 0, x =1 ⎩
f ( x) = x x∈[− 1,1]
y
−1
y
o 1 x y f ( x) =x x∈[0,1]
o
机动 目录 上页
o
1
x
1
下页
x
返回 结束
2) 定理条件只是充分的. 本定理可推广为
y = f ( x) 在 ( a , b ) 内可导, 且
f ′(ξ ) =0 .
* 中值定理的统一表达式 设 f ( x) , g( x) , h( x) 都在 [a, b] 上连续 , 且在 (a, b) 使 内可导, 证明至少存在一点 ξ ∈ (a, b) , f ′(ξ ) f (a) f (b) g(a) g(b) g′(ξ ) =0 h(a) h(b) h′(ξ )
设 f ( x) , g( x) , h( x)
都在 (a, b) 上连续 , 且在[a, b] 使
内可导, 证明至少存在一点 ξ ∈ (a, b) ,
f (a) g(a) h(a)
f (b) g(b) h(b)
f ′(ξ ) g′(ξ ) =0 h′(ξ )
说明 若取 h( x) ≡1, g( x) =x, f (a) = f (b) ,即为罗尔定理; 若取 h( x) ≡1, g( x) =x, 若取 h( x) ≡1, g′( x) ≠0 , ( 自己验证 ) 即为拉格朗日中值定理; 即为柯西中值定理;
分方程) ●解出积分常数 ,则 即为所求的辅助函数。
以拉格朗日及柯西中值定理为例, 说明辅助函数

构造作法: . 拉格朗日中
值定理的结论:
将 改写为
方程两边同时积分
f (b) − f (a) x+ C = f( x) b− a
解出积分常数 ,则
令辅助函数
柯பைடு நூலகம்中值定理的结论:
将 改写为
直接积分消不去导数,故变形为
柯西 目录 上页 下页 返回 结束
f (b) − f (a) Fx− ( f) (x ) 证: 作辅助函数 ϕ( x) = F(b) −F(a) 则ϕ(x) 在[a,b] 上连续, 在 (a, b)内可导, 且 ϕ(a) = f (b)F(a) − f (a)F(b) =ϕ(b) F(b) −F(a) 由罗尔定理知, 至少存在一点 ξ ∈(a, b), 使 ϕ′(ξ ) =0, 即 f (b) − f (a) = f ′(ξ ) . F′(ξ ) F(b) −F(a)
同样, 柯西中值定理要证 f (b) − f (a) f ′(ξ ) = , g′(ξ ) g(b) −g(a)
ξ ∈(a, b)
相关文档
最新文档