干涉合成孔径雷达在海洋遥感中的应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

干涉合成孔径雷达在海洋遥感中的应用

1.干涉合成孔径雷达的原理

1.1 雷达的原理

雷达遥感(微波遥感)可分为主动和被动两种方式。被动方式与可见光和红外遥感类似,是由微波扫描辐射计接收地表目标的微波辐射。目前多数星载雷达采用主动方式,即由遥感平台发射电磁波,然后接收辐射和散射回波信号,主要探测地物的后向散射系数和介电常数。它发射的电磁波波长一般较长,在1mm至1m之间。合成孔径雷达(SAR)概念的提出是相对真实孔径雷达天线而提出的。对于真实孔径雷达,当雷达随载体(飞机或卫星)飞行时,向地表发射雷达波束,然后接受地面反射信号,这样便得到了地表雷达图像。

我们知道卫星雷达天线越长,对地物的观测分辨率就越高。由于受雷达天线长度的限制,真实孔径雷达的地表分辨率往往很低,难以满足应用要求。而合成孔径雷达正是解决了利用有限的雷达天线长度来获取高分辨率雷达图像的问题。

合成孔径雷达(SAR,Synthetic Aperture Radar)技术是干涉合成孔径雷达(INSAR,Interferometric Synthetic Aperture Radar ,简称:干涉雷达)技术和差分干涉合成孔径雷达(D-INSAR,Differential Interferometric Synthetic Aperture Radar ,简称:差分干涉雷达)技术的基础,它涉及到侧视雷达系统、雷达波信号处理技术以及雷达图像的生成等诸方面。而干涉雷达技术和差分干涉雷达技术则是基于合成孔径雷达技术的图像处理方法和模型,是合成孔径雷达技术的应用延伸和扩展。

合成孔径雷达干涉测量技术(INSAR,Interferometric Synthetic Aperture Radar;简称:干涉雷达测量)是以同一地区的两张SAR图像为基本处理数据,通过求取两幅SAR图像的相位差,获取干涉图像,然后经相位解缠,从干涉条纹中获取地形高程数据的空间对地观测新技术。

差分干涉雷达测量技术(D-INSAR)是指利用同一地区的两幅干涉图像,其

中一幅是通过形变事件前的两幅SAR获取的干涉图像,另一幅是通过形变事件前后两幅SAR图像获取的干涉图像,然后通过两幅干涉图差分处理(除去地球曲面、地形起伏影响)来获取地表微量形变的测量技术。

1.2雷达特点

合成孔径雷达干涉测量技术是近十年发展起来的一项新的空间对地观测技术,它与GPS、VLBI和SLR等空间技术一道,将构成空间测地技术的主体。从1978年L波段星载雷达卫星Seasat SAR的发射到2000年美国“奋进号”航天飞机对全球地形进行高精度干涉测量,从1992年首次利用差分干涉雷达对美国Landers地震同震形变场测量到目前广泛地应用于地震、火山、冰川、滑坡等形变场测量中,无不显示出合成孔径雷达技术的强大技术优势和应用潜力。由于合成孔径雷达采用了主动式遥感方式,因而具有全天侯、全天时作业优势。它与其它离散点测量技术相比,其测量结果具有连续的空间覆盖优势,是一项前所未有的、极具发展潜力的空间对地观测新技术。

2.海洋遥感的研究概况

20世纪末以来, 卫星技术进入了快速发展的时期, 目前我国的海洋卫星HY1A, B和我国的雷达卫星也已经陆续升空并且运行良好, 利用这些卫星可以快速给出全球的海洋环境、气象等信息, 实现对海洋环境和海上或水下军事目标监测。目前用于海洋观测的卫星传感器, 均根据电磁辐射原理获取海洋信息。遥感技术采用的电磁波涉及可见光、红外和微波等波段。传感器按工作方式分为主动式和被动式, 主动式传感器如微波高度计、散射计、合成孔径雷达等; 被动式传感器如可见红外扫描辐射计, 微波辐射计等。目前用于海洋研究的传感器和主要测量的参数见表1。

表1卫星传感器及其可以测量的海洋参数

传感器名称测量的海洋参数

合成孔径雷达波浪方向谱、中尺度涡旋、海洋内波、浅海

地形概貌、海面污染以及海表特性信息等。红外传感器海表面温度

水色传感器海洋表层叶绿素浓度、悬移质浓度、海洋

初级生产力、漫射衰减系数以及其它海洋

光学参数

微波高度计平均海平面高度、大地水准面、有效波高、海面

风速、表层流、重力异常等微波散射计海场微波

辐射计海面温度、海面风速以及海冰水气含量、

降雨、二氧化碳海气交换等

由此可以看出, 遥感卫星的发射以及其上搭载的从可见光、红外到微波波段的传感器的多样化, 可以快速提供全球大范围海区的海洋环境( 海面温度、风场、大洋水流方向等)信息, 同时卫星可以根据重力异常, 提供地磁变异的情况。这些信息对于研究潜艇的水下活动很有意义, 同时也使得遥感探测水下潜艇目标有潜在的可能。

3.干涉合成孔径雷达的海洋遥感中的应用

3.1雷达在海洋环境监测中的应用

SAR通过对海面的二维测量,可以获得海面电磁波散射特性的几何分布图像。通过分析这些图像,可以获得海浪、海流、海冰以及海洋内波的分布。Seasat的SAR图像首次最广泛地揭示了许多海洋现象,包括边界流、尺度范围在10-400Km的涡旋、温度峰面、浅海深度测量、与风暴相关的大气模式、雨团等。海表面波浪的观测是一个主要学科焦点,但后来很快发现在影像形成过程中,波的运动是非线性的。经过进一步的了解,并充分利用SIR-B的因低轨而不受线性影响的影像,最终消除了其非线性特性。

ERS-1/2 SAR以及ENVISAT ASAR的波浪模型结果,也都进行了纠正。

合成孔径雷达也对海岸带及陆地环境监测。2005年3月,美国NASA的

JPL(Jet Propulsion Laboratory)实施了一项研究,用SAR资料来评估南加州的沿岸污染情况。该研究描述了南加州三大污染来源:暴雨径流、废水排放及天然碳氢化合物渗漏。研究人员也表示,由于风、海浪等环境因素都会影响SAR监测效果,因此,对海洋的长期、实时地油污监测非常重要。

3.2 雷达在海洋油气勘探中的应用

遥感技术应用于油气勘探,获得若干重要成果。西方发达国家将遥感技术应用于油气勘探的时间,可以追溯到20 世纪60 年代中期,当时西方发达国家相继制定了利用空间技术研究地球资源的计划,先后发射了一系列地球资源卫星,并且利用这些卫星所提供的遥感资料,开展了大量的针对油气资源的勘查试验工作。而真正率先利用遥感资料探索油气勘探新途径的是国外一些大的石油公司。确认了遥感技术在油气勘探中的可行性。中国石油行业应用遥感技术与西方发达国家的进程基本同步,上世纪80 年代末到90 年代初,随着计算机技术和空间技术的飞速发展,遥感图像处理技术水平得到了极大提高,遥感数据的空间分辨率和地面分辨率也进一步得到改善,促进了遥感技术在油气勘探领域的应用。遥感技术直接用于找油的研究,就是在这一背景下开展起来的。这项技术建立在油气微渗漏理论的基础上,利用多源遥感数据,通过遥感图像处理技术提取和识别油气微渗漏信息。其研究方法也从最早提出的“渲晕状亮区”识别油气信息,发展到将多种非地震方法相结合进行油气勘探。

SAR资料可用来监测海洋油污染。如上所述,合成孔径雷达获取的是二维影像,影像的亮度即反映了海表微波散射信号的特性。由于微波的全天候、全天时、高分辨率的特点,人们通常就用微波来监测油污。现在用来评估油污的SAR资料主要来自加拿大的RADARSAT-1和欧空局的ENVISAT。2002年11月19日,一艘装载近7万吨的已失事的油轮——Prestige在西班牙西北海岸100Km处失事沉没,11月17日由ENVISAT搭载的ASAR 资料得到其油污扩散情况。由于风的作用,油污已扩散到周围。

油污监测最大的障碍就是准确地分辨出油膜跟影像里看起来类似的因素,包括风速、海面的天然膜、油脂状冰、内波、雨团等造成的干扰。因为

相关文档
最新文档