全等三角形难题集锦超级好题归纳
全等三角形证明难题
![全等三角形证明难题](https://img.taocdn.com/s3/m/575f2a34dd36a32d737581f3.png)
FE DCBA1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .3.如图,点B ,E ,C ,F 在一条直线上,AB =DE ,AC =DF ,BE =CF . 求证∠A =∠D .4.已知,如图,AB=AD ,DC=CB .求证:∠B=∠D 。
5.如图, AD =BC, AB =DC, DE =BF. 求证:BE =DF.AD C B1.如图,AC 和BD 相交于点O ,OA =OC ,OB =OD .求证DC ∥AB .2.如图,△ABC ≌△A B C ''',AD ,A D ''分别是△ABC ,△A B C '''的对应边上的中线,AD 与A D ''有什么关系?证明你的结论.3.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.4.已知:如图,AD ∥BC ,AD=CB ,求证:△ADC ≌△CBA .5.已知:如图AD ∥BC ,AD=CB ,AE=CF 。
求证:△AFD ≌△CEB .6.已知,如图,AB=AC ,AD=AE ,∠1=∠2。
求证:△ABD ≌△ACE .AC EDBAE B CFDAB CD2A CBE1H F ED CB A 7.已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF. 求证:AC ∥DF .8.已知:如图,AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .9.如图, 在△ABC 中, 分别延长中线BE 、CD 至F 、H, 使EF =BE, DH =CD, 连结AF 、AH . 求证:(1) AF =AH ;(2)点A 、F 、H 三点在同一直线上; (3)HF ∥BC.10.如图, 在△ABC 中, AC ⊥BC, AC =BC, 直线EF 交AC 于F, 交AB 于E, 交BC 的延长线于D, 连结AD 、BF, CF =CD. 求证:BF =AD, BF ⊥AD.11.证明:如果两个三角形有两条边和其中一边上的中线对应相等,那么这两个三角形全等.(提示:首先分清已知和求证,然后画出图形,再结合图形用数学符号表示已知和求证)AB E F12.证明:如果两个三角形有两条边和第三边上的中线对应相等,那么这两个三角形全等.13.已知:如图,正方形ABCD ,BE =CF ,求证:(1)AE =BF ; (2)AE ⊥BF . 14.已知:E 是正方形ABCD 的边长AD 上一点,BF 平分∠EBC ,交CD 于F ,求证BE=AE+CF.(提示:旋转构造等腰)15.如图,△ABD 和△ACE 是△ABC 外两个等腰直角三角形,∠BAD=∠CAE=900.(1)判断CD 与BE 有怎样的数量关系;(2)探索DC 与BE 的夹角的大小.(3)取BC 的中点M ,连MA ,探讨MA 与DE 的位置关系。
八年级数学上册全等三角形难题模型题精选强化(解析版)
![八年级数学上册全等三角形难题模型题精选强化(解析版)](https://img.taocdn.com/s3/m/6ec8e0106294dd88d1d26b13.png)
八年级数学上册全等三角形难题模型题精选强化(解析版)一、手拉手模型强化1.(难度★)如图,DAC ∆和EBC ∆均是等边三角形,A 、C 、B 三点共线,AE 与BD 相交于点P ,AE 与BD 分别与CD 、CE 交于点M 、N ,有如下结论:①ACE DCB ∆≅∆;②60DPA ∠=︒;③AC DN =;④EM BN =;⑤//DC EB ,其中正确结论是 (填序号).【解答】解:DAC ∆和EBC ∆都是等边三角形,60ACD BCE ∴∠=∠=︒,120ACE DCB ∴∠=∠=︒,在ACE ∆与DCB ∆中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,()ACE DCB SAS ∴∆≅∆,故①正确;AEC DBC ∴∠=∠,60ECB ∠=︒,60EAC AEC ECB ∴∠+∠=∠=︒,60APD EAC ABP EAC AEC ∴∠=∠+∠=∠+∠=︒,故②正确;ACE DCB ∆≅∆,CAM CDN ∴∠=∠,在ACM ∆与DCN ∆中,60CAM CDN AC DCACM DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ACM DCN ASA ∴∆≅∆,DN AM ∴=,同理可得EM BN =,故④正确;在AMC ∆中,AMC MCN ∠>∠,180180606060MCN ACD BCE ∠=︒-∠-∠=︒-︒-︒=︒,60ACM ∠=︒,AMC ACM ∴∠>∠,AC AM ∴>,AC DN ∴≠,故③错误;60DCE BEC ∠=∠=︒,//CD BE ∴,故⑤正确;故答案为:①②④⑤.2.(难度★★)如图,ABC ∆和EBD ∆中,90ABC DBE ∠=∠=︒,AB CB =,BE BD =,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AM D ∠.其中正确的有 (请写序号,少选、错选均不得分).【解答】(1)证明:ABC DBE ∠=∠,ABC CBE DBE CBE ∴∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE ∆和CBD ∆中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,ABE CBD ∴∆≅∆,AE CD ∴=.(2)ABE CBD ∆≅∆,BAE BCD ∴∠=∠,180NMC BCD CNM ∠=︒-∠-∠,180ABC BAE ANB ∠=︒-∠-∠,又CNM ANB ∠=∠,90ABC ∠=︒,90NMC ∴∠=︒,AE CD ∴⊥.(3)结论:②理由:作BK AE ⊥于K ,BJ CD ⊥于J .ABE CBD ∆≅∆,AE CD ∴=,ABE CDB S S ∆∆=, ∴1122AE BK CD BJ =, BK BJ ∴=,作BK AE ⊥于K ,BJ CD ⊥于J ,BM ∴平分AMD ∠.不妨设①成立,则CBM EBM∆≅∆,则AB BD =,显然不可能,故①错误.故答案为②.二、角平分线性质强化3.(难度★)如图,在△ABC中,∠B=45°,∠C=30°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若BD=√2,则CD的长为2.【解答】解:过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF,在Rt△BED中,∠B=45°,∴2DE2=BD2=(√2)2=2,∴DE2=1,∴DF=DE=1,在Rt△CDF中,∠C=30°,∴CD=2DF=2,故答案为:2.⊥,4.(难度★)如图,点P在MAN∠的角平分线上,点B,C分别在AM,AN上,作PR AMABP ACP∠+∠=︒,则下面三个结论:⊥,垂足分别是R,S.若180PS AN①AS AR=;②//PC AB;③BRP CSP∆≅∆.其中正确的是()A .①②B .②③C .①③D .①②③ 【解答】解:点P 在MAN ∠的角平分上,PR AM ⊥,PS AN ⊥,PR PS ∴=,90ARP ASP ∠=∠=︒,∴在Rt APR ∆和Rt APS ∆中,AP AP PR PS =⎧⎨=⎩, Rt APR Rt APS(HL)∴∆≅∆,AS AR ∴=,故①正确;180ABP ACP ∠+∠=︒,ABP PCS ∴∠=∠,又PR PS =,90PRB PSC ∠=∠=︒,()BRP CSP AAS ∴∆≅∆,故③正确;若MAP CPA ∠=∠,则//PC AB ,则需要AC PC =得出PAN CPA ∠=∠,从而根据MAP PAN ∠=∠,得出MAP CPA ∠=∠,而题中没有条件说明AC PC =,故②错误;故选:C .5.(难度★)如图,AD 是ABC ∆的角平分线,CE AD ⊥,垂足为F .若30CAB ∠=︒,55B ∠=︒,则BDE ∠的度数为( )A .35︒B .40︒C .45︒D .50︒【解答】解:30CAB ∠=︒,55B ∠=︒,180305595ACB ∴∠=︒-︒-︒=︒,CE AD ⊥,90AFC AFE ∴∠=∠=︒, AD 是ABC ∆的角平分线,130152CAD EAD ∴∠=∠=⨯︒=︒, 又AF AF =,()ACF AEF ASA ∴∆≅∆AC AE ∴=,AD AD =,CAD EAD ∠=∠,ACD AED ∴∆≅∆ ()SAS ,DC DE ∴=,DCE DEC ∴∠=∠,901575ACE ∠=︒-︒=︒,957520DCE DEC ACB ACE ∴∠=∠=∠-∠=︒-︒=︒,202040BDE DCE DEC ∴∠=∠+∠=︒+︒=︒,故选:B .6.(难度★)已知OM 是∠AOB 的平分线,点P 是射线OM 上一点,点C 、D 分别在射线OA 、OB 上,连接PC 、PD .(1)如图①,当PC ⊥OA ,PD ⊥OB 时,则PC 与PD 的数量关系是 PC =PD .(2)如图②,点C 、D 在射线OA 、OB 上滑动,且∠AOB =90°,当PC ⊥PD 时,PC 与PD 在(1)中的数量关系还成立吗?说明理由.【解答】解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中{∠PPP=∠PPP PPPP=PPPP PP=PP,∴△PCE≌△PDF(AAS),∴PC=PD.7.(难度★)如图,90ACB∠=︒,AC CD=,过点D作AB的垂线交AB的延长线于点E.若2AB DE=,则BAC∠的度数为()A .45︒B .30︒C .22.5︒D .15︒【解答】解:连接AD ,延长AC 、DE 交于M ,90ACB ∠=︒,AC CD =,45DAC ADC ∴∠=∠=︒, 90ACB ∠=︒,DE AB ⊥,90DEB ACB DCM ∴∠=︒=∠=∠,ABC DBE ∠=∠,∴由三角形内角和定理得:CAB CDM ∠=∠,在ACB ∆和DCM ∆中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩()ACB DCM ASA ∴∆≅∆,AB DM ∴=,2AB DE =,2DM DE ∴=,DE EM ∴=,DE AB ⊥,AD AM ∴=,114522.522BAC DAE DAC ∴∠=∠=∠=⨯︒=︒,故选:C.8.(难度★)在ABC∠=,ACB∠的平分线交AB于D,AE平分BAC∠=︒,AB ACBAC∆中,120交BC于E,连接DE,DF BC∠=30︒.⊥于F,则EDC【解答】解:过D作DM AC⊥,⊥交CA的延长线于M,DN AECD平分ACB∠,∴=,DF DMBAC∠=︒,120DAM∴∠=︒,60AE平分BAC∠,BAE∴∠=︒,60∴∠=∠,DAM BAE∴=,DM DNDF BC⊥,∠,DE∴平分AEB=,AE平分BAC∠交BC于E,AB AC∴⊥,AE BC∴∠=︒,90AEB∴∠=︒,DEF45B ACB∠=∠=︒,30DCF∴∠=︒,15∴∠=︒,EDC30故答案为:30.9.(难度★★)已知:点O 到ABC ∆的两边AB ,AC 所在直线的距离相等,且OB OC =.(1)如图1,若点O 在边BC 上,求证:AB AC =;(2)如图2,若点O 在ABC ∆的内部,求证:AB AC =;(3)若点O 在ABC ∆的外部,AB AC =成立吗?请画出图表示.【解答】(1)证明:过点O 分别作OE AB ⊥于E ,OF AC ⊥于F , 由题意知,在Rt OEB ∆和Rt OFC ∆中OB OC OE OF =⎧⎨=⎩, Rt OEB Rt OFC(HL)∴∆≅∆,ABC ACB ∴∠=∠,AB AC ∴=;(2)过点O 分别作OE AB ⊥于E ,OF AC ⊥于F , 由题意知,OE OF =.90BEO CFO ∠=∠=︒,在Rt OEB ∆和Rt OFC ∆中OB OC OE OF =⎧⎨=⎩, Rt OEB Rt OFC(HL)∴∆≅∆,OBE OCF ∴∠=∠,又OB OC =,OBC OCB ∴∠=∠,ABC ACB ∴∠=∠,AB AC ∴=;(3)不一定成立,当A ∠的平分线所在直线与边BC 的垂直平分线重合时AB AC =,否则AB AC ≠.(如示例图)三、割补法强化10.(难度★)如图,在△ABC 和△DBC 中,∠A =40°,AB =AC =2,∠BDC =140°,BD =CD ,以点D 为顶点作∠MDN =70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为 4 .【解答】解:延长AC 至E ,使CE =BM ,连接DE .∵BD =CD ,且∠BDC =140°,∴∠DBC =∠DCB =20°,∵∠A =40°,AB =AC =2,∴∠ABC =∠ACB =70°,∴∠MBD =∠ABC +∠DBC =90°,同理可得∠NCD =90°,∴∠ECD =∠NCD =∠MBD =90°,在△BDM 和△CDE 中,{PP =PPPPPP =PPPP PP =PP,∴△BDM ≌△CDE (SAS ),∴MD =ED ,∠MDB =∠EDC ,∴∠MDE =∠BDC =140°,∵∠MDN =70°,∴∠EDN =70°=∠MDN ,在△MDN 和△EDN 中,{PP =PPPPPP =PPPP PP =PP,∴△MDN ≌△EDN (SAS ),∴MN =EN =CN +CE ,∴△AMN 的周长=AM +MN +AN =AM +CN +CE +AN =AM +AN +CN +BM =AB +AC =4;故答案为:4.11.(难度★)在MAN ∠内有一点D ,过点D 分别作DB AM ⊥,DC AN ⊥,垂足分别为B ,C .且BD CD =,点E ,F 分别在边AM 和AN 上.(1)如图1,若BED CFD ∠=∠,请说明DE DF =;(2)如图2,若120BDC ∠=︒,60EDF ∠=︒,猜想EF ,BE ,CF 具有的数量关系,并说明你的结论成立的理由.【解答】解:(1)DB AM ⊥,DC AN ⊥,90DBE DCF ∴∠=∠=︒,在BDE ∆和CDF ∆中,,,,BED CFD DBE DCF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()BDE CDF AAS ∴∆≅∆.DE DF ∴=;(2)EF FC BE =+,理由:过点D 作CDG BDE ∠=∠,交AN 于点G ,在BDE ∆和CDG ∆中,EBD GCD BD CDBDE CDG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BDE CDG ASA ∴∆≅∆,DE DG ∴=,BE CG =.120BDC ∠=︒,60EDF ∠=︒,60BDE CDF ∴∠+∠=︒.60FDG CDG CDF ∴∠=∠+∠=︒,EDF GDF ∴∠=∠.在EDF ∆和GDF ∆中,DE DG EDF GDF DF DF =⎧⎪∠=∠⎨⎪=⎩,∴∆≅∆.EDF GDF SAS()∴=,EF GF∴=+=+.EF FC CG FC BE12.(难度★)如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.【解答】证明:(1)过点D作DH∥AC,DH交BC于H,如图1所示:则∠DHB=∠ACB,∠DHF=∠ECF,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DHB,∴BD=HD,∵CE=BD,∴HD=CE,在△DHF 和△ECF 中,{∠PPP =∠PPPPPPP =PPPP PP =PP,∴△DHF ≌△ECF (AAS ),∴EF =DF ;(2)如图2,由(1)知:BD =HD ,∵DG ⊥BC ,∴BG =GH ,由(1)得:△DHF ≌△ECF ,∴HF =CF ,∴GH +HF =12BH +12CH =12BC ,∴BC =2FG .13.(难度★★)在△ABC 中,AB =AC ,∠ABC =∠ACB ,CE 是高,且∠ECA =36°,平面内有一异于点A ,B ,C ,E 的点D ,若△ABC ≌△CDA ,则∠DAE 的度数为 117°、27°、9°和81° .【解答】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.14.(难度★)如图,∠C=90°,AC=20,BC=10,AX⊥AC,点P和点Q同时从点A出发,分别在线段AC和射线AX上运动,且AB=PQ,当AP=10或20时,以点A,P,Q为顶点的三角形与△ABC全等.【解答】解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=10时,在Rt△ABC和Rt△QPA中,{PP=PP,PP=PP∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=20时,在△ABC和△PQA中,{PP=PP,PP=PP∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=10或20时,△ABC与△APQ全等;故答案为:10或20.四、综合运用强化15.(难度★)如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A .8B .6C .5D .4【解答】解:∵BE 和CE 分别平分∠ABC 和∠BCD ,∴∠EBC =12P ABC ,∠ECB =12P DCB ,∵AB ∥CD ,∴∠ABC +∠DCB =180°,∴∠EBC +∠ECB =12×180°=90°,∴∠BEC =180°﹣(∠EBC +∠ECB )=90°,要使PE 取最小值,只要BC 最小即可,此时BC ⊥AB ,BC ⊥CD ,∠PBE =∠PCE =45°,∴BE =CE ,即△CEB 是等腰直角三角形,当PE ⊥BC 时,PE 最短,∴P 为BC 的中点,∵∠BEC =90°,∴PE =12BC ,当BC ⊥CD 时,BC 最小,此时BC =AD =8,∴PE 最小值是12×8=4,故选:D .16.(难度★)如图,点P 是正方形ABCD 的对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接E ,F .给出下列五个结论:①AP EF =;②PD EC =;③PFE BAP ∠=∠;④APD ∆一定是等腰三角形;⑤AP EF ⊥.其中正确结论的序号是 ①③⑤ .【解答】解:延长FP交AB于点N,延长AP交EF于点M.四边形ABCD是正方形.ABP CBD∴∠=∠又NP AB⊥,PE BC⊥,∴四边形BNPE是正方形,ANP EPF∠=∠,NP EP∴=,AN PF∴=在ANP∆与FPE∆中,NP EPANP EPFAN PF=⎧⎪∠=∠⎨⎪=⎩,()ANP FPE SAS∴∆≅∆,AP EF∴=,PFE BAP∠=∠(故①③正确);APN∆与FPM∆中,APN FPM∠=∠,NAP PFM∠=∠90PMF ANP∴∠=∠=︒AP EF∴⊥,(故⑤正确);P是BD上任意一点,因而APD∆是等腰三角形和PD EC=不一定成立,(故②④错误);故正确的是:①③⑤.故答案为:①③⑤17.(难度★)如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE 交AC 于点F .(1)若∠B =70°,求∠C 的度数;(2)若AE =AC ,AD 平分∠BDE 是否成立?请说明理由.【解答】解:(1)∵∠B =70°,AB =AD ,∴∠ADB =∠B =70°,∵∠B +∠BAD +∠ADB =180°,∴∠BAD =40°,∵∠CAE =∠BAD ,∴∠CAE =40°,∵AE ∥BC ,∴∠C =∠CAE =40°;(2)AD 平分∠BDE ,理由是:∵∠BAD =∠CAE ,∴∠BAD +∠CAD =∠CAE +∠CAD ,即∠BAC =∠DAE ,在△BAC 和△DAE 中,{PP =PP PPPP =PPPP PP =PP,∴△BAC ≌△DAE (SAS )∴∠B =∠ADE ,∵∠B =∠ADB ,∴∠ADE =∠ADB ,即AD 平分∠BDE .18.(难度★★)如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为( )A .54︒B .50︒C .48︒D .46︒【解答】解:如图所示,过D 作DE AB ⊥于E ,DF AC ⊥于F ,DG BC ⊥于G ,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,DF DE ∴=,又136ACD ∠=︒,44BCD ∠=︒,92ACB ∴∠=︒,44DCF ∠=︒,CD ∴平分BCF ∠,又DF AC ⊥于F ,DG BC ⊥于G ,DF DG ∴=,DE DG ∴=,BD ∴平分CBE ∠,12DBE CBE ∴∠=∠, AD 平分BAC ∠,12BAD BAC ∴∠=∠, 111()9246222ADB DBE BAD CBE BAC ACB ∴∠=∠-∠=∠-∠=∠=⨯︒=︒, 故选:D .19.(难度★★)如图,已知等边三角形ABC ,点D 为线段BC 上一点,以线段DB 为边向右侧作DEB ∆,使DE CD =,若ADB m ∠=︒,(1802)BDE m ∠=-︒,则DBE ∠的度数是( )A .(60)m -︒B .(1802)m -︒C .(290)m -︒D .(120)m -︒【解答】解:如图,连接AE .ABC ∆是等边三角形,60C ABC ∴∠=∠=︒,ADB m ∠=︒,(1802)BDE m ∠=-︒,180ADC m ∴∠=︒-︒,180ADE m ∠=︒-︒,ADC ADE ∴∠=∠,AD AD =,DC DE =,()ADC ADE SAS ∴∆≅∆,60C AED ∴∠=∠=︒,DAC DAE ∠=∠,DEA DBA ∴∠=∠,1802BDE BAE m ∴∠=∠=︒-,AE AC AB ==,1(1801802)2ABE AEB m m ∴∠=∠=︒-︒+=, (60)DBE ABE ABC m ∴∠=∠-∠=-︒,故选:A .20.(难度★★)如图,等腰直角ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,ABC ∠的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,延长AM 交BC 于点N ,连接DM ,NE .下列结论:①AE AF =;②AM EF ⊥;③AEF ∆是等边三角形;④DF DN =,⑤//AD NE .其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,故①正确;③错误, M 为EF 的中点,AM EF ∴⊥,故②正确;AM EF ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN MBN ∴∠=︒-︒=︒=∠,在FBD ∆和NAD ∆中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FBD NAD ASA ∴∆≅∆,DF DN ∴=,故④正确;67.5BAM BNM ∠=∠=︒,∴=,BA BN=,∠=∠,BE BEEBA EBN∴∆≅∆,()EBA EBN SAS∴∠=∠=︒,BNE BAE90∴∠=∠=︒,ENC ADC90∴.故⑤正确,//AD EN故选:D.。
初二上(八年级上):全等等边三角形难题好题压轴题、培优提高
![初二上(八年级上):全等等边三角形难题好题压轴题、培优提高](https://img.taocdn.com/s3/m/3112f32d4b35eefdc8d333ce.png)
6、在△ABC中,BD=DC,ED⊥DF.求证:BE+CF> EF.
考点:全等三角形的判定与性质.专题:证明题;探究型.分析:(1)利用同角的余 (3)ED=AD+BE. 已知,如图,三角形ABC是等腰直角三角形, 角相等得出∠CAD=∠BCE,进而根据AAS证明△ADC≌△CEB. 证明:∵AD⊥CE,BE⊥CE, ∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、 (2)根据AAS证明△ADC≌△CEB后,得其对应边相等,进而得到ED=BE-AD. ∴∠ADC=∠CEB=90°. B作l的垂线,即AD⊥CE,BE⊥CE, (3)根据AAS证明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,进 ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, 而得到ED=AD+BE.解答:(1)证明:∵AD⊥CE,BE⊥CE, ∴∠CAD=∠BCE(同角的余角相等). (1)如图1,当CE位于点F的右侧时,求证: ∴∠ADC=∠CEB=90°. 在△ADC与△CEB中 △ADC≌△CEB; ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, ∠ADC=∠CEB ∠CAD=∠BCE AC=BC , (2)如图2,当CE位于点F的左侧时,求证:ED=BE-AD; ∴∠CAD=∠BCE(同角的余角相等). ∴△ADC≌△CEB(AAS). 在△ADC与△CEB中 ∴DC=BE,AD=CE. (3)如图3,当CE在△ABC的外部时,试猜想ED、AD、 ∠ADC=∠CEB ∠CAD=∠BCE AC=BC , 又∵ED=CE+DC, BE之间的数量关系,并证明你的猜想. ∴△ADC≌△CEB(AAS). ∴ED=AD+BE.点评:本题考查了全等三角形的判定和性质;利用全等三角形的对应 (2)证明:∵AD⊥CE,BE⊥CE, 边相等进行等量交换,证明线段之间的数量关系,这是一种很重要的方法,注意掌握 ∴∠ADC=∠CEB=90°. ∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°, ∴∠CAD=∠BCE(同角的余角相等). 在△ADC与△CEB中 ∠ADC=∠CEB ∠CAD=∠BCE AC=BC , ∴△ADC≌△CEB(AAS). ∴DC=BE,AD=CE. 又∵ED=CD-CE, ∴ED=BE-AD.
(完整版)全等三角形难题超级好题汇总
![(完整版)全等三角形难题超级好题汇总](https://img.taocdn.com/s3/m/101f6b43dd36a32d72758106.png)
1. 如图,已知等边△ ABC,P在AC延长线上一点,以PA为边作等边△ APE,EC延长线交BP于M,连接AM,求证:(1)BP=CE;(2)试证明:EM-PM=AM.3.已知,如图①所示,在△ABC和△ ADE中,AB AC,AD AE,BAC DAE ,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:① BE CD ;② AM AN ;2)在图①的基础上,将△ADE 绕点 A 按顺时针方向旋转180o,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立4、如图1,以△ ABC的边AB 、AC为边分别向外作正方形ABDE和正方形ACFG ,连结EG ,试判断△ABC与△AEG 面积之间的关系,并说明理由.2、点 C 为线段AB 上一点,△ ACM, △ CBN 都是等边三角形,线段AN,MC 交于点E,BM,CN交于点F。
求证:1)AN=MB. (2)将△ ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,1)中的结论是否依然成立?(3)AN 与BM 相交所夹锐角是否发生变化。
B图①CB图1)F7、已知 Rt △ ABC 中, AC BC ,∠C 90,D 为AB 边的中点, EDF 90°,EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于 E 、 F.1 当 EDF 绕 D 点旋转到 DE AC 于E时(如图1),易证S △DEF S △CEF S △ ABC .DEF CEF 2 ABC当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立, 请给予证明;8. 已知 AC//BD, ∠CAB 和∠ DBA 的平分线 EA 、EB 与 CD 相交于点 E. 求证 :AB=AC+BD.5、如图所示,已知△ ABC 和△ BDE 都是等边三角形,且 A 、 HB 平分∠ AHD ;④∠ AHC=60 °,⑤△ BFG 是等边三角形;⑥ A .3个 B .4 个 C .5个 D .6 个B 、D 三点共线.下列结论:① AE=CD ;② BF=BG ;③ FG ∥AD .其中正确的有()6. 如图所示,△ ABC 是等腰直角三角形,∠ ACB =90°,AD 交 AD 于点 F ,求证:∠ ADC =∠ BDE .是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E , 、 S △CEF 、 S △ABC 又有怎样的数量关系?请写出你的猜想,不需证明.图1若不成立,S △ DEF 图2图210、已知,如图1,在四边形ABCD 中,BC>AB,AD=DC,BD 平分∠ ABC 。
全等三角形难题集锦超级好
![全等三角形难题集锦超级好](https://img.taocdn.com/s3/m/71f2a44dff00bed5b9f31d85.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图B E3.已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB ,连接AE CD ,. (1)求证:AGE DAC △≌△;(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.CGAEDBF4、在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC A B 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论;ADBECF 1A1CADBECF 1A1C5. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .ABCD EF6已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.A EC F BD图1图3ADFECBADBCE 图2F7、已知AC//BD,∠CAB和∠DBA的平分线EA、EB与CD相交于点E.求证:AB=AC+BD.8.等边△ABC,D为△ABC外一点,∠BDC=120°,BD=DC.∠MDN=60°射线DM与直线AB相交于点M,射线DN与直线AC相交于点N,①当点M、N在边AB、AC上,且DM=DN时,直接写出BM、NC、MN之间的数量关系.②当点M、N在边AB、AC上,且DM≠DN时,猜想①中的结论还成立吗?若成立,请证明.③当点M、N在边AB、CA的延长线上时,请画出图形,并写出BM、NC、MN之间的数量关系.DCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补.为什么?ABCD FE 图2DBEAC图十一11如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线12、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,EBAC图2DCB13如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD14如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
全等三角形难题专题(2)
![全等三角形难题专题(2)](https://img.taocdn.com/s3/m/0e426c27ce2f0066f433223a.png)
源-于-网-络-收-集图3M N KE DC B A 图2M N K DC B A 图1M K N C B A 全等三角形难题专题(2)1、如图。
p为△ABC 的边BC 的垂直平分线上的一点,且A PBG ∠=∠21,BP 、CP 的延长线分别交AC 、AB 于D 、E,求证:BE=CD.2、问题背景,如下命题:① 如图1,在正三角形ABC 中,N 为BC 边上任一点,CM 为正三角形外角∠ACK 的平分线,若∠ANM=60°,则AN=NM② 如图2,在正方形ABCD 中,N 为BC 边上任一点,CM 为正方形外角∠DCK 的平分线,若∠ANM=90°,则AN=NM③ 如图3,在正五边形ABCDE 中,N 为BC 边上任一点,CM 为正五边形外角∠DCK 的平分线,若∠ANM=108°,则AN=NM任务要求:⑴ 请你证明以上三个命题; ⑵ 请你继续完成下面的探索:① 如图4,在正n (n ≥3)边形ABCDEF…中,N 为BC 边上任一点,CM 为正n 边形外角∠DCK 的平分线,问当∠ANM 等于多少度时,结论AN=NM 成立(不要求证明).② 如图5,在梯形ABCD 中,AD ∥BC,AB=BC=CD,N 为BC 延长线上一点,CM 为∠DCN 的平分线,若∠ANM=∠ABC,请问AN=NM 是否还成立?若成立,请给予证明;若不成立,请说明理由.图5MNDC BA图4N KFEDC BA3、若D 为等腰直角三角形ABC 的BC 边上任一点,且D E ⊥AD,BE ⊥AB.(1)求证:△ADE 为等腰R T △.BA C DME源-于-网-络-收-集(2)如图,当D 在CB 上任意运动时,若BC=a,过B 作BM ⊥BC 交AE 于M ,现给二个结论:①∠BMD 的度数不变;②BD ﹢BM ﹢DM 值不变。
其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论,并求出其值。
全等三角形难题集锦超级好题汇总
![全等三角形难题集锦超级好题汇总](https://img.taocdn.com/s3/m/d0d807a7844769eae009edb2.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ;(2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证:(1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立 (3)AN与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,ADAE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EAB A B N CNA4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( )A .3个B .4个C .5个D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AGFCBDE(图1)ABC DEF7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEFABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系请写出你的猜想,不需证明.8.已知AC 求证:AB=AC+BD.A E C FBD图1图3ADFECBADBCE 图2FDCBA9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
完整版)全等三角形难题题型归类及解析
![完整版)全等三角形难题题型归类及解析](https://img.taocdn.com/s3/m/e3488833eef9aef8941ea76e58fafab069dc44e5.png)
完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
(完整)全等三角形难题及答案
![(完整)全等三角形难题及答案](https://img.taocdn.com/s3/m/8394bd2349649b6649d74701.png)
1、 如图,在ABC ∆中,AB BC =,90ABC ∠=。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =.2、 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =.3、 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
4、如图,BD 、CE 分别是ABC ∆的边AC 、AB 上的高,F 、G 分别是线段DE 、BC 的中点求证:DE FG ⊥5、如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E,交AD 于点F ,求证:∠ADC=∠BDE6、如图,在锐角ABC ∆中,已知C ABC ∠=∠2,ABC ∠的平分线BE 与AD 垂直,垂足为D ,若cm BD 4=,求AC 的长参考答案1、 思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形.以线段AE 为边的ABE ∆绕点B 顺时针旋转90到CBF ∆的位置,而线段CF 正好是CBF ∆的边,故只要证明它们全等即可。
解答过程:90ABC ∠=,F 为AB 延长线上一点∴90ABC CBF ∠=∠=在ABE ∆与CBF ∆中AB BC ABC CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴ABE CBF ∆≅∆(SAS)∴AE CF =。
解题后的思考:利用旋转的观点,不但有利于寻找全等三角形,而且有利于找对应边和对应角。
小结:利用三角形全等证明线段或角相等是重要的方法,但有时不容易找到需证明的三角形。
这时我们就可以根据需要利用平移、翻折和旋转等图形变换的观点来寻找或利用辅助线构造全等三角形。
2、 思路分析:要证明“2AC AE =”,不妨构造出一条等于2AE 的线段,然后证其等于AC 。
全等三角形难题方法归纳
![全等三角形难题方法归纳](https://img.taocdn.com/s3/m/1cee5771be1e650e53ea9918.png)
全等三角形难题归纳一、线段长度问题截长补短方法归纳1、 在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE 。
(1)求证:CE=CF 。
(2)在图中,若G 点在AD 上,且∠GCE=45°,则GE=BE+GD 成立吗?为什么?2、 如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分别为DE 、DF,CM ⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明.E CBAMF3、如图在Rt △ABC 中,AB =AC ,D 为△ABC 外一点,且BD ⊥CD ,DF 平分∠ADB ,当∠ACD =15°时,求证:(1)∠ADC =45°;(2)②AD +AF =BD ;(3)BC -CE =2DE 。
4、已知等腰直角△ABC 中AC=BC ,CF ⊥AD 于E, AD-CF=2ED,求证:AD 平分∠CAB5、 已知:如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,且∠B+∠D=180︒,求证:AE=AD+BEABDCE 12E AC BD FE_ A_ C二、角平分线处理方法1、如图,已知AM ∥BN ,AC 平分∠MAB ,BC 平分∠NBA 。
(1)过点C 作直线DE ,分别交AM 、BN 于点D 、E ,求证:AB =AD +BE (2)如图,若将直线DE 绕点C 转动,使DE 与AM 交于点D ,与NB 的延长线交于点E ,则AB 、AD 、BE 三条线段的长度之间存在何种等量关系?谫你给出结论并加以证明。
2、如图,在四边形ABCD 中,BD 是∠ABC 的角平分线,若CD =AD ,过D 点作DE ⊥AB ,求证:AB +BC =2BE3、如图,已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC4、如图,已知△ABC 中,BC =AC ,∠C =90°,∠A 的平分线交BC 于D ,求证:AC +CD =AB5、如图,已知A (0,1),B (1,0),AB=BC ,A 和D 关于x 轴对称,P 为CA 延长线上一动点,PE ⊥CD 于E ,PF ⊥x 轴于F ,求证:PF=21CGA B C D E A C BD A C B DA BC D EN MA B C DM N E三、中点问题处理方法1、以A B C ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE的位置关系是 ,线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt AB D ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.2、如图,AB=AD ,AC=AE ,∠BAD=∠CAE=90°,AH ⊥BC 于H ,HA 的延长线交DE 于G 。
全等三角形难的题目集锦超级好
![全等三角形难的题目集锦超级好](https://img.taocdn.com/s3/m/adea670cb80d6c85ec3a87c24028915f814d8469.png)
全等三角形难的题目集锦超级好1.如图,于点F,Ⅱ是BC边的中点,连结DH与BE相交于点G。
2.如图14-1,在△ABC中,BC边在直线l上, AC⊥BC,且AC = BC,△BP的边FP也在直线l上.边EF与边AC重合,且 EF-FP.(1) 在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系:(2)将△EFP沿直线l向左平移到图14-2的位置时, EP交AC 于点Q,连结AP,BQ,猜想并写出 BQ与AP所满足的数量关系和位置关系,请证明你的猜想:(3)将△EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP。
BQ,你认为(2) 中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明:若不成立,请说明理由.(1)求证: BF=AC; (2)求证:CE=12BF;(3)CE与BC的大小关系如何?试证明你的结论。
3.如图1,图2,图3,△AOB,△COD 均是等腰直角三角形, ∠AOB=∠COD=90°.(1) 在图1中,AC与BD相等吗,有怎样的位置关系?请说明理由。
(2)若△000绕点0顺时针旋转一定角度后,到达图2的位置,请问AC与BD还相等吗,还具有那种位置关系吗? 为什么?(3) 若△OOO绕点O 顺时针旋转一定角度后,到达图3的位置,请问 AC与BO 还相等吗? 还具有上词中的位置关系吗? 为什么?4(9分) 复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC. P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP-∠BAC,连接BQ、CP,则BQ-CP.“小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=∁P”仍然成立,请你就图②给出证明。
5.(1) 如图1,现有一正方形ABCD,将三角尺的指直角顶点放在A点处,两条直角边也与CB的延长线、DC分别交于点E,F,请你通过观察、测量,判断AE与AF之间的数量关系,并说明理由.(2) 将三角尺沿对角线平移到图2的位置,PE、PF之间有怎样的数量关系,并说明理由.(3)如果将三角尺旋转到图3的位置,除,1F之间是否还具有(2)中的数量关系?如果有,请说明。
(完整word版)八年级数学全等三角形难题集锦
![(完整word版)八年级数学全等三角形难题集锦](https://img.taocdn.com/s3/m/c4abb0d1b04e852458fb770bf78a6529647d352f.png)
1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。
(完整版)全等三角形难题集锦超级好题汇总
![(完整版)全等三角形难题集锦超级好题汇总](https://img.taocdn.com/s3/m/cd5f83496f1aff00bed51ee5.png)
1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证: (1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。
3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EA B A B N CN 图①图②4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AG FC BDE (图1) ABCD EFDCB A7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.8.已知AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ; (2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;A E C F BD图1图3ADFECBADBCE图2FAD FE图十一4321P A BC 10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。
八年级上册数学《全等三角形难题集》
![八年级上册数学《全等三角形难题集》](https://img.taocdn.com/s3/m/2b1bcac9915f804d2a16c1be.png)
1倍长中线�线段�造全等 1、已知�如图�A D 是△A B C 的中线�B E 交A C 于E �交A D 于F �且 A E =E F �求证�A C =B F ABCDE F分析�要求证的两条线段A C 、B F 不在两个全等的三角形中�因此证A C =B F 困难�考虑能否通过辅助线把A C 、BF 转化到同一个三角形中�由A D 是中线�常采用中线倍长法�故延长A D 到G �使D G =A D �连B G �再通过全等三角形和等线段代换即可证出。
2、已知在△A B C 中�A D 是B C 边上的中线�E 是A D 上一点�且B E =A C �延长B E 交A C 于F �求证�A F =E F F EDABC提示�倍长A D 至G �连接B G �证明ΔB D G ≌ΔC D A三角形B E G 是等腰三角形3、已知�如图△A B C 中�A B =5�A C =3�则中线A D 的取值范围是_________. D CBA4、在△A B C 中,A C =5,中线A D =7�则A B 边的取值范围是( ) A 、1<A B <29 B 、4<A B <24 C 、5<A B <19 D 、9<A B <195、已知�A D 、A E 分别是△A B C 和△A B D 的中线�且BA =B D � 求证�A E =21ACABCDE6、如图�△A B C 中�B D =D C =A C �E 是D C 的中点�求证�AD 平分∠B AE . E D C BA7、已知C D =A B �∠B D A =∠B A D �A E 是△A B D 的中线�求证�∠C =∠B A EABCDE提示�倍长A E 至F �连结D F 证明ΔA B E ≌ΔF D E �S A S � 进而证明ΔA D F ≌ΔA D C �S A S �8、如图23�△A B C 中�D 是B C 的中点�过D 点的直线G F 交A C 于F �交A C 的平行线B G 于G 点� D E ⊥D F �交A B 于点E �连结E G 、E F .⑴求证�B G =C F ⑵请你判断B E +C F 与E F 的大小关系�并说明理由。
(完整版)全等三角形难题集锦超级好题汇总,推荐文档
![(完整版)全等三角形难题集锦超级好题汇总,推荐文档](https://img.taocdn.com/s3/m/7d36674e998fcc22bcd10dbd.png)
D
C
A
E
B
12、.如图,在△ABC 中∠ABC,∠ACB 的外角平分线交 P.求证:AP 是∠BAC 的角平分线
A
B
2 1
C
3 4
P
13、如图在四边形 ABCD 中,AC 平分∠BAD,∠ADC+∠ABC=180 度,一C一E⊥一 AD 于 E,猜想 AD、AE、AB 之间 E
D
的数量关系,并证明你的猜想,
② 如图 2,在正方形 ABCD 中,N 为 BC 边上任一点,CM 为正方形外角∠DCK 的平分线,若∠ANM=90°,则 AN=NM
③
如图 3,在正五边形 ABCDE 中,N 为 BC 边上任一点,CM 为正五边形外角∠DCK 的平分线,若∠ANM=108°,则
AN=NM
A M
B
NC
K
图1
E
A
1.如图,已知等边△ABC,P 在 AC 延长线上一点,以 PA 为边作等边△APE,EC 延长线交 BP 于 M,连接 AM,求证:(1)
BP=CE;
(2)试证明:EM-
PM=AM.
E
A
C
B
P M 22∠
2、点 C 为线段 AB 上一点,△ACM, △CBN 都是等边三角形,线段 AN,MC 交于点 E,BM,CN 交于点 F。求证: (1)AN=MB.(2)将△ACM 绕点 C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否 依然成立? (3)AN 与 BM 相交所夹锐角是否发生变化。
B
M
B
O
P
E FD
E
FD
A N
图①
CA
图②
C
全等三角形判定-专题复习50题(含答案)
![全等三角形判定-专题复习50题(含答案)](https://img.taocdn.com/s3/m/80ba8f04bf23482fb4daa58da0116c175f0e1e91.png)
A.一个锐角对应相等C.一条边对应相等B.两个锐角对应相等全等三角形判定、选择题:1-如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA2•方格纸中,每个小格顶点叫做一个格点,以格点连线为边的三角形叫做格点三角形。
如图,在4X4的方格纸中,有两个格点三角形△ABC、ADEF,下列说法中成立的是()A.ZBCA=ZEDF CoZBAC=ZEFDB.ZBCA=ZEFDD.这两个三角形中,没有相等的角3•如图所示,△ABD9ACDB,下面四个结论中,不正确的是()A.△ABD和厶CDB的面积相等B.AABD和厶CDB的周长相等C.ZA+ZABD=ZC+ZCBDD.AD〃BC,且AD=BC4.下列判断中错误的是()A.有两角和一边对应相等的两个三角形全等B.有两边和一角对应相等的两个三角形全等C.有两边和其中一边上的中线对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5-使两个直角三角形全等的条件是()6•如图,在AABC和厶BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则Z AACB等于(B.ZBEDC.寺ZAFBD.2ZABFA.ZEDBBA B C DB.ZA=ZDC.AC=DD.ZACB=ZF7.在AABC 和厶A /B /C /中,已知ZA=ZA /,AB=A /B /,在下面判断中错误的是()A. 若添加条件AC=A /C /,则厶ABC^^^A /B /C /B. 若添加条件BC=B /C /,则厶ABC^^^A /B /C /C 。
若添加条件ZB=ZB /,则△ABC^^^A /B /C /D 。
若添加条件ZC=ZC /,则△ABC^^^A /B /C /8•如图,AABC 和厶DEF 中,AB=DE 、ZB=ZDEF,添加下列哪一个条件无法证明厶ABC^^DEF ()9•如图,在△ABC 中,ZABC=45°,AC=8cm,F 是高AD 和BE 的交点,则BF 的长是()A.4cmB.6cmC.8cmD.9cm1°.在如图所示的5X5方格中,每个小方格都是边长为1的正方形,AABC 是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形个数是()11.如图,点E 在正方形ABCD 的对角线AC 上,且EC=2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N.若正方形ABCD 的边长为a,则重叠部分四边形EMCN 的面积为( A.AC 〃DF12-在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(C、填空题:I3•如图所示,有一块三角形的镜子,小明不小心弄破裂成1、2两块,现需配成同样大小的一块.为了方便起见,需带上—块,其理由是.14.如图示,点B在AE上,ZCBE=ZDBE,要使AABC^AABD,还需添加一个条件是,(填上你认为适当的一个条件即可)15•如图,已知Z1=Z2,AC=AD,请增加一个条件,使△ABC9AAED,你添加的条件是16-如图,Z1=Z2,要使△ABD9AACD,需添加的一个条件是(只添一个条件即可).17•如图,在△ABC中,AB=AC,AD丄BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.18•如图,△ABD9ABAC,若AD=BC,则ZBAD的对应角是.19-如图,已知AB丄BD,垂足为B,ED丄BD,垂足为D,AB=CD,BC=DE,则ZACE=_度.2°・如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是.三、解答题:21•如图,ZDCE=90°,CD=CE,AD丄AC,BE丄AC,垂足分别为A.B.试说明AD+AB=BE.22.如图,E、A.C三点共线,AB〃CD,ZB=ZE,,AC=CD。
全等三角形经典题型50题[含答案]
![全等三角形经典题型50题[含答案]](https://img.taocdn.com/s3/m/6ec7153dbed5b9f3f80f1c1f.png)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠ED C ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB=∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形难题集锦超级好题归纳标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。
求证:(1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立 (3)AN 与BM 相交所夹锐角是否发生变化。
22题PBEABAB NC N3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.FD(图1)图①图②5、如图所示,已知△ABC和△BDE都是等边三角形,且A、B、D三点共线.下列结论:①AE=CD;②BF=BG;③HB平分∠AHD;④∠AHC=60°,⑤△BFG是等边三角形;⑥FG∥AD.其中正确的有()A.3个 B.4个 C.5个 D.6个6. 如图所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE.A BCDEF7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系请写出你的猜想,不需证明.AEDADADDCBA8.已知AC 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线,90=∠BAC .(1)求证BC =AB +AD ;(2)如图2,BDAF⊥于F,BDCE⊥交延长线于E,求证:BD=2CE;10、已知,如图1,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ABC。
求证:∠BAD+∠BCD=180°。
11、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,则∠B与∠ADC互补.为什么AB CDFE图2图十一12、.如图,在△ABC 中∠ABC,∠ACB 的外角平分线交P.求证:AP 是∠BAC 的角平分线13、如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,DBEACEBAC图2D14、如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF15、如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立若成立,请证明;若不成立,请说明理由。
OP AMNEB CD F ACE F BD图①图②图③AE F图3MN KEDCBA图2MN KDCBA图1MKN C B A16、△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q ,求证:AB+BP=BQ+AQ 。
17.问题背景,请你证明以上三个命题;① 如图1,在正三角形ABC 中,N 为BC 边上任一点,CM 为正三角形外角∠ACK 的平分线,若∠ANM=60°,则AN=NM② 如图2,在正方形ABCD 中,N 为BC 边上任一点,CM 为正方形外角∠DCK 的平分线,若∠ANM=90°,则AN=NM③ 如图3,在正五边形ABCDE 中,N 为BC 边上任一点,CM 为正五边形外角∠DCK 的平分线,若∠ANM=108°,则AN=NM18.(1)如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE 的平分线于N.试判定线段MD与MN的大小关系;(2)若将上述条件中的“M是AB的中点”改为“M是AB上或AB延长线上任意一点”,其余条件不变.试问(1)中的结论还成立吗如果成立,请证明;如果不成立,请说明理由.19.如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PE⊥BD,PF⊥AC,E、F为垂足.求证:PE+PF=AB.20..如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过后,点P与点Q第一次在△ABC的边上相遇(在横线上直接写出答案,不必书写解题过程)21、已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,求证:①BD=CF;②AC=CF+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系.22.().如图1,在正方形ABCD中,点E、F分别为边BC、CD的中点,AF、DE相交于点G,则可得结论:①AF=DE;②AF⊥DE.(不需要证明)(1)如图2,若点E、F不是正方形ABCD的边BC、CD的中点,但满足CE=DF.则上面的结论①、②是否仍然成立(请直接回答“成立”或“不成立”)(2)如图3,若点E、F分别在正方形ABCD的边CB的延长线和DC的延长线上,且CE=DF,此时上面的结论①、②是否仍然成立若成立,请写出证明过程;若不成立,请说明理由.23、如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12 cm,求BD的长.24、.已知BE ,CF 是△ABC 的高,且BP=AC ,CQ=AB ,试确定AP 与AQ 的数量关系和位置关系25、如图,AD//BC ,AD=BC ,AE ⊥AD ,AF ⊥AB ,且AE=AD ,AF=AB ,求证:AC=EFBACEFQPD26、直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠. (1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90BCA α∠=∠=,则EF BE AF-(填“>”,“<”或“=”号);②如图2,若0180BCA <∠<,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ; (2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.ABC EFDDABCE FAD F CEB图1 图2图327、如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.28、.如图所示,已知△ABC中,AB=AC,D是CB延长线上一点,∠ADB=60°,E是AD上一点,且DE=DB,求证:AC=BE+BCED B29、在△ABC中,BD=DC,ED⊥DF.求证:BE+CF>EF.。