初二数学上册一次函数专项练习题

合集下载

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案填空题.
(1)点A在y轴右侧,距y轴6个单位长度,距x轴8个单位长度,则A点的坐标是,A点离开原点的距离是.
(2)点(-3,2),(a,a+1)在函数y=kx-1的图像上,则k=a= (3)正比例函数的图像经过点(-3,5),则函数的关系式是.
(4)函数y=-5x+2与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是.
(5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(6)写出下列函数关系式
①速度60千米的匀速运动中,路程S与时间t的关系
②等腰三角形顶角y与底角x之间的关系
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系
④矩形周长30,则面积y与一条边长x之间的关系
在上述各式中,是一次函数,是正比例函数(只填序号)
(7)正比例函数的图像一定经过点.
(8)若点(3,a)在一次函数y=3x+1的图像上,则.
(9)一次函数y=kx-1的图像经过点(-3,0),则k=.
(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式.
(11)函数y=-x+m^2与y=4x-1的图像交于轴,则m=.
答案:
(1)、(6,+8)和(6,-8)、10(2)、-1、-1(3)、y=-x
(4)、(0.4,0)、(0,2)、0.4(5)、y=(4x-1)
(6)、s=60t、y=180-2x、y=100-0.18x、y=x(x-15)、①②③、①
(7)、(0,0)(8)、10(9)、-(10)、y=(2x+1)
(11)、正负。

初二数学上册一次函数专项练习题

初二数学上册一次函数专项练习题

初二数学一次函数专项练习题一次函数知识点总结(一)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. ① k 不为零 ② x 指数为1 ③ b 取零 (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:____________(3) 走向:k>0时,图像经过____________象限;k<0时,•图像经过____________象限 (4) 增减性:k>0,____________;k<0,____________(5) 倾斜度:|k|越大,____________;|k|越小,____________ 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注: ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过____________和____________两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移_______个单位长度得到.(当b>0时,向____平移;当b<0时,向____平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)增减性: k>0,____________;k<0,____________.(4)倾斜度:|k|越大,____________;|k|越小,____________.4、一次函数y=kx +b 的图象的画法.一般情况下:是先选取它与两坐标轴的交点:____________.即横坐标或纵坐标为0的点.6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k一次函数专项练习题题型一、点的坐标1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

《第5章 一次函数》试卷及答案_初中数学八年级上册_浙教版_2024-2025学年

《第5章 一次函数》试卷及答案_初中数学八年级上册_浙教版_2024-2025学年

《第5章一次函数》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一次函数的表达式为y=2x-3,那么当x=2时,y的值为()A. 1B. 3C. 1D. 52、若一次函数y=kx+b经过点(3,-2),且该函数图像与y轴交于点(0,4),则该函数的解析式为()A. y=2x+4B. y=-2x+4C. y=-2x-4D. y=2x-43、已知一次函数的图象经过点(2,-3)和(4,1),求该一次函数的解析式。

A. y = x - 5B. y = x + 5C. y = -x + 5D. y = -x - 54、在一次函数 y = ax + b 中,若 a > 0 且 b < 0,则该函数的图象将满足以下哪个条件?A. 一定经过第一、二、三象限B. 一定经过第二、三、四象限C. 一定经过第一、三、四象限D. 一定经过第一、二、四象限5、已知一次函数y=kx+b(k≠0)的图象经过点(2,3)和点(-1,1),则下列选项中正确的是()A. k=2,b=1B. k=1,b=2C. k=2,b=-1D. k=-1,b=26、若一次函数y=kx+b的图象经过点(0,1)且与y轴的交点在x轴的上方,则下列选项中正确的是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<07、已知函数y=kx+b(k≠0)的图像经过点A(2,-1)和点B(-1,3),则下列哪个选项是正确的?A. k=-2,b=3B. k=2,b=3C. k=2,b=-3D. k=-2,b=-38、若一次函数y=kx+b的图像与x轴、y轴都相交,则下列哪个选项是正确的?A. k>0,b>0B. k<0,b>0C. k>0,b<0D. k<0,b<09、已知一次函数y=kx+b的图象经过点(2,3)和点(-1,-1),则下列选项中正确的是()A. k=1, b=1B. k=2, b=-1C. k=-1, b=1D. k=-2, b=1 10、在一次函数y=kx+b中,若k<0且b>0,则函数图象的走向是()A. 从左到右上升B. 从左到右下降C. 从左到右水平D. 从左到右先上升后下降二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知一次函数的图象经过点A(2, 5)和点B(4, 3),求该一次函数的解析式。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(原卷版)—2024-2025学年八年级数学上册(北师大版)

一次函数(压轴专练)(十大题型)(1)求直线AB 的解析式;(2)作直线OC ,当点C 运动到什么位置时,AOB V 的面积被直线OC 分成1:2的两部分;(3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使BCD △与AOB V 全等?若存在,求出点坐标;若不存在,说明理由.(1)求直线2l的函数表达式;(2)求四边形ABCD的面积;(3)在直线2l上是否存在点不存在,请说明理由.题型2:最值问题3.如图,直线392y x =-+交y 轴于点A ,交x 轴于点B ,点()4,C t 在第四象限,点(,0)P m 在线段OB 上.连接OC ,BC ,过点P 作x 轴的垂线,交边AB 于点E ,交折线段OCB 于点F .(1)求点A ,B 的坐标;(2)设点E ,F 的纵坐标分别为1y ,2y ,当04m ££时,12y y -为定值,求t 的值;(3)在(2)的条件下,分别过点E ,F 作EG ,FH 垂直于y 轴,垂足分别为点G ,H ,当06m ££时,求长方形EGHF 周长的最大值.(1)B 的坐标为_________,线段OA 的长为_________.(2)求直线CD 的解析式和点D 的坐标.(3)如图(2),点M 是线段CE 上一动点(不与点C ,E 重合),ON ①在点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②连结MN ,当DMN V 面积最大时,求OM 的长度和DMN V 的面积.(1)求直线CD 解析式;(2)如图2,点M 是线段CE 上一动点(不与点C 、E 重合),ON ①点M 移动过程中,线段OM 与ON 数量关系是否不变,并证明;②当OMN V 面积最小时,求点M 的坐标和OMN V 面积.(1)若点E 坐标为2,3n æöç÷èø.ⅰ)求m 的值;ⅱ)点P 在直线2l 上,若3AEP BDE S S =V V ,求点P 的坐标;(2)点F 是线段CE 的中点,点G 为y 轴上一动点,是否存在点形.若存在,求出m 的值,若不存在,请说明理由.(1)经过点A 且与直线33y x =-平行的直线交x 轴于点B ,试求B (2)如图1,若()4,0B ,过()1,0M 的直线与直线AB 所夹锐角为45(3)如图2,在(1)的条件下,现有点(),C m n 在线段AB 上运动,点的中点.直接写出当C 从点A 开始运动,到点B 停止运动,M 点的运动路径长为(1)如图1,求A 、C 两点坐标.(2)点P 是AOC V 内一点,点P 的坐标为(,25)m m -+,点Q 在第二象限,连接PC ,QC ,PCQ Ð请用含m 的式子表示点Q 的坐标.(3)在(2)的条件下,点B 在x 轴上与点A 关于y 轴对称,过Q 做QE OC ⊥于点E ,延长延长MP 交x 轴于点N ,连接BM ,取BM 的中点G ,连接QG 并延长交x 轴于点H ,当QM 点P 的坐标.(1)求点A ,C 的坐标.(2)现有一动点P 沿折线O C B O ®®®以2个单位长度/秒的速度运动,运动时间为①当OAP △为等腰三角形时,求出所有满足条件的t 的值.②如图2,已知x 轴正半轴上有一动点Q ,当点P 在线段OB 上运动时,连接线CQ 的对称图形CQA ¢V ,作CPB △关于直线CP 的对称图形CPB ¢V ,射线10.在平面直角坐标系中,点O 为坐标原点,直线()40y kx k k =-¹交x 轴的正半轴于点A ,交y 轴的正半轴于点,B AB =.(1)求OB 的长;(2)如图1,点C 在x 轴的负半轴上,点D 在AB 上,连接CD 交y 轴于点E ,点E 为CD 的中点,设点C 的横坐标为,t ACD △的面积为S ,求S 与t 的函数解析式;(3)如图2,在(2)的条件下,将射线EC 绕点E 顺时针旋转45°,交x 轴的负半轴于点F ,连接BF ,若2BFE BED OEF Ð+Ð=Ð,求S 的值.11.如图,平面直角坐标系中,直线4y x =-+分别交x 、y 轴于A 、B 两点,点P 为线段AB 的中点.(1)直接写出点P的坐标;⊥交y轴正半轴于点(2)如图1,点C是x轴负半轴上的一动点,过点P作PD PCÐ的度数;分别是CD、OB的中点,连接MN,求MNO(3)如图2,点Q是x轴上的一个动点,连接PQ.把线段PQ绕点Q顺时针旋转+的值最小时,求此时点T的坐标.OT.当PT OT(1)则a = ,b = ,c = ;(2)如图1,在x 轴上是否存在点D ,使ACD 的面积等于V ABC 的面积?若存在,请求出点存在,请说明理由;(3)如图2,连接OC 交AB 于点M ,是否存在一点()0,N n 在y 轴上,使得积,若有,请求出n 的取值范围;若没有,请说明理由.(1)求点A的坐标;V(2)若点C在第二象限,ACD①求点C的坐标;x+>②直接写出不等式组4V沿x轴平移,点③将CAD(1)若33k =-,点P 是直角NOM △的“近N 点”,则OP 的长度可能是①1 ;②2 ;③3 ;④23(2)若线段MN 上的所有点(不含M 和)N 都是直角NOM △的“(3)当1k >时,若一次函数y x k =+与2y kx =+的交点恰好是直角值范围是______ .(1)当OA OB =时,求点A 坐标及直线l 的解析式;(2)在(1)的条件下,如图2所示,设Q 为AB 延长线上的一点,作直线OQ ,过AB 、两点分别作于M ,BN OQ ⊥于N ,若8AM =,求BN 的长.(3)当m 取不同值时,点B 在y 轴正半轴上运动,分别以OB AB 、为边,点B 为直角顶点在第一、二象限内作等腰直角OBF V 和等腰直角ABE V ,连接EF 交y 轴于点P ,如图3,问:当点B 在y 轴正半轴上运动时,试猜想PB 的长度是否为定值?若是,请求出其值;若不是,说明理由.17.定义:在平面直角坐标系中,我们称直线(y ax b a =+,b 为常数)是点(,)P a b 的关联直线,点(,)P a b 是直线y ax b =+的关联点;特别地,当0a =时,直线y b =的关联点为(0,)P b .如图,直线:24AB y x =-+与x 轴交于点A ,与y 轴交于点B .【定义辨析】(1)直线AB 的关联点的坐标是( )A .(0,0)B .(0,4)C .(2,0)D .(2,4)-【定义延伸】(2)点A 的关联直线与直线AB 交于点C ,求点C 的坐标;;【定义应用】(3)点(1,)K m 的关联直线与x 轴交于点E ,=45ABE а,求m 的值.18.在平面直角坐标系xOy 中,对于任意两点()111P x y ,与()222P x y ,的“非常距离”,给出如下定义:若1212x x y y -³-,则点1P 与点2P 的“非常距离”为12x x -;若1212x x y y -<-,则点1P 与点2P 的“非常距离”为12y y -.例如:点()112P ,,点()235P ,,因为1325-<-,所以点1P 与点2P 的“非常距离”为253-=,也就是图1中线段1PQ 与线段2P Q 长度的较大值(点Q 为垂直于y 轴的直线1PQ 与垂直于x 轴的直线2P Q 的交点).(1)已知点102A æö-ç÷èø,B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,直接写出点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知点3,34C x x æö+ç÷èø是直线m 上的一个动点.①如图2,点D 的坐标是()01,,求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,正方形FGMN 的边长为1,边FG 在x 轴上,点E 是正方形FGMN 边上的一个动点,记d 为点C 与点E 的“非常距离”的最小值,当正方形FGMN 沿x 轴平移,在平移过程中点G 的横坐标大于等于0,且小于等于9时,直接写出d 的最大值.20.“一方有难、八方支援”,在某地发生自然灾害后,某公司响应“助力乡情献爱心”活动,捐出了九月份的全部利润.已知该公司九月份只售出了A、B、C三种型号的产品若干件,每种型号产品不少于4件,九月份支出包括这批产品进货款20万元和其他各项支出1.9万元(含人员工资和杂项开支).这三种产品的售价和进价如下表,人员工资1y(万元)和杂项支出2y(万元)分别与销售总量x(件)成一次函数关系(如图).型号A B C进价(万元/件)0.50.80.7售价(万元/件)0.8 1.20.9(1)写出1y与x的函数关系式为______;九月份A、B、C三种型号产品的销售的总件数为_____件.(2)设公司九月份售出A种产品n件,九月份总销售利润为W(万元),求W与n的函数关系式并直接写出n的取值范围;(3)请求出该公司这次爱心捐款金额的最大值.21.一队学生从学校出发去劳动基地,行进的路程与时间的函数图象如图所示,队伍走了0.8小时后,队伍中的通讯员按原路加快速度返回学校取材料.通讯员经过一段时间回到学校,取到材料后立即按返校时加快的速度追赶队伍,并比学生队伍早18分钟到达基地.如图,线段OD表示学生队伍距学校的路程y(千米)与时间x(小时)之间的函数关系,折线OABC表示通讯员距学校的路程y(千米)与时间x(小时)之间的函数关系,请你根据图象信息,解答下列问题:(1)学校与劳动基地之间的距离为________千米;(2)a=________,B点的坐标是________.(3)若通讯员与学生队伍的距离不超过3千米时能用无线对讲机保持联系,请你直接写出通讯员离开队伍后他们能用对讲机保持联系的时间的取值范围.。

八年级数学一次函数练习题

八年级数学一次函数练习题

八年级数学一次函数练习题精选八年级数学一次函数练习题导语:勤奋是成功之母,懒惰乃万恶之源。

下面是小编为大家整理的:初中数学,希望对大家有所帮助,欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网!一次函数的运算【例一】1.若y=5x+m-3是y关于x的正比例函数,则m=______.2.一台拖拉机开始工作时,油箱中有40升油,如果每小时耗油6升,则油箱中的余油量Q(升)与工作时间t(时)之间的函数关系式为________.3.已知y=(k-2)x|k|-1+2k-3是关于x的一次函数,则这个函数的表达式为_______.4.设地面气温是25℃,如果每升高1千米,气温下降6℃,则气温t(℃)与高度h(千米)的函数关系是( )A.t=25-6tB.t=25+6hC.t=6h-25D.t= t5.水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分时,水箱内存水y升.(1)求y关于x的函数关系式和自变量的取值范围.(2)7:55时,水箱内还有多少水?(3)几点几分,水箱内的水恰好放完?6.已知s是t的一次函数,并且当t=1时,s=2;当t=-2时,s=23,•试求这个一次函数的关系式.7.周日上午,小俊从外地乘车回嘉兴.一路上,小俊记下了如下数据:观察时间 9:00(t=0) 9:06(t=6) 9:18(t=18)路牌内容嘉兴90km 嘉兴80km 嘉兴60km(注:“嘉兴90km”表示离嘉兴的距离为90千米)假设汽车离嘉兴的距离s(千米)是行驶时间t(分钟)的一次函数,求s关于t•的函数关系式.8.某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1•吨水买入价x(元)的一次函数.根据下表提供的数据,求y关于x的函数解析式.当水价每吨为10元时,1吨水生产的饮料所获的利润是多少?1吨水的买入价(元) 4 6利润y(元) 200 198一次函数的运算【例二】第1题. 对于任何实数x,点M(x,x-3)一定不在第几象限?答案:点M(x,x-3)在直线y=x-3上,而直线y=x-3不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.第2题. 一次函数,如果,则x的取值范围是( )A. B. C. D.答案:B.第3题. 已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b<0;③k<0,b>0;④k<0,b<0.其中正确的结论的个数是( )A.1B.2C.3D.4答案:B第4题. 如图所示,函数y=mx+m的图像中可能是( )答案:D第5题. 当自变量x增大时,下列函数值反而减小的是( )A. y=B.y=2xC.y=D.y=-2+5x答案:C第6题. 正比例函数的图像如图,则这个函数的解析式为( )A.y=xB.y=-2xC.y=-xD.答案:C第7题. 直线y=(2-5k)x+3k-2不过第一象限,则k需满足,写出一个满足上述条件的一个函数的解析式 .答案:,第8题. 直线y=4x-2与x轴的交点是,与y轴的交点是 .答案:第9题. 直线y=(2-5k)x+3k-2若经过原点,则k= ;若直线与x轴交于点(-1,0),则k= ,答案:第10题. 一次函数的图像经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____,y随x的增大而____.答案:一、二、四象限,(2,0),(0,4),减小第11题. (1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.答案:(1)依题意,有,解得 ;(2)依题意,得,即时,y随x的增大而增大.第12题. 已知一次函数,当0≤x≤3时,函数y的最大值是( ).A.0B.3C.-3D.无法确定答案:B点拔:画图得的图象是一条线段,又,故y随x的增大而减小,∴当x=0时,y的最大值等于3第13题. 下列图像中,不可能是关于x的一次函数y=mx-(m-3)的图像的是( )答案:C第14题. 在同一坐标内,函数关系式为y=kx+b(k、b为常数且k≠0)的直线有无数条,在这些直线中,不论怎样抽取,至少要抽几条直线,才能保证其中的两条直线经过完全相同的象限( )A.4B.5C.6D.7答案:D第15题. 如图,直线l是一次函数y=kx+b的图像,看图填空:(1) b=______,k=______;(2) x=-20时,y=_______;(3) 当y=-20时,x=_______.答案:第16题. 若一次函数y=kx+b交于y轴的负半轴,且y的值随x 的增大而减小,则k_____0,b______0.(填">"、"="、或"<") 答案:<,<第17题. 下列各点(1,2),(-2,1),(1,-2),(-1, ),在y=-2x 图像上有:____________.答案:(1,-2)第18题. 若一次函数与一次函数的图像的交点坐标为(m,8).则a+b=______.答案:16第19题. 的'图像上有两点,知,你能说出与有什么关系吗?答案:第20题. 如图,函数y=kx-2中,y随x的增大而减小,则它的图像是( )答案:C第21题. 若一次函数 =k +b的图象经过一、三、四象限,则k,b应满足( )A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0答案:B第22题. 一次函数y=-3x-4与x轴交于( ),与y轴交于( ),y随x的增大而___________.答案:,,减少第23题. 如果正比例函数 =3 和一次函数 =2 +k的图象的交点在第三象限,那么k的取值范围是 .答案:k<0第24题. 已知点A(-4,a)、B(-2,b)都在直线y=0.5 +k(k为常数)上,则a与b的大小关系是a b.(填"<""=" 或">")答案:<第25题. 已知正比函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是下图中的( )答案:B第26题. 某校八年级同学到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图,、分别表示步行和骑车的同学前往目的地所走的路程 (千米)与所用时间 (分钟)之间的函数图象,则以下判断错误的是 ( )A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地答案:D第27题. 一次函数y=kx+3的图象与坐标轴的两个交点之间的距离为5,则k的值为.答案:或第28题. 如图,射线、分别表示甲、乙两名运动员在自行车比赛中所行路程 (米)与时间 (分)的函数图象.则他们行进的速度关系是A.甲、乙同速B.甲比乙快C.乙比甲快D.无法确定答案:B第29题. 已知函数轴交点的纵坐标为,且当,则此函数的解析式为.答案:第30题. 甲、乙两同学从地出发,骑自行车在同一条路上行驶到地,他们离出发地的距离(千米)和行驶时间(小时)之间的函数关系的图象如图所示.根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地.其中符合图象描述的说法有A.2个B.3个C.4个D.5个答案:C第31题. 我市某出租车公司收费标准如图所示,如果小明只有19元钱,那么他乘此出租车最远能到达公里处.答案:13。

初二上一次函数练习题100道

初二上一次函数练习题100道

初二上一次函数练习题100道一、选择题1. 若函数y=2x-3与y=3x-4相交,则x的值为()A. -1/5B. 1/5C. -2/3D. 2/32. 已知函数y=3x+2,那么当x=1时,y的值等于()A. 3B. 5C. 6D. 83. 若函数y=ax-b与y=3x-4平行,则a的值为()A. 3B. -3C. 4D. -44. 根据图像判断该函数()。

[图像]A. 是一次函数B. 是二次函数C. 是常数函数D. 是分段函数5. 已知函数y=kx-3在x=2处有零点,则k的值为()A. -3B. 2/3C. 3/2D. 3二、填空题1. 一次函数的图像是一条直线,它与x轴交点的坐标为______。

2. 函数y=2x+1的斜率为______,截距为______。

3. 若函数y=ax与y=2x的图像相同,则a的值为______。

4. 根据图像判断该函数y=f(x)在x=3处的函数值为______。

[图像]三、计算题1. 已知函数y=3x-2与y=kx+1相交于点(2,5),求k的值。

2. 已知函数y=2x-1与y=ax+b平行,且它们的截距之和为3,求a的值。

3. 某种水果每斤7元,小明买了x斤水果,花了y元,求这种水果每斤的均价。

4. 函数y=kx-3经过点(3,-1),求k的值。

四、应用题1. 小明和小红同时从同一起点出发,小明每小时走10km,小红每小时走8km。

若小明比小红早3小时到达目的地,则目的地距离起点多远?2. 一条绳子有12米长,要切成两段,其中一段长x米,另一段长y 米。

若两段绳子的长度满足等式2x+y=10,请求x和y的值。

3. 为了提高学生的数学能力,某学校采用竞赛的方式,每答对一题,奖励1分;每答错一题,扣除2分。

某学生参加了100道题,答对60题,答错10题,不会做的题目数量为30题。

求该学生的得分是多少分?五、综合题1. 已知函数y=ax+b与y=-ax+c平行,且这两个函数的图像的纵坐标之和为2x-1,求a和b的值。

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)

八年级数学一次函数32道典型题(含答案和解析)1、下列函数中:① y=2πx ;② y=-2x+6;③ y=34x ;④ y=x2+3;⑤ y=32x ;⑥ y=√x ,其中是一次函数的有( )个.A.1B.2C.3D.4 答案: C .解析: ①②③满足自变量次数为1,系数不为零,且自变量不在分母上,故为一次函数.④自变量次数不为1,故不是一次函数. ⑤自变量在分母上,不是一次函数. ⑥自变量次数为12,不是一次函数.考点:函数——一次函数——一次函数的基础.2、 当m= 时,y=(m -4)x 2m+1-4x -5 是一次函数. 答案: 4或0.解析:y=(m -4)x 2m+1-4x -5是一次函数.则 m -4=0或2m+1=1. 解得 m=4或m=0.考点:函数——一次函数——一次函数的基础.3、一次函数y=kx+b 的图象不经过第二象限,则k ,b 的取值范围是( ).A. k <0,b≥0B. k >0,b≤0C. k <0,b <0D. k >0,b >0 答案: B .解析: ① k >0时,直线必经过一、三象限,故k >0.② 再由图象过三、四象限或者原点,所以b≤0 .考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.4、一次函数y=kx -k 的图象一定经过( ).A. 一、二象限B. 二、三象限C. 三、四象限D. 一、四象限 答案: D . 解析: 解法一:当k >0时,函数为增函数,且与y 轴交点在x 轴下方,此时函数经过一、三、四象限.当k <0时,函数为减函数,且与y 轴交点在x 轴上方,此时函数经过一、二、四象限.∴一次函数y=kx -k 的图象一定经过一、四象限. 解法二:一次函数y=kx -k=k (x -1)的图象一定过(1,0),即该图象一定经过一、四象限.考点:函数——一次函数——一次函数的图象——一次函数的性质.5、如果ab >0,ac <0,则直线y=−ab x+cb 不通过( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 答案: A .解析:ab >0 ,ac <0.则a ,b 同号;a ,c 异号;b ,c 异号. ∴−ab <0,cb <0.∴直线y=−abx+cb 过第二、三、四象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.6、如图,一次函数y=kx+b 和正比例函数y=kbx 在同一坐标系内的大致图象是( ).解析:A 、∵一次函数的图象经过一、三、四象限.∴k>0,b<0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项错误.B、∵一次函数的图象经过一、二、四象限.∴k<0,b>0.∴kb<0.∴正比例函数y=kbx应该经过第二、四象限.故本选项正确.C、∵一次函数的图象经过二、三、四象限.∴k<0,b<0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.D、∵一次函数的图象经过一、二、三象限.∴k>0,b>0.∴kb>0.∴正比例函数y=kbx应该经过第一、三象限.故本选项错误.故选B.考点:函数——一次函数——正比例函数的图象——一次函数的图象.7、下列图象中,不可能是关于的一次函数y=mx-(m-3)的图象的是().解析:将解析式变为y=mx+(3-m)较易判断.考点:函数——一次函数——一次函数的图象.8、若一次函数y=-2x+3的图象经过点P1(-5,m)和点P2(1,n),则m n.(用“>”、“<”或“=”填空).答案:>.解析:在y=-2x+3中,k=-2<0.∴在一次函数y=-2x+3中,y随x的增大而减小.∵-5<1.∴m>n.考点:函数——一次函数——一次函数的性质.9、一次函数y=kx+b中,y随着x的增大而减小,b<0,则这个函数的图象不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵一次函数y=kx+b中,y随着x的增大而减小.∴k<0.又∵b<0.∴这个函数的图象不经过第一象限.考点:函数——一次函数——一次函数的性质——一次函数图象与k、b的关系.10、已知一次函数y=kx+b-x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为().A. k>1,b<0B. k>1,b>0C. k>0,b>0D. k>0,b<0答案:A.解析:一次函数y=kx+b-x即为y=(k-1)x+b.∵函数值y随x的增大而增大.∴k-1>0,解得k>1.∵图象与x轴的正半轴相交,∴b <0.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.11、已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所有可能取得的整数值为 . 答案:-1.解析: 由已知得:{ 2k +3>0k <0.解得:−32<k <0. ∵k 为整数. ∴k=-1.考点:函数——一次函数——一次函数的性质——一次函数图象与k 、b 的关系.12、在直角坐标系x0y 中,一次函数y=kx+6的图象经过点A (2,2). (1) 求一次函数的表达式.(2) 求一次函数图象与x 轴、y 轴交点的坐标.答案:(1) 一次函数的表达式为:y=-2x+6.(2) 一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6). 解析:(1) ∵一次函数y=kx+6的图象经过点A (2,2).∴2=2k+6. ∴k=-2.∴一次函数的表达式为:y=-2x+6.(2) 在y=-2x+6中,令x=0,则y=6,令y=0,则x=3.∴一次函数图象与x 轴、y 轴交点的坐标分别为(3,0),(0,6).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.13、设一次函数y=kx+b 的图象经过点P (1,2),它与x 轴,y 轴的正半轴分别交于A ,B 两点,坐标原点为O ,若OA+OB=6,则此函数的解析式是 或 . 答案: 1.y=-x+3.2.y=-2x+4.解析:因为一次函数y=kx+b的图象经过点P(1,2).所以k+b=2,即k=2-b.令y=0,则x=−bk =bb−2.所以点A(bb−2,0),点B(0,b).又因为A,B位于x轴,y轴的正半轴,并且OA+OB=6.所以bb−2+b=6,其中b>2.解得b=3或b=4.此时k=-1或-2.所以函数的解析式是y=-x+3或y=-2x+4.考点:函数——一次函数——一次函数综合题.14、一次函数y=(m2-1)x+(1-m)和y=(m+2)x+(2m-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是().A. 2B.2或-1C. 1或-1D.-1答案:A.解析:一次函数y=(m2-1)x+(1-m)的图象与y轴的交点P为(0,1-m).一次函数y=(m+2)x+(2m-3)的图象与y轴的交点Q为(0,2m-3).因为P和Q关于x轴对称.所以1-m+2m-3=0.解得m=2.考点:函数——一次函数——一次函数的图象——一次函数图象与几何变换.15、已知直线y=2x-1.(1)求此直线与x轴的交点坐标.(2)若直线y=k1x+b1与已知直线平行,且过原点,求k1、b1的值.(3)若直线y=k2x+b2与已知直线关于y轴对称,求k2、b2的值.答案:(1)(12,0).(2)k1=2,b1=0.(3)k2=-2,b2=-1.解析:(1)令y=0,则0=2x-1.∴x=12.∴与x轴的交点坐标为(12,0).(2)∵y=k1x+b1与y=2x-1平行.∴k1=2.又∵y=k1x+b1过原点.∴b1=0.(3)在直线y=2x-1上任取一点(1,1).则(1,1)关于y轴的对称点为(-1,1).又∵y=k2x+b2与已知直线关于y轴对称.则b2=-1.点(-1,1)在直线y=k2x-1上.∴1=-k2-1.∴k2=-2.考点:函数——一次函数——一次函数与坐标轴交点——一次函数图象与几何变换——两条直线相交或平行问题.16、如图所示,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值.(2)解关于x,y的方程组{y=x+1y=mx+n,请你直接写出它的解.(3)直线l3:y=nx+m是否也经过点P?请说明理由.答案:(1)b=2.(2){x=1y=2.(3)直线l3:y=nx+m经过点P.解析:(1)将P(1,b)代入y=x+1,得b=1+1=2.(2)由于P点坐标为(1,2),所以{x=1y=2.(3)将P(1,2)代入解析式y=mx+n得,m+n=2.将x=1代入y=nx+m得y=m+n.由于m+n=2.所以y=2.故P(1,2)也在y=nx+m上.考点:函数——一次函数——求一次函数解析式——一次函数与二元一次方程.17、如图,直线y=kx+b经过A(-1,1)和B(-√7,0)两点,则关于x的不等式组0<kx+b<-x的解集为.答案:-√7<x<-1.解析:∵直线y=kx+b经过B(-√7,0)点.∴0<kx+b,就是y>0,y>0的范围在x轴的上方.此时:-√7<x.∵直线y=-x经过A(-1,1).那么就是A点左侧kx+b<-x.得:x<-1.故解集为:-√7<x<-1.考点:函数——一次函数——一次函数与一元一次不等式.18、阅读理解:在数轴上,x=1表示一个点,在平面直角坐标系中,x=1表示一条直线(如图(a)所示),在数轴上,x≥1表示一条射线;在平面直角坐标系中,x≥1表示的是直线x=1右侧的区域;在平面直角坐标系中,x+y-2=0表示经过(2,0),(0,2)两点的一条直线,在平面直角坐标系中,x+y-2≤0表示的是直线x+y-2=0及其下方的区域(如图(b)所示),如果x,y满足{x+2y−2≥03x+2y−6≤0x≥0y≥0,请在图(c)中用阴影描出点(x,y)所在的区域.答案:解析:略.考点:函数——一次函数——一次函数与一元一次不等式.19、甲、乙两人从顺义少年宫出发,沿相同的线路跑向顺义公园,甲先跑一段路程后,乙开始出发,当乙超过甲150米时,乙停在此地等候甲,两人相遇后,乙和甲一起以甲原来的速度跑向顺义公园,如图是甲、乙两人在跑步的全过程中经过的路程y(米)与甲出发的时间x(秒)的函数图象,请根据题意解答下列问题.(1)在跑步的全过程中,甲共跑了米,甲的速度为米/秒.(2)求乙跑步的速度及乙在途中等候甲的时间.(3)求乙出发多长时间第一次与甲相遇?答案:(1)1.900.2.1.5.(2)乙在途中等候甲的时间是100秒.(3)乙出发150秒时第一次与甲相遇.解析:(1)解:根据图象可以得到:甲共跑了900米,用了600秒.∴甲的速度为900÷600=1.5米/秒.(2)甲跑500秒的路程是500×1.5=750米.甲跑600米的时间是(750-150)÷1.5=400秒.乙跑步的速度是750÷(400-100)=2.5米/秒.乙在途中等候甲的时间是500-400=100秒.(3)∵D(600,900),A(100,0),B(400,750).∴OD的函数关系式为y=1.5x,AB的函数关系式为y=2.5x-250.根据题意得{y=1.5xy=2.5x−250.解得x=250.∴乙出发150秒时第一次与甲相遇.考点:函数——一次函数——一次函数的应用.20、如图1是某公共汽车线路收支差额y(单位:万元)(票价总收人减去运营成本)与乘客量x(单位:万人)的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会.乘客代表认为:公交公司应节约能源,改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司己尽力,提高票价才能扭亏.根据这两种意见,可以把图1分别改画成图2和图3.(1)说明图1中点A和点B的实际意义.(2)你认为图2和图3两个图象中,反映乘客意见的是,反映公交公司意见的是.(3)如果公交公司采用适当提高票价又减少成本的办法实现扭亏为赢,请你在图4 中画出符合这种办法的y与x的大致函数关系图象.答案:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)1.图3.2.图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.解析:(1)点A表示这条线路的运营成本为1万元.点B表示乘客数达1.5万人时,这条线路的收支达到平衡.(2)反映乘客意见的是图3.反映公交公司意见的是图2.(3)将图4中的射线AB绕点A逆时针适当旋转且向上平移.考点:函数——一次函数——一次函数的图象——一次函数的应用.x+b的图象经过点A(2,3),AB⊥x轴于点B,连接OA.21、如图,已知一次函数y=−12(1) 求一次函数的解析式.(2) 设点P 为y=−12x+b 上的一点,且在第一象限内,经过点P 作x 轴的垂线,垂足为Q .若△POQ 的面积等于54倍的△AOB 的面积,求点P 的坐标.答案:(1) y=−12x+4.(2) (3,52)或(5,32).解析:(1) ∵一次函数y=−12x+b 的图象经过点A (2,3).∴3=(−12)×2+b .解得b=4.故此一次函数的解析式为:y=−12x+4.(2) 设P (p ,d ),p >0.∵点P 在直线y=−12x+4的图象上.∴ d=−12p+4①.∵ S △POQ =54S △AOB =54×12×2×3. ∴ 12pd=154②.①②联立得,{ d =−12p +412pd =154.解得{ p =3d =52或{p =5d =32.∴ 点坐标为:(3,52)或(5,32).考点:函数——一次函数——求一次函数解析式——一次函数的应用.22、已知:一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).(1) 求a 的值及正比例函数y=kx 的解析式.(2) 点P 在坐标轴上(不与原点O 重合),若PA=OA ,直接写出P 点的坐标.(3) 直线x=m (m <0且m≠-4 )与一次函数的图象交于点B ,与正比例函数图象交于点C ,若△ABC 的面积为S ,求S 关于m 的函数关系式.答案:(1) a=-4,正比例函数的解析式为y=−14x . (2) P 1(-8,0)或P 2(0,2).(3) S △ABC=38m2+3m+6(m≠-4).解析:(1) ∵一次函数y=12x+3的图象与正比例函数y=kx 的图象相交于点A (a ,1).∴ 12a+3=1. 解得a=-4. ∴ A (-4,1). ∴ 1=K×(-4). 解得k=−14.∴正比例函数的解析式为y=−14x .(2) 如图1,P 1(-8,0)或P 2(0,2).(3) 依题意得,点B 坐标为(m ,12m+3),点C 的坐标为(m ,−m4).作AH ⊥BC 于点H ,H 的坐标为(m ,1). 分两种情况: ① 当m <-4时.BC=−14m -(12m+3)=−34m -3.AH=-4-m .则S △ABC =12BC×AH=12(−34m -3)(-4-m )=38m 2+3m+6.② 当m >-4时.BC=(12m+3)+m 4=34m+3.AH=m+4.则S △ABC =12BC×AH=12(34m+3)(m+4)=38m 2+3m+6.综上所述,S △ABC=38m2+3m+6(m≠-4).考点:函数——平面直角坐标系——坐标与距离——坐标与面积.一次函数——一次函数图象上点的坐标特征——两条直线相交或平行问题——一次函数综合题.三角形——三角形基础——三角形面积及等积变换.23、已知y 1=x+1,y 2=-2x+4,当-5≤x≤5时,点A (x ,y 1)与点B (x ,y 2)之间距离的最大值是 . 答案:18.解析: 当x=5时,y 1=6,y 2=-6.当x=-5时,y 1=-4,y 2=14.∴ A (5,6),B (5,-6)或A (-5,-4),B (-5,14). ∴ AB=6-(-6)=12或AB=14-(-4)=18. ∴ 线段AB 的最大值是18.考点:函数——一次函数——一次函数的性质.24、如图,在平面直角坐标系xOy中,直线y=−4x+8与x轴,y轴分别交于点A,点B,点3D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C 处.(1)求AB的长和点C的坐标.(2)求直线CD的解析式.答案: (1)AB=√62+82=10,点C的坐标为C(16,0).(2)直线CD的解析式为y=3x-12.4解析:(1)根据题意得A(6,0),B(0,8).在RT△OAB中,∠AOB=90°,OA=6,OB=8.∴AB=√62+82=10.∵△DAB沿直线AD折叠后的对应三角形为△DAC.∴AC=AB=10.∴OC=OA+AC=OA+AB=16.∵点C在x轴的正半轴上.∴点C的坐标为C(16,0).(2)设点D的坐标为D(0,y)(y<0).由题意可知CD=BD,CD2=BD2.由勾股定理得162+y2=(8-y)2.解得y=-12.∴点D的坐标为D(0,-12).可设直线CD的解析式为y=kx-12(k≠0).∵点C(16,0)在直线y=kx-12上.∴16k-12=0..解得k=34∴直线CD的解析式为y=3x-12.4考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.25、直线AB:y=-x+b分别与x、y轴交于A、B两点,点A的坐标为(3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.(1)求点B的坐标及直线BC的解析式.(2)在x轴上方存在点D,使以点A、B、C为顶点的三角形与△ABC全等,画出△ABD,并请直接写出点D的坐标.(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.答案:(1)B(0,3),直线BC的解析式为y=3x+3.(2)画图见解析,D1(4,3),D2(3,4).(3)证明见解析.解析:(1)把A(3,0)代入y=-x+b,得b=3.∴B(0,3).∴OB=3.∵OB:OC=3:1.∴OC=1.∵点C在x轴负半轴上.∴C(-1,0).设直线BC 的解析式为y=mx+n . 把B (0,3)及C (-1,0)代入,得{n =3−m +n =0.解得{m =3n =3.∴直线BC 的解析式为:y=3x+3.(2) 如图所示,D 1(4,3),D 2(3,4).(3) 由题意,PB=PC .设PB=PC=X ,则OP=3-x . 在RT △POC 中,∠POC=90°. ∴ OP 2+OC 2=PC 2. ∴ (3-x )2+12=x 2. 解得,x=53.∴ OP=3-x=43.∴点P 的坐标(0,43).考点:函数——平面直角坐标系——特殊点的坐标.一次函数——求一次函数解析式.三角形——全等三角形——全等三角形的性质.26、一次函数y=kx+b (k≠0),当x=-4时,y=6,且此函数的图象经过点(0,3). (1) 求此函数的解析式.(2) 若函数的图象与x 轴y 轴分别相交于点A 、B ,求△AOB 的面积.(3) 若点P 为x 轴正半轴上的点,△ABP 是等腰三角形,直接写出点P 的坐标.答案:(1)y=−34x+3.(2)6.(3)(78,0)或(9,0).解析:(1)当x=-4时,y=6,且此函数的图象经过点(0,3).代入y=kx+b 有,{−4k +b =6b =3,解得:{k =−34b =3.∴此函数的解析式为y=−34x+3.(2)当y=0时,x=4.∴点A (4,0),B (0,3). ∴ S △AOB=12×3×4=6.(3)AB=√42+32=5.当点P 为P 1时,BP 1=AP 1.∴在RT △OBP 1中,32+OP 12=(4-OP 1)2. 解得:OP 1=78. ∴ P1(78,0).当点P 为P 2时,AB=AP 2,∴P 2(9,0). 故点P 的坐标为(78,0)或(9,0).考点:函数——一次函数——一次函数与坐标轴交点——求一次函数解析式.三角形——三角形基础——三角形面积及等积变换. 等腰三角形——等腰三角形的性质.27、已知点A (-4,0),B (2,0).若点C 在一次函数y=12x+2的图象上,且△ABC 是直角三角形,则点C 的个数是( ).A.1B. 2C. 3D.4 答案: B .解析: 如图所示,当AB 为直角边时,存在C 1满足要求.当AB 为斜边时,存在C 2满足要求.故点C的个数是2.考点:函数——一次函数——一次函数综合题.28、在平面直角坐标系xOy中,点A(-3,2),点B是x轴正半轴上一动点,连结AB,以AB为腰在x轴的上方作等腰直角△ABC,使AB=BC.(1)请你画出△ABC.(2)若点C(x,y),求y与x的函数关系式.答案:(1)画图见解析.(2)y=x+1.解析:(1)(2)作AE⊥x轴于E,CF⊥x轴于F.∴∠AEB=∠BFC=90°.∵A(-3,2).∴ AE=2,EO=3. ∵ AB=BC ,∠ABC=90°. ∴ ∠ABE+∠CBF=90°. ∵ ∠BCF+∠CBF=90°. ∴ ∠ABE=∠BCF. ∴ △ABE ≌△BCF . ∴ EB=CF ,AE=BF. ∵ OF=x ,CF=y . ∴ EB=y=3+(x+2). ∴ y=x+1.考点:函数——一次函数——一次函数综合题.三角形——直角三角形——等腰直角三角形.29、如图,直线l 1:y=12x 与直线l 2:y=-x+6交于点A ,直线l 2与x 轴、y 轴分别交于点B 、C ,点E 是线段OA 上一动点(E 不与O 、A 重合),过点E 作 EF ∥x 轴,交直线l 2于点F .(1) 求点A 的坐标.(2) 设点E 的横坐标为t ,线段EF 的长为d ,求d 与t 的函数关系式,并写出自变量t 的取值范围.(3) 在x 轴上是否存在一点P ,使△PEF 为等腰直角三角形?若存在,求出P 点坐标;若不存在,请你说明理由.答案:(1) (4,2).(2) d=6-32t ,其中0<t <4.(3) 存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形.解析:(1)联立{ y =12y =−x +6,解得{x =4y =2.∴点A 的坐标为(4,2).(2)点E 在直线l 1:y=12x .∵点E 的横坐标为t . ∴点E 的纵坐标为12t .∵ EF ∥x 轴,点F 在直线l 2:y=-x+6上. ∴点F 的纵坐标为12t .由12t=-x+6,得点F 的横坐标为6-12t .∴ EF 的长d=6−12t -t=6−32t . ∵ 点E 在线段OA 上. ∴ 0<t <4.(3) 若∠PEF=90°,PE=EF .则6−32t=t2,解得t=3.∵ 0<t <4.∴ P 点坐标为(3,0). 若∠PFE=90°,PF=EF . 则6−32t=t2,解得t=3. ∵ 0<t <4.∴ P 点坐标为(92,0).若 ∠EPF=90°. ∴6−32t=2×t2,解得t=125. 此时点P 的坐标为(185,0).综上,存在点P (3,0),P (92,0),P (185,0),使△PEF 为等腰直角三角形. 考点:函数——一次函数——两条直线相交或平行问题——一次函数的应用——一次函数综合题.三角形——直角三角形——等腰直角三角形.30、规定:把一次函数y=kx+b 的一次项系数和常数项互换得y=bx+k ,我们称y=kx+b 和y=bx+k (其中k.b≠0,且|k|≠|b |)为互助一次函数,例如y=−23x+2和y=2x −23就是互助一次函数.如图,一次函数y=kx+b 和它的互助一次函数的图象l 1,l 2交于P 点,l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点.(1) 如图(1),当k=-1,b=3时. ① 直接写出P 点坐标 .② Q 是射线CP 上一点(与C 点不重合),其横坐标为m ,求四边形OCQB 的面积S 与m 之间的函数关系式,并求当△BCQ 与△ACP 面积相等时m 的值.(2) 如图(2),已知点M (-1,2),N (-2,0).试探究随着k ,b 值的变化,MP+NP 的值是否发生变化?若不变,求出MP+NP 的值;若变化,求出使MP+NP 取最小值时的P 点坐标.答案: (1)① (1,2).② S=2m −16(m >13),m=53.(2)随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化.使MP+NP 取最小值时的P 点坐标为(1,65).解析:(1)① P (1,2).② 如图,连接OQ .∵ y=-X+3与y=3x -1的图象l 1,l 2与x 轴,y 轴分别交于A ,B 点和C ,D 点. ∴ A (3,0),B (0,3),C (13,0),D (0,-1).∵ Q (m ,3m -1)(m >13).∴ S=S △OBQ +S △OCQ =12×3×m+12×13×(3m -1)=2m −16(m >13).∴ S △BCQ =S -S △BOC =2m −16−12×3×13=2m −23. 而S △ACP =12×(3−13)×2=83.由S △BCQ=S △ACP ,得2m −23=83,解得m=53.(2) 由{ y =kx +b y =bx +k,解得{ x =1y =k +b ,即P (1,k+b ).∴随着k ,b 值的变化,点P 在直线x=1上运动,MP+NP 的值随之发生变化. 如图,作点N (-2,0)关于直线x=1的对称点N(4,0),连接MN 交直线x=1于点P ,则此时MP+NP 取得最小值.设直线MN 的解析式为y=cx+d ,依题意{−c +d =24c +d =0.解得{c =−25y =85.∴直线MN 的解析式为y=−25x+85.令x=1,则y=65,∴P (1,65).即使MP+NP 取最小值时的P 点坐标为(1,65).考点:函数——函数基础知识——函数过定点问题.一次函数——一次函数与二元一次方程——一次函数综合题. 几何初步——直线、射线、线段——线段的性质:两点之间线段最短. 三角形——三角形基础——三角形面积及等积变换.31、新定义:对于关于x 的一次函数y=kx+b (k≠0),我们称函数{y =kx +b (x ≤m )y =−kx −b (x >m )为一次函数y=kx+b (k≠0)的m 变函数(其中m 为常数).例如:对于关于x 的一次函数y=x+4的3变函数为{y =x +4(x ≤3)y =−x −4(x >3).(1) 关于x 的一次函数y=-x+1的2变函数为y ,则当x=4时,y=__________. (2) 关于x 的一次函数y=x+2的1变函数为y 1,关于x 的一次函数y=−12x -2的-1变函数为y 2,求函数y 1和函数y 2的交点坐标.(3) 关于x 的一次函数y=2x+2的1变函数为y 1,关于x 的一次函数y=−12x -1的m变函数为y 2.① 当-3≤x≤3时,函数y 1的取值范围是__________(直接写出答案).② 若函数y 1和函数y 2有且仅有两个交点,则m 的取值范围是__________(直接写出答案).答案: (1)3.(2)(−83,−23)和(0,2).(3)①-8≤y 1≤4.②−65≤m <−23.解析: (1) 根据m 变函数定义,关于x 的一次函数y=-x+1的2变函数为: {y =−x +1(x ≤2)y =x −1(x >2).∴ x=4时,y 1=4-1=3.∴ y 1=3.(2) 根据定义得:y 1={y =x +2(x ≤1)y =−x −2(x >1),y 2={y =−12x −2(x ≤−1)y =12x +2(x >−1). 求交点坐标:① {y =x +2(x ≤1)y =−12x −2(x ≤−1) ,解得{x =−83y =−23. ② {y =x +2(x ≤1)y =12x +2(x >−1) ,解得{x =0y =2. ③ {y =−x −2(x >1)y =−12x −2(x ≤−1),无解. ④ {y =−x −2(x >1)y =12x +2(x >−1),无解. 综上所述函数y 1和函数y 2的交点坐标为(−83,−23)和(0,2).(3)略.考点:函数——一次函数——一次函数的性质——一次函数图象上点的坐标特征——一次函数与二元一次方程——一次函数综合题.32、在平面直角坐标系xOy 中,对于点M (m ,n )和点N (m ,n’,给出如下定义:若n’={n (m ≥2)−n (m <2),则称点N 为点M 的变换点.例如:点(2,4)的变换点的坐标是(2,4),点(-1,3)的变换点的坐标是(-1,-3).(1) 回答下列问题:① 点(√5,1)的变换点的坐标是 .② 在点A (-1,2),B (4,-8)中有一个点是函数y=2x 图象上某一点的变换点,这个点是 (填“A”或“B”).(2) 若点M 在函数y=x+2(-4≤x≤3)的图象上,其变换点N 的纵坐标n’的取值范围是 .(3) 若点M 在函数y=-x+4(-1≤x≤a ,a >-1)的图象上,其变换点N 的纵坐标n’的取值范围是-5≤n’≤2,则a 的取值范围是 .答案: (1)①(√5,1).② A.(2)-4<n’≤2或4≤n’≤5.(3)6≤a≤9.解析:(1)① 由定义可知,由于√5>2,所以点(√5,1)的变换点的坐标是(√5,1).②若点A(-1,2)是变换点,则变换前的点为(-1,-2),-2=-1×2,在函数y=2x上.若点B(4,-8)是变换点,则变换前的点为(4,-8),-8≠4×2,不在函数y=2x上.所以这个点是A.(2)若点M在函数y=x+2(-4≤x≤3)的图象上,设M(x,x+2).当2≤x≤3时,4≤n’=x+2≤5.当-4≤x<2时,-4<n’=-(x+2)≤2.综上,纵坐标n’的取值范围是-4<n’≤2或4≤n’≤5.(3)当a>2时,2≤x<a时,4-a≤n’=-x+4≤2.-1≤x<2时,-5≤n’=-(-x+4)≤—2.∴只需-5≤4-a≤-2,此时6≤a≤9.当a<2时,-1≤x≤a,-5≤n’=-(-x+4)≤a-4.此时不满足-5≤n’≤2,故舍去.综上,的取值范围是6≤a≤9.考点:式——探究规律——定义新运算.函数——平面直角坐标系——点的位置与坐标.一次函数——一次函数图象上点的坐标特征.。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.下列函数中,是一次函数的是()A. y = 3x^2 + 4x - 2B. y = 2x + 5C. y = 5/xD. y = √x答案:B2.已知一次函数y = kx - 3的图象与x轴交于点(-4, 0),则k的值为()A. 4B. 3C. 2D. 1答案:D3.已知函数y = -2x + 5与直线y = x + 3相交于点P,点P的坐标是()A. (2, 3)B. (-2, 1)C. (-2, 5)D. (2, 1)答案:A二、填空题1.若一次函数y = -3x + b过点(4, 11),则b的值为_______。

答案:232.若函数y = kx + 2经过点(3, -1),则k的值为_______。

答案:-33.若直线y = 2x + a与函数y = kx - 3的图象交于点(-2, 1),则a的值为_______。

答案:-5三、计算题1.某商品的售价y与进价x之间的关系可用一次函数模型y = 0.8x + 200表示。

如果进价为600元,那么售价是多少?答案:售价为680元。

解析:将进价x代入函数模型y = 0.8x + 200中,得到售价y = 0.8 * 600 + 200 = 480 + 200 = 680元。

2.一辆汽车以每小时60公里的速度行驶,已经行驶2小时。

如果继续以相同的速度行驶,总共行驶的路程是多少公里?答案:行驶路程为120公里。

解析:车速为60公里/小时,行驶2小时,则行驶的路程为60 * 2 = 120公里。

3.已知函数y = 4x - 5,求使得y = 0的x的值。

答案:x = 5/4。

解析:将y = 0代入函数中,得到0 = 4x - 5,解方程得x = 5/4。

四、应用题小明去超市买牛奶,一瓶牛奶售价为y元,购买x瓶牛奶的总花费C(x)与购买数量x之间的关系可以表示为一次函数C(x)= 5x + 10。

1.如果小明购买3瓶牛奶,他需要支付多少钱?答案:小明需要支付25元。

一次函数练习题初二上

一次函数练习题初二上

一次函数练习题初二上初二上学期一次函数练习题一、填空题1. 将下列等式转化成一次函数的标准形式:y = kx + ba) 2x - 3y + 6 = 0 b) 5x + 2y - 10 = 02. 求解下列方程:a) 3x - 4 = 7 b) 2(x + 3) = 5x - 1二、选择题1. 下列哪个等式代表一次函数?a) y = 2x^2 + 3x - 5b) y = -3x + 4c) y = √xd) y = 42. 以下哪个图形代表一次函数?a) 图1 b) 图2 c) 图3 d) 图4三、计算题1. 已知一次函数 y = 2x - 3 和另一次函数 y = -3x + 4,求两个函数的交点坐标。

2. 一次函数 y = 3x + 2 和 y = -2x + 5 的图象分别与 x 轴和 y 轴交于点 A 和点 B,请问 AB 的斜率是多少?四、应用题某商店销售某种商品,销售额与销售数量的关系可以用一次函数表示。

已知当销售数量为10 时,销售额为200 元;当销售数量为30 时,销售额为 500 元。

1. 写出表达销售额与销售数量关系的一次函数解析式。

2. 根据这个一次函数,当销售数量为 50 时,销售额是多少?3. 当销售额为 800 元时,销售数量是多少?五、综合题一辆汽车在某路段以固定速度行驶。

已知在 2 秒钟内,汽车行驶了20 米;在 5 秒钟内,汽车行驶了 50 米。

1. 写出表达汽车行驶距离与时间关系的一次函数解析式。

2. 根据这个一次函数,汽车需要多长时间才能行驶 100 米?3. 如果汽车行驶了 120 米,需要多长时间?六、挑战题某部电影票房与观影人数的关系可以用一次函数表示。

已知当观影人数为 100 时,电影票房为 2000 元;当观影人数为 300 时,电影票房为 5000 元;当观影人数为 500 时,电影票房为 8000 元。

1. 写出表达电影票房与观影人数关系的一次函数解析式。

8年级数学上册一次函数测试题-八年级一次函数测试题(共18页)

8年级数学上册一次函数测试题-八年级一次函数测试题(共18页)

8年级数学上册一次函数测试题|八年级一次函数测试题[模版仅供参考,切勿通篇使用]努力做八年级数学试题就是光,成功就是影。

没有光哪儿来影?下面XX给大家分享一些8年级数学上册一次函数测试题,大家快来跟XX一起看看吧。

8年级数学上册一次函数试题一、选择题1.下列函数关系中表示一次函数的有①y=2x+1 ②③④s=60t ⑤y=100﹣25x.个个个个2.下列函数中,图象经过原点的为=5x+=﹣5x﹣=﹣ =3.如图,点A的坐标为,点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为4.若y=x+是正比例函数,则m的取值是﹣2C.±2D.任意实数5.如图,线段AB对应的函数表达式为=﹣ x+=﹣ x+2=﹣ x+=﹣ x+20,点P2是一次函数y=﹣4x+3图象上的两个点,且x1y2.故选A.【点评】本题考查了一次函数的增减性,比较简单.7.已知函数y=3x+1,当自变量x增加m时,相应函数值增加+﹣1【考点】一次函数的定义.【分析】将x+m作为x代入函中时,则函数值为y=3×+1,与原函数相比较可得出答案.【解答】解:∵当自变量为x时,函数值为y=3x+1∴当自变量为x+m时,函数值为y=3×+1∴增加了3×+1﹣=3m故选B.【点评】本题需注意应先给定自变量一个值,然后让自变量增加x,让相应的函数值相减即可.8.两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下列图中的A. B. C. D.【考点】一次函数的图象.【分析】首先设定一个为一次函数y1=ax+b的图象,再考虑另一条的a,b的值,看看是否矛盾即可.【解答】解:A、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y1,由y1的图象可知,a0;由y2的图象可知,a0,b>0,两结论相矛盾,故错误.故选A.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b0时,函数y=kx+b的图象经过第一、二、四象限;④当k0。

(完整版)一次函数练习题及答案

(完整版)一次函数练习题及答案

八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。

初二的一次函数练习题和答案

初二的一次函数练习题和答案

初二的一次函数练习题和答案1. 已知函数y = 2x + 1,求当x为2时的y的值。

解析:将x代入函数表达式中,得到y = 2 * 2 + 1 = 5。

所以当x为2时,y的值为5。

2. 某手机品牌每年销售量增长2000台,现已知2018年销售量为8000台,求2019年的销售量。

解析:设2019年销售量为x。

根据题意可得2000 = x - 8000,求解x可得x = 10000。

所以2019年的销售量为10000台。

3. 一次函数过点(1, 3),且函数图像与y轴相交于点(0, 1),求该一次函数表达式。

解析:设函数表达式为y = kx + b。

由已知条件可得:1 = 0 + b,因此b = 1;3 = k + 1,因此k = 2。

所以该一次函数表达式为y = 2x + 1。

4. 已知函数y = 3x - 2,求使得y大于等于7的x的取值范围。

解析:将y替换为7,得到7 = 3x - 2,求解x可得x = 3。

所以使得y大于等于7的x的取值范围是x ≥ 3。

5. 如果一次函数的斜率为负数,绘制其函数图像时,直线的斜率与x轴的夹角是多少?解析:一次函数的斜率为k,直线与x轴夹角θ满足tanθ = k。

由于斜率为负数,所以斜率与x轴的夹角小于180°,即θ < 180°。

具体的角度需要根据具体的斜率值计算。

6. 一条直线通过点(3, 5),并且与x轴成45°的角,求该直线的表达式。

解析:设直线的表达式为y = mx + b。

已知该直线通过点(3, 5),所以可得5 = 3m + b。

由于直线与x轴成45°的角,所以斜率m = tan45° = 1。

代入方程组可得5 = 3 + b,求解b可得b = 2。

所以该直线的表达式为y = x + 2。

7. 已知函数y = -4x + 3,求使得y小于等于0的x的取值范围。

解析:将y替换为0,得到0 = -4x + 3,求解x可得x = 3/4。

八年级一次函数大题典型题

八年级一次函数大题典型题

八年级一次函数大题典型题一、与坐标有关的一次函数问题。

题1:已知一次函数y = kx + b的图象经过点A( - 2, - 3)及点B(1,6)。

(1)求此一次函数的解析式;(2)判断点C(-(1)/(3),2)是否在此函数的图象上。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,-3)和B(1,6),将这两点代入函数可得方程组-3=-2k + b 6=k + b用第二个方程6 = k + b减去第一个方程-3=-2k + b,可得:6-(-3)=(k + b)-(-2k + b) 9=k + b + 2k - b 9=3k k = 3把k = 3代入6=k + b,得6=3 + b,解得b=3。

所以一次函数的解析式为y = 3x+3。

(2)把x =-(1)/(3)代入y = 3x + 3,得y=3×(-(1)/(3))+3=- 1 + 3=2所以点C(-(1)/(3),2)在此函数的图象上。

题2:一次函数y=kx + b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4)。

求该一次函数的解析式,并求出AOB的面积。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,0)和B(0,4)把A(-2,0),B(0,4)代入y=kx + b得0=-2k + b 4=b把b = 4代入0=-2k + b得0=-2k+4,解得k = 2所以一次函数的解析式为y = 2x+4。

(2)因为A(-2,0),B(0,4),所以OA = 2,OB=4S_ AOB=(1)/(2)× OA× OB=(1)/(2)×2×4 = 4二、一次函数与方程(组)、不等式的关系。

题3:已知一次函数y = 2x - 4。

(1)求当y = 0时,x的值;(2)求当x = 3时,y的值;(3)当x为何值时,y>0;(4)求直线y = 2x - 4与坐标轴围成的三角形的面积。

八年级一次函数题目

八年级一次函数题目

八年级一次函数题目一、选择题(每题3分,共30分)1. 下列函数中,是一次函数的是()A. y = (2)/(x)B. y = - 2x^2C. y = kx + b(k、b为常数,k≠0)D. y=√(x)+1解析:- 选项A:y=(2)/(x)是反比例函数,不是一次函数。

- 选项B:y = - 2x^2是二次函数,不是一次函数。

- 选项C:y = kx + b(k、b为常数,k≠0)符合一次函数的定义,是一次函数。

- 选项D:y=√(x)+1,自变量x在根号下,不是一次函数。

所以答案是C。

2. 一次函数y = 3x - 1的图象经过()A. 第一、二、三象限。

B. 第一、二、四象限。

C. 第一、三、四象限。

D. 第二、三、四象限。

- 对于一次函数y = kx + b(k≠0),当k>0,b<0时,函数图象经过第一、三、四象限。

- 在y = 3x - 1中,k = 3>0,b=-1<0。

所以图象经过第一、三、四象限,答案是C。

3. 若一次函数y=(m - 3)x + 5的y随x的增大而减小,则m的取值范围是()A. m>3B. m<3C. m = - 3D. m≤slant3解析:- 对于一次函数y = kx + b(k≠0),当k<0时,y随x的增大而减小。

- 在y=(m - 3)x + 5中,k=m - 3,因为y随x的增大而减小,所以m-3<0,解得m<3。

答案是B。

4. 已知一次函数y = kx + b的图象经过点(1, - 1)和( - 1,3),则k、b的值分别为()A. k=-2,b = 1B. k = 2,b=-1C. k=-2,b=-1D. k = 2,b = 1- 把点(1,-1)和( - 1,3)代入y = kx + b中,得到方程组-1=k + b 3=-k + b。

- 将两个方程相加,可得2b = 2,解得b = 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数知识点总结(一)函数1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。

*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式6、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。

当0b =时,一次函数y kx =,又叫做正比例函数。

⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.一次 函数()0k kx b k =+≠k ,b 符号0k >0k <0b >0b <0b =0b >0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b ),.即横坐标或纵坐标为0的点.b>0b<0b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移) 6、正比例函数和一次函数及性质 正比例函数一次函数概 念一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,是y=kx ,所以说正比例函数是一种特殊的一次函数.自变量 范 围 X 为全体实数 图 象 一条直线必过点 (0,0)、(1,k )(0,b )和(-kb,0) 走 向k>0时,直线经过一、三象限; k<0时,直线经过二、四象限k >0,b >0,直线经过第一、二、三象限 k >0,b <0直线经过第一、三、四象限 k <0,b >0直线经过第一、二、四象限 k <0,b <0直线经过第二、三、四象限增减性 k>0,y 随x 的增大而增大;(从左向右上升) k<0,y 随x 的增大而减小。

(从左向右下降) 倾斜度 |k|越大,越接近y 轴;|k|越小,越接近x 轴图像的 平 移b>0时,将直线y=kx 的图象向上平移b 个单位;b<0时,将直线y=kx 的图象向下平移b 个单位.6、直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系 (1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.一次函数专项练习题题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -; 点(,)A A A x y 到原点之间的距离为1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;3、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;4、 已知点P (3,0),Q(-2,0),则PQ=_______,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=_____; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________. 题型三、一次函数与正比例函数的识别 方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

相关文档
最新文档