概率论与数理统计:第六章 数理统计的基本概念

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计-6

概率论与数理统计-6

一、统计量
定义1 设X1, X2, …, Xn是总体X的样本,样本函数g(X1, X2, …, Xn)是样 本的实体函数,且不含有任何未知参数,则称这类样本函数g(X1, X2, …, Xn)为统计量。
由于样本具有二重性,统计量作为样本的函数也具有二重性,即对 一次具体的观测或试验,它们都是具体的数值,但当脱离开具体的某 次观测或试验,样本是随机变量,因此统计量也是随机变量。
n i 1
( xi
x )2
1n (
n 1 i1
xi2
nx 2 )

(3)样本标准差
S
S2
1 n 1
n i 1
(Xi
X
)2
它的观测值记为 s
s2
1 n 1
n i 1
( xi
x )2

(6-5)
(4)样本k阶原点矩
Ak
1 n
n i 1
X
k i
(k
1,2 ,3,
)
它的观测值记为 ak
解 将样本的观察值由小到大排列为 1 2 3 3 4 4 4 5 6 8
所以样本的频率分布如表所示
X
1
2
3
4
5
6
8
fn
0.1
0.1
0.2
0.3
0.1
0.1
0.1
例1 设总体服从泊松分布,容量为10的样本观察值如下:
214 3 5 6 4 8 4 3 试构造样本的分布函数F10(x)。
例1 设随机变量 X ~ (0 ,1) 分布,求D(X)。
解 因为 X ~ (0 ,1)
所以 又
E(X ) p E( X 2 ) 0 (1 p) 12 p p

数理统计基本概念

数理统计基本概念
n1 Γ( ) 2 n 1 x 2 fT ( x ) (1 ) 2 , n n n Γ ( ) 2
P{6.262 χ 2 24.996}
2 2
P{χ 6.262} P{χ 24.996}
0.975 0.05 0.925
注意 应注意分布表的定义与查法!
#
数理统计基本概念
3.自由度为 n的 t 分布 作笔名发表文章.
T~t(n)
又称学生氏分布--第一个研究者以Student
( X 1 , X 2 , , X n ) ~ ( 2 ) e
n 2 2
i 1
( xi )2 2 2
n
数理统计基本概念
四、统计量 定义6.1.2 设X1 , X2 , ·, Xn是总体X的样本, · · T为n元实值函数,若样本的函数 T=T(X1 , X2 , ·, Xn) · · 是随机变量且不含未知参数,称 T为统计量. 对相应的样本值( x1 , x2 , … , xn ) ,称 t =T( x1 , x2 , … , xn )






数理统计基本概念
某厂生产的一批产品中次品率为 p 。从中 抽取10件产品装箱。 概
1)没有次品的概率 2)平均有几件次品

3)为以 0.95的概率保证箱中 有10件正品,箱中至少要装多 少件产品。







数理统计基本概念
所有这些问题的关键是 p 是已知的! 如何获取 p ? 这就是数理统计的任务了!
定的α(0<α<1),数uα满足
P{ X u } ,
(C ) u1 ;

概率论与数理统计考研复习题6

概率论与数理统计考研复习题6

概率论与数理统计考研复习题(6)数理统计的基本概念1.X 与Y 相互独立且都服从)3,0(2N ,而9191,Y Y X X ,和分别是来自总体X 和Y 的简单随机样本,求统计量 292191Y Y X X U ++++= 服从的分布.2.求总体)3,20(N 的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.3.设n X X X ,,,21 是来自具有)(2n χ分布的总体样本。

求样本均值X 的数学期望和方差.4.设总体X ~N (0,1),从此总体中取一个容量为6的样本(621,,,X X X ),设Y =(26542321)()X X X X X X +++++,试决定常数C ,使得随机变量CY 服从2χ分布.5.从正态总体)6,4.3(2N 中抽取容量为n 的样本,如果要求其样本均值位于区间 (1.4, 5.4)内的概率不小于0.95,问样本容量n 至少应取多大?6.从装有一个白球,两个黑球的罐子里有放回地取球,令X =0表示取到白球,X =1表示取到黑球,求容量为5的样本(521,,,X X X )的和的分布,并求样本的均值X 和样本的方差2S 的期望值.7.设总体X ~),0(2σN ,(21,X X )为取自这总体的一个样本,求: (1)221221)()(X X X X Y -+=的概率密度;(2)P {Y <4}. 8.设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x F xλλλ,求E (X ),D (X ),E )(2S .9.从正态总体)5.0,(2μN 中抽取样本1021,,,X X X .(1)已知0=μ,求概率P {}41012≥∑=i i X; (2)未知μ,求概率P {85.2)(2101≥-∑=i i X X}.。

概率论与数理统计 第六章--数理统计的基本概念

概率论与数理统计 第六章--数理统计的基本概念

F分布性质2 若X ~t(n),则X2~F(1,n)
例4.设X1,X2, …,Xn是来自正态总体N(0,1) 的样本,试问c=( )统计量
c
2 X i 3 i 1 n
X
i 4
2 i
服从F分布?
抽样分布的分位点
设α为给定的常数,且0<α<1.若存在χα2(n)使
P ( n)
分位点的性质
(1) u1 u (2)
t1 (n) t (n)
1 (3) F (m, n) F1 (n, m)
回顾1. 设X1 ,X2 ,X3, X4是来自总体N(0,4)的简单 随机样本,X=a(X1-2 X2)2+b(3X3 -4X4)2,问当 a,b为何值时,统计量X服从 2分布 .
Max=1572, Min=738, 组数=6 组距=(Max-Min)/6=139140 取a0=735, 则分组区间及相关数据如下
组序 1 2 分区区间 (735,875] (875,1015] 频数 6 8 频率 0.2 0.27 累计频率 0.2 0.47
3
4 5 6 合计
(1015,1155]
2
所服从的分布为自由度为 n 的 分布 记为
2
~ (n)
2 2
分布的密度函数为
2
n x 1 1 n2 x2 e 2 f ( x; n ) 2 ( n 2 ) 0
x0 x0
其中伽玛函数 ( x )通过积分
( x ) e t dt, x 0 0 来定义.
(1155,1295] (1295,1435] (1435,1575]
9
4 2 1 30
0.3

概率论与数理统计基本概念

概率论与数理统计基本概念

概率论与数理统计基本概念
概率论与数理统计是研究事件发生的可能性,以及由此衍生的结果
的一门学科。

它可以帮助人们提高分析和预测能力。

可以帮助我们了
解自然界及其客观原理,以及把握当代社会经济实体及其活动。

一、概率概念:
1. 随机事件:指事件发生以来,在所有结果中,用概率值去衡量其发
生的可能性,及其各个单一结果的概率分布情况;
2. 概率:是用来衡量某一随机事件发生的可能性的数值,可以给出这
个事件发生的可能性大小;
3. 概率分布:是某一随机变量及其可能取值之间发生关系的一种描述;
二、数理统计概念:
1、统计:是指对数据进行定量描述,尝试从数据中获得解释性的统计
特征;
2、变量:是指以数值形式表示的某类事物,是研究目标内容分析的一
种实际基础;
3、统计分布:是给定一组数据,通过统计手段,计算出变量的概率分
布情况,及其可能的变化规律;
4、极限定理:是一种概率论的定理,旨在探讨一个系统在重复抽样下,抽样结果的收敛情况;
5、数据描述:是指对数据的描述,可以让人简单明了地理解数据,及
其特征和趋势;
6、统计推断:是指根据统计样本信息,以概率结果作为有效依据,做
出关于总体参数情况的推断;
7、回归分析:是指建立一条回归函数模型,以描述解释变量对被解释
变量的影响;
8、判别分析:是指构建一个准确的模型,能够根据输入的观测值来准
确地判断属于哪一类人或物;
9、聚类分析:是指将一组数据进行分类,从而揭示内部数据间的关系,辅助决策;
10、卡方检验:是指判断某一种统计判断是否证实对某一总体分布结
果的检验,从而决定是否接受或拒绝假设。

第六章 数理统计的基本概念

第六章 数理统计的基本概念

1 n 2 S S ( X X ) i n 1 i 1
2
(4) 样本k阶(原点)矩
1 n k Ak X i n i 1
k 1, 2,
k 2,3,
(5) 样本k阶中心矩
1 n Bk ( X i X )k n i 1
§2
常用统计量的分布
统计量的分布称为抽样分布.下面介绍三种由 正态总体演化而来的统计量的分布:
• 从二战后到现在,是统计学发展的第三个时期,这是一个在 前一段发展的基础上,随着生产和科技的普遍进步,而使这 个学科得到飞速发展的一个时期,同时,也出现了不少有待 解决的大问题.
学科奠基者



数理统计作为一个进一步完善的数学学科的奠基者是英国人费歇尔。他1909 年入剑桥大学,攻读数学物理专业,三年后毕业。毕业后,他曾去投资办工 厂,又到加拿大农场管过杂务,也当过中学教员。1919年,他开始对生物统 计学产生了浓厚的兴趣,参加罗萨姆斯泰德试验站的工作,致力于数理统计 在农业科学和遗传学中(费歇尔1890—1962)的应用研究。 年轻的费歇尔主要的研究工作是用数学将样本的分布给以严格的确定。 在一般人看来枯燥乏味的数学,常能带给研究者极大的慰藉,费歇尔热衷于 数理统计的研究工作,后来的理论研究成果有:数据信息的测量、压缩数据 而不减少信息、对一个模型的参数估计等。 最使科学家称赞的工作则是试验设计,它将一切科学试验从某一个侧面 “科学化”了,不知节省了多少人力和物力,提高了若干倍的工效。 费歇尔培养了一个学派,其中有专长纯数学的,有专长应用数学的。在30- 50年代费歇尔是统计学的中心人物。1959年费歇尔退休后在澳大利亚度过了 最后三年。
若 x1 , x2 , , xn 是样本的观察值, 则 g ( x1 , x2 , xn ) 是 g ( X 1 , X 2 , X n )

概率论与数理统计第6章

概率论与数理统计第6章

第六章6.4 在例6.2.3 中, 设每箱装n 瓶洗净剂. 若想要n 瓶灌装量的平均阻值与标定值相差不超 过0.3毫升的概率近似为95%, 请问n 至少应该等于多少? 解:因为1)3.0(2)/3.0|/(|)3.0|(|-Φ≈<-=<-n nnX P X P σσμμ依题意有,95.01)3.0(2=-Φn ,即)96.1(975.0)3.0(Φ==Φn于是 96.13.0=n ,解之得 7.42=n 所以n 应至少等于43.6.5 假设某种类型的电阻器的阻值服从均值 μ=200 欧姆, 标准差σ=10 欧姆的分布, 在一个电子线路中使用了25个这样的电阻.(1) 求这25个电阻平均阻值落在199 到202 欧姆之间的概率; (2) 求这25个电阻总阻值不超过5100 欧姆的概率. 解:由抽样分布定理,知nX /σμ-近似服从标准正态分布N (0,1),因此(1) )25/10200199()25/10200202()202199(-Φ--Φ≈≤≤X P)5.0(1)1()5.0()1(Φ+-Φ=-Φ-Φ=5328.06915.018413.0=+-= (2) )204()255100()5100(≤=≤=≤X P X P X n P 9772.0)2()25/10200204(=Φ=-Φ≈6。

8 设总体X ~N (150,252), 现在从中抽取样本大小为25的样本, {140147.5}P X ≤≤。

解: 已知150=μ,25=σ,25=n ,)25/25150140()25/251505.147()5.147140(-Φ--Φ≈≤≤X P)5.0()2()2()5.0(Φ-Φ=-Φ--Φ= 2857.09615.09772.0=-=第六章《样本与统计量》定理、公式、公理小结及补充:。

第六章 数理统计的基本概念(1)

第六章 数理统计的基本概念(1)
(k 1, M1就是X )
XK
1 n
n i 1
X
k i
(4)样本k阶中心矩:
1 n
n i 1
(Xi
X )k
(5)顺序统计量: X(1) X(2) X(n) . 其中 X(k) 为将 X1, X2 , , Xn 从小到大排列第 k 位值.
18 September 2020
概率论与数理统计
理学院数学系
2、离散型 设总体X的分布律为 P{ X x} p( x)
则样本X1, X2 ,的, 联Xn合分布律为 P{ X1 x1, X2 x2 ,, Xn xn } p( x1 ) p{ x2 ) p( xn )
18 September 2020
概率论与数理统计
理学院数学系
样本分布
第六章 数理统计的基本概念
(1)样本均值:
X
1 n
n i 1
Xi
(2)样本方差:
Sn2
1 n
n
(Xi
i 1
X )2
修正样本方差:
Sn*2
1 n1
n i 1
(Xi
X )2
nSn2 (n 1)Sn*2
18 September 2020
概率论与数理统计
理学院数学系
第六章 数理统计的基本概念
第22页
(3)样本k阶原点矩:
第13页
1、样本的联合分布函数 设总体 X 的分布函数为 FX (., ), (X1, X2 ,
则样本的联合分布函数为
, Xn ) 为样本.
FX1,X2 , ,Xn ( x1, x2 , , xn ; ) FX ( x1, )FX ( x2 , ) FX ( xn , )

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .

I数理统计基本概念及参数估计

I数理统计基本概念及参数估计

点估计有两种方法: 矩估计法和最大似然估计法
18
(一 )
矩估计法:
则有:E ( X v ) = µv (θ1 , θ 2 ,L , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
x>0 x≤0
10
对于给定的α , 0 < α < 1, 称满足条件 ∫

Fα ( n1 , n2 )
f ( x; n1 , n2 ) dx = α的点Fα ( n1 , n2 )
为F ( n1 , n2 ) 分布的上α 分位数。Fα ( n1 , n2 )的值可查F 分布表
F1−α (n1 , n2 ) = [ Fα (n2 , n1 )]−1
为t ( n ) 分布的上α 分位数。t分布的上α 分位数可查t分布表
n = 10 n=4
f ( x)
t1−α ( n ) = −tα ( n )
α
n =1
−3 −2 −1 0 1 2 t分布的密度函数
3
x
0
tα ( n )
x
9
t分布的上α 分位数
F分布
定义:设X ∼ χ 2 ( n1 ) , Y ∼ χ 2 ( n2 ) , 且X , Y 独立, 则称随机变量F = X / n1 服从自由度 ( n1 , n2 )的F 分布,记为F ~ F ( n1 , n2 ) Y / n2
n+1
+ Γ ( n2 1 ) t 2 − 2 定理6.2:t ( n ) 分布的概率密度为:f ( t , n ) = 1 + n , −∞ < t < +∞ n nπ Γ ( 2 )

对给定的α , 0 < α < 1, 称满足条件 ∫

概率论与数理统计6-8

概率论与数理统计6-8

无关的样本的连续函数,则称g(X1,X2,…,Xn)为
统计量。 统计量是样本的函数,它是一个随机变量, 如果x1, x2, …, xn是样本观察值, 则g(x1, x2, …, xn)是统计量g(X1, X2, …, Xn)的一个观察值.X i ; n i 1 2 n 1 2 2. 样本方差 S (X i X ) ; n - 1 i 1 1 n k 3. 样本k阶原点矩 A k X i , k 1, 2, ; n i 1 1 n 4. 样本k阶中心矩 Bk (X i X ) k , k 2, 3, . n i 1
§7.1 点估计 一. 问题的提法:
设总体X的分布函数F ( x; θ )的形式为已知 ,
是待估参数, 1 , X 2 , , X n 是X的一个样本, X
x1, x2 , , xn 是相应的一个样本值。
点估计问题就是要构造 一个适当的统计量 ˆ ( X , X , X ),用它的观察值 ˆ( x , x , , x )
2
分布具有可加性,定义 X 1 ,X 2 , ,X n 独立 中 n 1 同服从N (0,1),所以 = X ~ ( , ) 2 2 i 1
2 2 i n
β α α-1 -x x e , x 0, 分布的概率密度为 f ( x) Γ (α ) : 0 , 其它. n 1 2 2 比较 (n)的密度可知: (n) 分布就是 , 2 2 2 的分布, 即 (n) (n / 2, 1/2).
N (0, 2 ) ,X1,X2,X3 为取自总体的一个样本, 2.设总体 X~
试求:(1)3X1-2X2+X3 的分布;(2)
2 X1 X 22 X 32
的分布。

概率论与数理统计第六章

概率论与数理统计第六章

Ch 6 数理统计的基本概念§6.1 基本概念 一、总体与样本1、总体——研究对象的全体,记为X 。

2、个体——构成总体的每一个对象,记为i X 。

3、总体容量——总体中包含的个体的个数。

有限总体——容量有限;无限总体——容量无限。

为推断总体X 的分布,从总体中抽取n 个个体,则对应n 个r.v.n X X X .....2,1——来自于总体X 的一个样本。

n X X X ......,21的取值((n x x x ,.....,21)--观测结果)称为样本的观测值,简称为样本值,整个抽取过程称之为抽样。

抽取的目的是根据样本的取值情况推断总体情况,因此应尽可能的使抽取的样本能反映总体的状况,故要求抽取的样本具有以下性质:文档收集自网络,仅用于个人学习⑴ 代表性:样本中每个r.v.i X 与总体X 具有相同的分布。

文档收集自网络,仅用于个人学习⑵ 独立性:n X X X ......,21相互独立。

——简单的随机抽样所得的样本称为简单的随机样本;若总体X 的分布函数为F (x ),则样本n X X X .....2,1的联合分布函数)().....,(121*i ni n x F x x x F =∏=。

文档收集自网络,仅用于个人学习若X 为连续型,且d.f 为f(x),且联合p.d.f 为:)()....,(121*i ni n x f x x x f =∏= 若X 为离散型,且分布律为:....2,1,)(===k p x X P k k 则联合分布律:in i i in n i i p p p x X x X x X P ....).....,(212211⋅⋅====。

...2,1.....3,2,1=in i i i 二、统计量Def:不含有任何未知数的关于样本空本空间的函数称为统计量。

e.g.1 设总体X~),(2σμN ,其中2,σμ未知,(n X X X .....2,1)为取自总体X 的一个样本,则:∑∑==--==n i i n i i X X n S X n X 1221)(11,1均为统计量。

概率论与数理统计 第6章

概率论与数理统计  第6章
第 6 章 数理统计的基本概念
6.1 基本概念 6.2 抽样分布 习题 6
数理统计是具有广泛应用的一个数学分支,它以概率论 为基础,根据试验或观察得到的数据来研究随机现象,对研 究对象的客观规律性作出种种合理的估计和判断。数理统计 的内容包括:如何收集、整理数据资料;如何对所得的数据
资料进行分析、研究,从而对所研究的对象的性质、特点作
设总体 X 的分布律为 P ( X = x ) = p ( x ), X 1 , X
2
,…, X n为来自总体 X 的一个样本,则 X 1 , X 2 ,…, , X 2 ,…, X n)的联合分布律为
X n的分布律都是 P ( X i = x ) = p ( x ),从而 n 维随机变量(X
1
设总体 X 的概率密度为 f ( x ), X 1 , X 2 ,…, X n为 来自总体 X 的一个样本,则 X 1 , X 2 ,…, X n的概率密度 都是 f ( x ),从而 n 维随机变量(X 1 , X 2 ,…, X n)的联合 概率密度为
( n ) ,则称函数
为总体 X 的经验分布函数。
需要指出的是,若在 F n (x )的定义中将样本值换成对 应的样本,则当 n 固定时,它是一个随机变量,此时仍称之 为总体 X 的经验分布函数。所以用样本值定义的 F n (x )其 实是经验分布函数的观察值,在不致混淆的情况下统称为总 体 X 的经验分布函数。
出推断。数理统计的重要分支有统计推断、试验设计、多元 分析等,其具体方法甚多,应用相当广泛,已成为各学科从
事科学研究及生产、经济等部门进行有效工作的必不可少的
数学工具。

本章从数理统计的基本概念开始,讨论抽样分布及其重 要定理,这些抽样分布及其重要定理在概率论中尚未提到,

数理统计的基本概念 ppt课件

数理统计的基本概念 ppt课件

称为第一自由度为n1 ,第二自由度为n2的F分 布,其概率密度为
h(y)((n2n1)12(nn0222,))((n11/nnn212)yn1)/(2ny1ynn212)1/02 ,
y0
数理统计的基本概念
2. F分布的分位点 对于:0<<1,
若存在F(n1, n2)>0, 满足
P{FF(n1, n2)}=, 则 称F(n1, n2)为 F(n1, n2)的 上侧分位点;
6.4、统计量及抽样分布
1.统计量
定义:称样本X1, … ,Xn 的函数g(X1, … ,Xn ) 是 总体X的一个统计量,如果g(X1, … ,Xn )不含 未知 参 数
几个常用的统计量 :
1.样本均 X 值 n1i n1Xi,
2.样本方 S2差 n11in1(Xi X)2
样本均(方 标差 准)差S S2,
数理统计的基本概念
经验分布函数
设 X1, X2, …, Xn 是取自总体分布函数为F(x)的样 本,若将样本观测值由小到大进行排列,为 x(1), x(2), …, x(n),则称 x(1), x(2), …, x(n) 为有序样本,
用有序样本定义如下函数
0, Fn(x) k/n, 1,
x<x(1) x(k)xx(k1), x(n)x
k1,2,...,n1
数理统计的基本概念
则Fn(x)是一非减右连续函数,且满足 Fn() = 0 和 Fn() = 1
由此可见,Fn(x)是一个分布函数, 并称Fn(x)为经验分布函数。
数理统计的基本概念
例1 某食品厂生产听装饮料,现从生产线上 随机抽取5听饮料,称得其净重(单位:克) 351 347 355 344 354

第6章 数理统计的基本概念

第6章 数理统计的基本概念

(
n1 2
n1
)
+ n2 2
(
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2

x)
n1 + n2 2
,x
0
0,
x0
24
f (x) =
(
(
n1 2
0
n1 + n2 2
) ( ,
)
n2 2
)
(
n1 n2
)(
n1 n2
n1 −1
x) 2 (1 +
n1 n2
− n1 + n2
n−2 23
3、F 分布
定义 设 X ~ 2 (n1 ) , Y ~ 2 (n2 ) ,且 X 与 Y 相互
独立,则称随机变量
F = X / n1 Y / n2
服从自由度为 (n1, n2 )的 F 分布,记为 F ~ F (n1, n2 ) .
F(n1,n2)的概率密度为
f (x) =
(
实际上,每一次测量所得结果是一个个体, 而总体是由“一切可能的测量值”组成。这只是 一个想象中存在的集合,因为不可能去进行无限 次测量。它的个体是通过试验“制造”出来的。
这种情况在实际应用中非常之多。给这种总 体同样可规定分布,例如上述例子中说“测量结 果服从正态分布”是容易理解的。
8
二、样本
一般情况下,对总体的每一个个体都进行观察或试 验是不可能的,这是因为经济上、时间上不允许(如个体 的数量很大),或观察试验是带破坏性的(如灯泡的寿命、 炮弹的射程).因此,必须对总体进行抽样观察.

概率论与数理统计 第六章

概率论与数理统计 第六章

F-分布的概率密度为
n1 n1 1 2 2 [(n1 n2 ) / 2](n1 / n2 ) x , x 0, n1 n2 f ( x) (n1 / 2)(n2 / 2)[1 (n1 x / n2 )] 2 0, 其它.
河南理工大学精品课程
概率论与数理统计
河南理工大学精品课程
n 1 2
( x )
概率论与数理统计
f (x)
n
n 10
n 1
O
x
t-分布的概率密度性质
t-分布的概率密度为偶函数,且以标准正态概率 密度为其极限(n→∞)。
河南理工大学精品课程 概率论与数理统计 上α分位点(双侧 Nhomakorabea/2分位点)
定义 点 t (n) 为 t (n) 分布的上α 分位点
究,就是对相应的随机变量X的研究。
今后,我们称X的分布函数和数字特征分别为总体的 分布函数和数字特征,并不再区分总体与相应的随机变量
X.对总体的称呼:总体,总体X与总体F.
河南理工大学精品课程 概率论与数理统计
例如,当X~N(μ,σ2)时,称总体X为正态总体.正态 总体有以下三种类型: ①μ未知,但σ2已知; ②σ2未知,但μ已知; ③μ,σ2均未知.
P{t t (n)} (0 1).
查附表4[P.298]:
t0.025 (8) 2.3060, t0.005 (4) 4.6041.
河南理工大学精品课程
概率论与数理统计
双侧α/2分位点:
t1 / 2 (n), t / 2 (n)
f (x)
/2
t1 / 2 (n) O
河南理工大学精品课程
概率论与数理统计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F=(X/m)/(Y/n) 所服从的分布是自由度为(m,n)的F分布. 记为F~F(m,n)
F分布的概率密度函数图形
➢F分布
性质1 若X~F(m,n), 则1/X~F(n,m) 性质2 若X ~t(n),则X2~F(1,n)
例4.设X1,X2, …,Xn是来自正态总体N(0,1) 的样本,试问统计量
统计量既然是依赖于样本的,而 后者又是随机变量,故统计量也是随 机变量,因而就有一定的分布,这个 分布叫做统计量的“抽样分布” .
抽样分布
➢χ2分布 ➢t 分布 ➢F分布
➢χ2分布
定义:设X1,X2, …,Xn独立同分布, 都服 从N(0,1), 则称统计量
χ2=X12+X22+…+Xn2 所服从的分布是自由度为 n 的χ2分布.记 为χ2~χ2(n)
χ2分布的概率密度函数图形
➢χ2分布
性质1(可加性) Y1 ~χ2(m), Y2 ~χ2(n),Y1与Y2独立, 则Y1 +Y2 ~ χ2(m+n)
性质2(数字特征) 若χ2 ~χ2(n),则 E(χ2)=n,D(χ2)=2n
例2. 设X1,X2, …,Xn是来自正态总体 X~N(μ,σ2)的样本,求随机变量
25<27<30<33=33<35<45<65 则由定义得经验分布函数为 0,x< 25
1/8, 25 x<27 2/8, 27 x<30 3/8, 30 x<33 Fn(x)= 5/8, 33 x<35 6/8, 35 x<45 7/8, 45 x<65 1, 65 x
3. 抽样分布
Y=[(X1- μ)2+ (X2- μ)2+…+ (Xn- μ)2]/σ2 的概率分布。
解:X1,X2,…,Xn相互独立且都服从N(μ,σ2) 分布,令Yi=(Xi- μ)/σ 则Y1,Y2, …,Yn相互独立且Yi ~N(0,1) , 由定义知Y= Y12+Y22+…+Yn2 ~χ2(n)
➢t分布
第k个次序统计量 最小次序统计量
最大次序统计量
经验分布函数
设X1,X2, …,Xn是取自总体X的样本,对应 的次序统计量为X(1) X(2) … X(n) ,当给 定次序统计量的观测值x(1) x(2) … x(n)时, 对任意实数x,称函数
0, x< x(1) Fn(x)= k/n, x(k) x<x(k+1) (k=1,2,…,n-1)
常用统计量
样本均值
X
1 n
n i 1
Xi
样本方差
S 2
1 n 1
n i 1
(Hale Waihona Puke iX)2样本均方差或样本标准差S
常用统计量
样本k阶(原点)矩
Ak
1 n
n i 1
X
k i
样本k阶中心矩
Mk
1 n
n i 1
(Xi
X )k
次序统计量
设X1,X2, …,Xn是取自总体X的样本,记 x1,x2, …,xn是样本的任一观测值,将它们 按由小到大的顺序重新排列为x(1) x(2) … x(n) 。若X(k)= x(k) ,则称X(1),X(2), …,X(n) 为样本X1,X2, …,Xn的次序统计量。
3
(n 3)
X
2 i
i 1
n
3
X
2 i
i4
服从什么分布?
➢抽样分布的分位点1
设α为给定的常数,且0<α<1.
若存在χα2(n)使
P 2 2 (n)
2 (n) fn (x)dx
其中fn(x)为χ2的概率密度,则称点χα2(n)为
χ2分布关于α的上侧分位点。
➢抽样分布的分位点2
设α为给定的常数,且0<α<1.
概率论:随机变量的概率分布
理 论 基 础
数理统计:分析带有随机影响数据
应用领域:




















6.1
一、总体和样本 1.总体
一个统计问题总有它明确的研究对象.
研究对象的全体称为总体(母体), 总体中每个成员称为个体.
总体

研究某批灯泡的质量
然而在统计研究中,人们关心总体仅仅 是关心其每个个体的一项(或几项)数量指标 和该数量指标在总体中的分布情况. 这时, 每个个体具有的数量指标的全体就是总体.
数的属性 样本的二重性
随机变量的属性
设X1,X2, …,Xn为总体X的一个容量为n的 样本。若它满足
(1)独立性,即X1,X2, …,Xn 相互独立; (2)同分布性,即每个Xi都与总体X服从相
同的分布.
则称这样的样本为简单随机样本,简称为 样本。
6.2
统计量
设X1,X2, …,Xn是总体X的样本, g(X1,X2, …,Xn)是样本的实值函数,且不包 含任何未知参数,则称g(X1,X2, …,Xn)为统 计量。 统计量的二重性
1, x(n) x
为总体X的经验分布函数。
例1:从总体X中抽取容量为3的样本,其 观测值为 (1) 1,2,3 (2)1,1,2 试求X的经验分布函数。
解:将样本观测值由小到大排序得
例1:从总体X中抽取容量为8的样本,其 观测值为
33,45,25,33,35,65,30,27。 试求X的经验分布函数。 解:将样本观测值由小到大排序得
从国产轿车中抽5辆 进行耗油量试验
样本容量为5
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量.
但是,一旦取定一组样本,得到的是 n个具体的数 (X1,X2,…,Xn),称为样本的 一次观察值,简称样本值 .
基本概念: 总体:研究的问题所涉及的对象的全体 个体:总体中的每个成员 样本:从总体中抽取部分个体 样本容量:样本所包含的个体数量
定义: 设X~N(0,1) , Y~χ2(n), 且X与Y相 互独立,则称随机变量
T X Yn
服从自由度为 n的 t 分布.记为T~t(n).
t分布的概率密度函数图形
例3.设X1,X2, …,Xn是来自正态总体N(0,4) 的样本,试问统计量
n 1X1
n
X
2 i
i2
服从什么分布?
➢F分布
定义:设X ~χ2(m), Y ~χ2(n), X与Y相互 独立,则称随机变量
某批 灯泡的寿命
国产轿车每公里 的耗油量
该批灯泡寿命的 全体就是总体
国产轿车每公里耗油 量的全体就是总体
2. 样本 为推断总体分布及各种特征,按一定 规则从总体中抽取若干个体进行观察试验, 以获得有关总体的信息,这一抽取过程称 为 “抽样”,所抽取的部分个体称为样本. 样本中所包含的个体数目称为样本容量.
相关文档
最新文档