开关电源设计入门培训资料
开关电源设计(精通型)
![开关电源设计(精通型)](https://img.taocdn.com/s3/m/8773ec5aeef9aef8941ea76e58fafab069dc44f1.png)
开关电源设计(精通型)一、开关电源基本原理及分类1. 基本原理开关电源的工作原理是通过控制开关器件的导通与关断,实现电能的高效转换。
它主要由输入整流滤波电路、开关变压器、输出整流滤波电路和控制电路组成。
在开关电源中,开关器件将输入的交流电压转换为高频脉冲电压,通过开关变压器实现电压的升降,经过输出整流滤波电路,得到稳定的直流电压。
2. 分类(1)PWM(脉冲宽度调制)型开关电源:通过调节脉冲宽度来控制输出电压,具有高效、高精度等特点。
(2)PFM(脉冲频率调制)型开关电源:通过调节脉冲频率来控制输出电压,适用于负载变化较大的场合。
二、开关电源关键技术与设计要点1. 高频变压器设计(1)选用合适的磁芯材料,保证变压器在高频工作时的磁通密度不超过饱和磁通密度。
(2)合理设计变压器的绕组匝数比,以满足输出电压和电流的要求。
(3)考虑变压器损耗,包括铜损、铁损和杂散损耗,确保变压器具有较高的效率。
2. 开关器件的选择与应用(1)开关频率:根据开关电源的设计要求,选择合适的开关频率。
(2)电压和电流等级:确保开关器件能承受最大电压和电流。
(3)功率损耗:选择低损耗的开关器件,提高开关电源的效率。
(4)驱动方式:根据开关器件的特点,选择合适的驱动电路。
3. 控制电路设计(1)稳定性:确保控制电路在各种工况下都能稳定工作。
(2)精度:提高控制电路的采样精度,降低输出电压的波动。
(3)保护功能:设置过压、过流、短路等保护功能,提高开关电源的可靠性。
三、开关电源设计实例分析1. 确定设计指标输入电压:AC 85265V输出电压:DC 24V输出电流:4.17A效率:≥90%2. 高频变压器设计选用EE型磁芯,计算磁芯尺寸、绕组匝数和线径。
3. 开关器件选择根据设计指标,选择一款适合的MOSFET作为开关器件。
4. 控制电路设计采用UC3842作为控制芯片,设计控制电路,实现开关电源的稳压输出。
5. 实验验证搭建实验平台,对设计的开关电源进行测试,验证其性能指标是否符合要求。
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/39169debb04e852458fb770bf78a6529657d3555.png)
控制芯片
根据采样电路提供的信号,控 制开关管的通断,实现电源的
稳压、稳流输出。
03
开关电源的调试与测试
开关电源的调试方法
调试步骤
调试过程中,逐步增加输入电压,并观察电源输出是 否稳定,是否达到预期的输出电压和电流。
检查电源输入是否正确,确保电源连接正确,不会出 现短路等情况。
在调试过程中,注意观察开关电源的发热情况,确保 不会出现过热导致损坏。
工作效率
开关电源的转换效率较高,一般在 80% 以上,而线性电源的效率相对较低,一般在 50%-70% 之间。
输出电压稳定性
开关电源的输出电压稳定性较高,受负载影响较小,而线性电源的输出电压稳定性相对较 差,受负载影响较大。
开关电源的安规要求
01
电磁兼容性(EMC)
开关电源在工作中会产生一定的电磁干扰(EMI),为了确保其对外
开关电源的常见故障案例分析
• 案例一:输入异常导致开关电源无法正常工作。 • 问题描述:开关电源在工作时突然停止工作,检查发现输入电压异常。 • 解决方法:调整输入电压至正常范围,开关电源恢复正常工作。 • 案例二:输出异常导致负载设备无法正常工作。 • 问题描述:开关电源输出电流异常,导致负载设备无法正常工作。 • 解决方法:调整开关电源的输出电流至正常范围,负载设备恢复正常工作。 • 案例三:温升过高导致开关电源内部元器件损坏。 • 问题描述:开关电源在工作时突然冒烟,检查发现温升过高。 • 解决方法:加强散热设计,选用导热性能好的材料,降低温升,避免类似故障再次发生。 • 案例四:噪声过大导致电磁干扰过大。 • 问题描述:开关电源在工作时产生大量电磁干扰,影响周围设备的正常工作。 • 解决方法:加强EMI滤波设计,选用低噪声元件,降低噪声,避免类似故障再次发生。
开关电源设计入门培训资料(ppt48张)
![开关电源设计入门培训资料(ppt48张)](https://img.taocdn.com/s3/m/6e5e250ddd36a32d7275810b.png)
保险丝(Fuse)
保险丝的工作原理
保险丝通电时,由电能转换的热量使可熔体的 温度上升。正常工作电流或允许的过载电流通 过时,产生的热量通过可熔体、外壳体向周围 环境辐射,通过对流、传导等方式散发的热量 与产生的热量逐渐达到平衡。如果产生的热量 大于散发的热量,多余的热量就逐渐积聚在可 熔体上,使可熔体温度上升;当温度达到和超 过可熔体的熔点时,就会使可熔体熔化、熔断 而切断电流,起到了安全保护电路的作用。
功率二极管
功率场二极管选择及应用降额. 1)平均连续电流:80% 2) 浪涌电流: 90% 3)浪涌I2t: 80% 4)反向电压: 80% 5)雪崩能量: 不允许 6)最大的结温: 80%
功率二极管
功率二极管规格书
保险丝(Fuse)
保险丝的作用 1)正常情况下,保险丝在电路中起连接电 路的作用。 2)非正常情况下,保险丝作为电路中的安 全保护元件,通过自身熔断安全切断并 保护电路。
如上图所式,栅极电压从0V上升到10V过程中,栅极电流Ig包括I1和I2两 部分,
功率场效应管 (Mosfet)
Hale Waihona Puke 需要栅极的总电流Ig为Ig=I1+I2=0.36+0.564=0.924A
功率场效应管 (Mosfet)
功率场效应管栅极驱动上升和下降时间 导通延迟时间:Trd=Vgsth(2.5V)-(0V) 关断延迟时间: Tfd=Vgl(10V)-Vgsth(2.5V)
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管栅极驱动电路
10 R1
12 V1 1u C1 V2 1K R2
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/1913c56b443610661ed9ad51f01dc281e53a5627.png)
03
开关电源电路分析和常见故障排 查
开关电源电路分析
电路组成
开关电源电路通常由输入滤波电路、整流电路、功率因数校正电路、逆变电路、输出整流 滤波电路等部分组成。对于不同的应用需求和设计目标,电路的组成可能会有所变化。
工作原理
开关电源通过高频开关管的开关动作,将直流电压变换为高频脉冲电压,再经过变压器、 整流滤波等元件实现电压的变换和输出。其工作效率高、体积小、重量轻等特点使其在电 子设备中得到广泛应用。
控制策略
开关电源的控制策略常见的有PWM(脉冲宽度调制)和PFM(脉冲频率调制)等。控制 策略的选择会影响到电源的效率、稳定性、响应速度等性能。
常见故障排查
无输出或输出电压低:可能 的原因包括输入电压过低、 开关管故障、变压器故障、 整流滤波电路故障等。排查 方法包括检查输入电压、测 量开关管驱动波形、检查变 压器及整流滤波元件等。
• 家用电器
开关电源也广泛应用于各种家用 电器中,如电视机、音响等。
02
开关电源主要技术和设计要点
开关电源主要技术
脉宽调制技术
脉宽调制技术是开关电源中最常 用的技术,通过调节开关管的导 通时间来控制输出电压。具有响
应速度快、输出稳定等特点。
谐振变换技术
谐振变换技术利用谐振元件的特 性进行能量转换,具有高效率和 高功率密度的优势。在开关电源 中常用于高压、大功率应用场合
防水防潮
保持开关电源工作环境干 燥,避免长时间暴露在潮 湿环境中。潮湿可能导致 电气短路、绝缘性能下降 等问题。
THANKS
感谢观看
能和寿命。
维护方法
清洁散热系统
定期清理开关电源散热系 统中的灰尘和杂物,保持 散热良好。可以使用吸尘 器、压缩空气或软刷等工 具进行清洁。
开关电源培训讲义
![开关电源培训讲义](https://img.taocdn.com/s3/m/94feac25aaea998fcc220e2f.png)
开关电源培训讲义漆逢吉第一章不间断直流电源供电系统概述DC图1—1 不间断直流电源供电系统框图(一)系统框图开关电源设备中包含交流配电部分、整流器、直流配电部分和控制器,它连同蓄电池组和接地装置,构成不间断直流电源供电系统,如图1—1所示。
交流配电:防雷,并对交流电源进行分配、控制、检测和保护等,主电路原理图参看设备使用说明书。
输入交流应采用三相五线制。
在这种制式中,工作地线(零线)与保护地线必须严格分开。
交流导线的截面积,一般按发热条件来选择。
铜芯绝缘导线的线芯截面积,可按4A/mm2来选取。
绝缘导线的线芯标称截面积(mm2)系列为:1、1.5、2.5、4、6、10、16、25、35、50、70、95、120、150、185、240等。
机房内的交流导线应采用阻燃型电缆。
保护接地的接地线应采用多股铜芯绝缘导线。
其线芯截面积的选取原则是:相线截面积S≤35mm2时,采用16mm2;相线截面积S>35mm2时,选用≥S/2。
整流器:把交流电变成所需直流电。
现在一般都采用高频开关整流器。
高频开关整流器采用无工频变压器整流、功率因数校正电路和脉宽调制高频开关电源技术,具有小型、轻量、高效率、高功率因数、高可靠性以及智能化程度高、可以远程监控、无人值守或少人值守等优点,因此得到了广泛应用。
通信用高频开关整流器为模块化结构。
在一个高频开关电源系统中,通常是若干高频开关整流器模块并联输出,输出电压自动稳定,各整流模块的输出电流通过均流电路实现自动均衡。
直流配电:连接整流器的输出端、蓄电池组和负载,构成浮充供电的不间断直流电源系统。
它对输出直流进行分配、控制、检测和保护等。
其主电路原理图如后面的图2—1所示。
直流馈电线的截面积,按允许电压降来选择。
根据欧姆定律,可按下式计算ILS≥(1—1)ΔUν式中S—导体截面积(mm2);I—流过导线的电流(A);L—导线长度(m);ΔU—导线上的允许压降(V);ν—导体的电导率(m/Ω·mm2),铜为57,铝为34,是电阻率的倒数。
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/03dbe2e2294ac850ad02de80d4d8d15abe230031.png)
开关电源培训资料开关电源培训资料【第一篇】开关电源是一种常见的电源供应器件,被广泛用于各种电子装置中。
它具有高效率、小体积和轻量化的特点,因此在现代电子设备中得到了广泛的应用。
本篇文章将介绍开关电源的基本工作原理和一些常用的开关电源类型。
1. 基本工作原理开关电源的基本工作原理是利用开关管实现电源输入电压的高效率转换。
通常,开关电源有以下几个基本组成部分:(1) 输入滤波电路:用来对输入电压进行滤波,防止高频噪声对电源的影响。
(2) 整流电路:将交流电源输入转换为直流电压。
(3) 稳压调整电路:对直流电压进行稳压调整,以确保输出电压的稳定性。
(4) 开关转换电路:通过开关和控制电路实现输入电压的高效率转换。
(5) 输出滤波电路:对开关电源输出电压进行滤波处理,提供干净稳定的输出电压。
2. 常用的开关电源类型根据不同的应用需求和输出功率的大小,开关电源可分为多种类型。
以下是一些常见的开关电源类型:(1) 开环开关电源:这种类型的开关电源不具备反馈控制回路,输出电压不稳定且容易受到输入电压变化的影响。
它适用于一些对电源质量要求较低的应用场景。
(2) 闭环开关电源:闭环开关电源通过反馈控制回路对输出电压进行稳定控制,能够有效地抑制输入电压的波动对输出电压的影响。
它适用于对电源质量要求较高的应用场景。
(3) 开关电源的调整方式:开关电源的输出电压可以通过直接改变变压器的变比或通过在控制回路中加入调整电路来实现。
前者适用于输出电压变化范围较大的场景,后者适用于输出电压变化范围较小的场景。
(4) 开关电源的拓扑结构:开关电源的拓扑结构有很多种,如反激式、降压式、升压式、反激降压式等。
不同的拓扑结构适用于不同的输出功率和电源输入条件。
以上只是对开关电源的基本工作原理和一些常用类型的简要介绍,如果想深入了解开关电源的设计和应用,还需进一步学习相关领域的知识。
下一篇将继续介绍开关电源的设计方法和一些要注意的问题。
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/0a0845ecdc3383c4bb4cf7ec4afe04a1b071b0fc.png)
开关电源在新能源领域的应用实例
太阳能发电系统
太阳能发电系统中,开关电源用于控制太阳能电池板的充电和放 电过程,提高系统效率和稳定性。
风能发电系统
风能发电系统中,开关电源用于控制风力发电机的并网和电力输出 ,保证电力系统的稳定运行。
电动汽车
电动汽车中,开关电源用于直流/直流转换,将电池输出的高压直 流电转换为低压直流电,为车辆电器和电机提供电力。
实现高效的功率转换。
热设计
进行适当的热设计,以确保功率 转换器在运行时的散热需求得到
满足。
输出滤波器的设计
滤波器类型
选择适当的输出滤波器类型,如LC滤波器、π型滤 波器等,以减小输出电压和电流的噪声。
元器件选择
选择适当的电子元器件,如电容、电感和电阻等 ,以实现输出滤波器的功能。
性能测试
进行性能测试,以验证输出滤波器的效果是否满 足要求。
3. 实施定期维护和检查
对开关电源进行定期维护和检查,及时发现并解决潜在问 题。
1. 选择高质量的元器件
采用高品质的元器件,降低故障率。
4. 采用备份和冗余设计
在关键系统中使用备份和冗余电源设计,以确保系统的正 常运行。
06
CATALOGUE
开关电源应用实例
开关电源在电子产品中的应用实例
1 2 3
02
用于控制开关管的导通时间,从而控制输出功率。
保护电路
03
用于检测开关电源的状态,如过压、欠压、过流和过温等异常
情况,并采取相应的保护措施。
03
CATALOGUE
开关电源设计与优化
开关电源的参数设计
01
02
03
04
输入电压范围
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/6c5e0da1541810a6f524ccbff121dd36a32dc4ca.png)
开关电源利用电力电子器件进行电能转换,通过控制开关管的工作状态,实现电能的转换和调节。在开关电源中 ,输入的电能首先经过整流和滤波,转换为直流电,然后通过开关管的控制,将直流电进行高频开关,再经过变 压器和整流滤波,最终输出稳定的直流电。
开关电源的分类与特点
总结词
开关电源可以根据不同的分类标准进行分类,如按输 入输出类型、按电路结构、按控制方式等。不同类型 的开关电源具有不同的特点和应用场景。
替换法
通过替换可疑元件来判断故障 。
分割法
通过将电源分割成两部分或多 部分,逐一检查来判断故障。
明确电源的输入输出参数、负载 类型和可靠性要求。
方案选择
根据需求选择合适的电路拓扑和 控制方式。
元器件选择
选择合适的电子元器件,如开关 管、电容、电感等。
调试与测试
对电源进行功能和性能测试,调 整参数以满足要求。
PCB设计
将原理图转化为PCB图,进行布 局和布线。
原理图设计
根据方案设计电路原理图。
开关电源的优化技巧
02
开关电源设计与优化
开关电源的基本电路
01
02
03
04
整流电路
将交流电转换为直流电,常用 二极管或可控硅实现。
滤波电路
平滑输出电压,常用电容和电 感组成。
开关管
控制电源的通断,常用晶体管 或MOSFET实现。
控制电路
调节输出电压和电流,常用 PWM或PFM控制方式。
开关电源的设计流程
需求分析
电源输出纹波过大
原因可能包括滤波电容失效、电感器开路等 。
电源输出电压过高或过低
原因可能包括取样电阻损坏、误差放大器损 坏等。
开关电源培训
![开关电源培训](https://img.taocdn.com/s3/m/78569bddb9f67c1cfad6195f312b3169a451eaa2.png)
三、开关电源系统容量配置
1.整流模块备用方式
整流模块备份一般采用N+1备份,并考虑到蓄 电池充电电流容量。
2.充电系数ɑ
基于电网停电频率和平均停电持续时间来确 定。如果停电频率较高(3~4次/月)且持续 时间长(接近或大于电池放电小时数),电 池的充电系数可以选择的大一些,如 0.15~0.2左右,但不能超过部标的极限值 0.25。电网较好的局站,充电系数一般选择 0.1~0.15之间。
4.监控系统紧急故障应急处理
1)监控单元管理功能混乱:监控单元管理功 能主要包括显示查询、电池均充/浮充转换、 限流控制等,功能混乱紧急故障可能导致电 池损坏、数据显示异常等。处理办法:复位 监控单元。
2)软件控制功能丧失:监控单元软件、硬件 发生故障时,可能会造成关机、电池下电、 电池保护等误控,最后导致直流供电中断, 处理措施:复位监控单元;如果复位不能解 决问题,可以关闭监控单元,系统进入手动 控制。
返修 2.电压电流显示不准 可能原因:满量程设置有误、线路接错、温度传感器故障、背
板电路故障、监控器故障
处理方法:根据分流器设置满量程、校正线路、更换温度传感 器、检修背板电路、更换监控器并返修厂家
3.电流满量程显示
可能原因:信号线接线有误、分流器故障、背板故障
处理方法:校正信号线接线、更换合适的分流器、更 换背板
3.开关电源系统日常巡检时,应注意检查开 关电源各项参数设置是否正确、合理;检查 系统是否受控,交流供电恢复之后,能否对 蓄电池进行限流充电;检测整流模块温度, 判断风扇是否正常工作。
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/7f5fd60a777f5acfa1c7aa00b52acfc789eb9fdf.png)
开关电源培训资料开关电源是一种常见的电力转换设备,广泛应用于工业、通信、家电等领域。
本文将介绍开关电源的原理、分类、工作特点及常见故障处理等内容,为读者提供相关培训资料。
一、开关电源的原理开关电源是利用开关器件(如晶体管、MOSFET等)以开关的方式进行电能的变换,实现从交流电或直流电到稳定的、规定电压或电流的直流电的转换。
其基本原理是通过调节开关电源的电流开关周期,控制输入电流的导通或截止,从而实现电能的转换。
二、开关电源的分类根据输入电源的不同,开关电源可分为交流输入型和直流输入型两种。
1. 交流输入型开关电源交流输入型开关电源主要采用变压器对输入的交流电进行降压或升压,然后经过整流电路、滤波电路进行整流和滤波,得到直流电。
接下来,通过开关器件(如MOSFET)控制输出电流,经过变压器和滤波电路,最终得到稳定的直流电。
2. 直流输入型开关电源直流输入型开关电源是将直流电输入经过滤波电路后,再经过开关电源控制器进行开关控制,最后得到稳定的直流输出电压。
直流输入型开关电源结构简单,功率密度高,广泛应用于电子设备中。
三、开关电源的工作特点1. 高效性:开关电源采用开关控制方式,具有高效转换能力,相比传统的线性电源效率更高。
2. 稳定性:开关电源通过负反馈控制,能够实现稳定输出,抵御输入电压和负载的波动。
3. 调节性:开关电源具有调节输出电压或电流的能力,可以根据实际需求进行调节。
4. 尺寸小:开关电源体积小,占用空间少,适用于一些小型电子设备中的应用。
四、开关电源的常见故障处理1. 过载保护:当开关电源的输出电流超过额定值时,应及时采取措施降低负载,防止损坏。
2. 短路保护:当开关电源输出端出现短路情况时,应立即切断电源以避免故障扩大。
3. 过温保护:开关电源在工作过程中会产生一定的热量,当温度超过安全范围时,应停止使用并等待冷却。
4. 过电压保护:当开关电源的输出电压超过额定值时,应采取措施降低电压或更换合适的设备。
开关电源基本知识培训讲议共55页PPT资料
![开关电源基本知识培训讲议共55页PPT资料](https://img.taocdn.com/s3/m/59796bd1fd0a79563d1e7220.png)
2.DC 输入滤波电路(PFC)原理:
① 输入滤波电路:C1、L1、C2组成的双π型滤波 网络主要是对输入大功率开关电源的电磁噪声及杂 波信号进行抑制,防止对电源干扰,同时也防止大 功率开关电源本身产生的高频杂波对电网干扰。C3、 C4 为安规电容,L2、L3为差模电感。
2. 大功率开关电源反激式整流电路: T1为开关变压器,其初极和次极的相位相反。D1为整流二极管,R1、 C1为削尖峰电路。L1为续流电 感,R2为假负载,C4、L2、C5组成π型 滤波器。
3、大功率开关电 源同步整流电路: 工作原理:当变压器次级上端为正时,电流经 C2、R5、R6、R7使
Q2导通,电路构成回路,Q2 为整流管。Q1栅极由于处于反偏而截止。 当变压器次级下端为正时,电流经C3、R4、R2使 Q1导通,Q1为续流 管。Q2栅极由于处于反偏而截止。L2为续流电感,C6、L1、C7组成π 型滤波器。R1、C1、R9、C4为削尖峰电路。
第二部分 例 4-16V,40A输出大功率开关电源电路设 计
摘要:介绍一种采用半桥电路的开 关 电源,其输入电压为交流220V±20%, 输出电压为直流4~16V,最大电流40A, 工作频率50kHz。重点介绍了该电源的设
3、基本工作原理及原理框图 该电源的原理框图如图所示。此开关电源已成功地作为实验室电源、通信基 站电源使用。其效率≥85%,纹波优于30mVP-P,产品可靠性高、成本低,具 有一定的市场 竞争力。 220V交流电压经过EMI滤波及整流滤波后,得到约300V的直流电压加到半桥 变换器上,用脉宽调制电路产生的双列脉冲信号去驱动功率MOS 管,通过功率 变压器的耦合和隔离作用在次级得到准方波电压,经整流滤波反馈控制后可得到 稳定的直流输出电压。
开关电源基础知识学习资料
![开关电源基础知识学习资料](https://img.taocdn.com/s3/m/295993ddbdeb19e8b8f67c1cfad6195f312be8ba.png)
T = tON + tOFF
volatge, vL(t)
Buck的两个基本的公式
在电感电流连续模式CCM下: Vo=(Ton/T)×Vin=D × Vin
L=((Vபைடு நூலகம்n-Vout)*Vout) /(ΔI*f*Vin),这里的ΔI一般 取输出电流的10~30%。
2024/8/31
tON
VIN - VO
➢ 保护功能及附属功能: 1、OCP,OVP,OTP,欠压保护,限功率; 2、 绝缘电阻、绝缘电压、漏电流。
➢ 结构要求: 1、外形尺寸,2、外包装,3、安装条件,4、冷却方式,5、接口方式,6、 重量,7、名牌。
➢ 安规标准及EMC标准: 1、认证标志,3C,UL,GS,PSE,2、EMI测试标准。
工作原理: 通市电,经起动电阻R32 R33 R34给电容C8充电到15V-UVLO(OFF)。IC 开始工作, 输出PWM 脉冲,驱动MOSFET Q2导通,由于输出整流二极管D5、D6反偏截止,能 量存储在变压器T2原边电感。当变压器原边电流上升到输出反馈的设定值,无输出脉 冲,MOSFET Q2关断,D5、D6导通,进入反激阶段,能量从变压器原边传递到变压 器次级,经整流滤波给客户负载供电。如此周而复始,直至关机或保护。
开关电源基本概念3--主要技术指标
➢ 输入要求; 1、输入电压范围,2、输入电压频率,3、额定输入电流,4、输入电压跌落 及瞬间停电,5、浪涌冲击电流,6、静态功耗效率,能效标准,7、输入单 相或三相制,单相分两线制或三线制(classⅠ,classⅡ),8、保险管。
➢ 输出要求: 1、额定输出电压,2、额定输出电流,3、稳压精度:电压调整率,负载调整 率,纹波及噪声;4、瞬态特性:启动时间,保持时间,输出电压的上升时间、 下降时间、过冲、欠冲。
开关电源设计要点与调试 专题培训资料
![开关电源设计要点与调试 专题培训资料](https://img.taocdn.com/s3/m/02cf14e5910ef12d2af9e76c.png)
13
图2-4-b 正激式开关电源的开关损耗
2.4 开关时间对损耗的影响
在基极接一电容会降 低开通和关断时间
图2-5-a 增加开通和关断时间将增大开关损耗 纯电阻负载的开关损耗大小与开关管的 4 个开关时间大小成正比,增加开关管的开通 时间和关断时间,会降低开关电路的电压、 电流上升率,对降低开关电源的辐射干扰也 很有利,但会增加开关管的开关损耗。 在感性负载中,正激式和反激式输出开关 电源,两种开关损耗均不相同。 14
4
1.2 开关电源输出功率和工作频率
输出功率在120~300瓦之间,如果输入电压比较低,可选用推挽式开关 电源;如果输入电压比较高,则可选用半桥式开关电源;输出功率为300瓦 以上时,最好可选用全桥式开关电源。 输出功率在1000瓦以上的,最好选用IGBT管推挽式或半桥式、全桥式开 关电源,IGBT管开关电源工作频率相对比较低,体积相对比较大。 开关电源的体积很大程度上与输出功率及工作频率有关。输出功率越大, 功率器件的体积相应也会增大;工作频率越高,储能元器件(开关变压器、 滤波电容、滤波电感)的体积相应会减小,但开关电源的损耗也会随着开关 电源的工作频率升高而增加。因为,开关电源变压器的损耗和开关管的损耗 都与工作频率有关,电感、电容器的损耗也与工作频率有关。开关管的损耗 与工作频率成正比,因此,如果不是对开关电源的体积有特别要求,就不要 把开关电源的工作频率取得很高,一般以开关管的损耗不超过总电源损耗的 10%来决定开关电源的工作频率。 5
图2-5-b 开关电路各点波形及损耗
2.5 晶体管耗散功率的图解
一般功率器件的工作温度都会 达到85℃(其中:环境温度为 45℃+机内平均温升20℃+本身 温升20℃)以上;当工作温度 升高时,输出功率会线性下降。 如图2-6,晶体管耗散功率的半 功 率点大约为87.5℃,即在此 温度条件下,晶体管的耗散功率 就会下降到只有最大值的二分之 一。当温度达到115℃时,其耗 散功率只有最大值的四分之一。
开关电源培训资料
![开关电源培训资料](https://img.taocdn.com/s3/m/077f19042a160b4e767f5acfa1c7aa00b52a9d3b.png)
1.1名词解释
效率: 有效功率/总功率。 消耗功率=输出端各电压(接负载)*电流,总和为有效功率 总功率=工作电压*电流 一般开关电源的效率能达到80%以上,比传统的线性稳压电源
下图是串联式开关电源的最简工作原理图。Ui是开关电源的工作
电压,通过控制开关K不停地接通和关断在负载两端就可 以得到一个脉冲调制的输出电压Uo 。
下式中Ton为控制开关K接通的时间,T为控制开关K的工作周期。 改变控制开关K接通时间(Ton)与关断时间(Toff)的比例, 就可以改变输出电压Uo的平均值Ua 。占空比用D来表示,即:
c、电压调整率= U-Uo ×100% Uo
d、对于多路输出,其它各路应与被测一路同时带满载。
2.5 负载调整率
指标定义:即为电源稳定输出电压对电源负载电流的变化(小载— 满载)的调整性。
(电源负载的变化会引起电源输出的变化,负载增加,输出降低,相 反负载减少,输出升高。通常指标为3%--5%。)
的原始数据。
2.4电压调整率
指标定义:即为电源稳定输出电压对电源输入电压的变化(最小值—最大值)的 调整性。(来源于电源在满载时,其输出电压因该电源的供电电压波
动引起的变化。)
计算方法 a、负载电流为额定值(满载电流),源电压为标称值时,测出稳定输出电压UO
b、负载电流为额定值时,求出源电压从最小值(下限)到最大值(上限)时输 出电压的最大值与最小值U.
计算方法 a、源电压为标称值,负载电流为额定值的一半,测出输出电压整定
《开关电源培训资料》课件
![《开关电源培训资料》课件](https://img.taocdn.com/s3/m/deb0e1b7900ef12d2af90242a8956bec0975a52d.png)
通过适当的控制策略,实现开关管的零电 压或零电流开通和关断,减小开关损耗。
提高电源的功率因数,减小无功功率,从 而提高电源效率。
开关电源的可靠性设计
冗余设计
通过并联或备份设计,提高电源的可靠性,确保 电源在故障情况下仍能提供稳定的输出。
防雷击和过电压保护
在电源输入端加入防雷击和过电压保护电路,减 小雷击和过电压对电源的损坏。
按控制方式
可分为脉宽调制(PWM)和 脉频调制(PFM)开关电源
。
按电路结构
可分为串联型、并联型和升压 型开关电源。
开关电源的选型原则
匹配性
所选开关电源应与负载设备相 匹配,避免出现过载或欠载情
况。
效率与节能
优先选择效率高、节能效果好 的开关电源,以降低能源消耗 和运营成本。
可靠性
选择具有高可靠性、长寿命和 低故障率的开关电源,以确保 设备稳定运行。
PART 06
开关电源的发展趋势与展 望
开关电源的技术发展趋势
高效能
模块化
随着电力电子技术的进步,开关电源 的效率不断提升,有助于减少能源浪 费和降低散热需求。
为了便于生产和维护,开关电源的模 块化设计越来越受到重视,可以降低 成本和提高生产效率。
智能化
随着物联网和人工智能的发展,开关 电源的智能化水平不断提高,可以实 现远程监控、故障诊断和自动调整等 功能。
03
02
纹波测试
测量开关电源的输出纹波,评估其 性能。
电磁兼容性测试
确保开关电源符合相关国家和地区 的电磁兼容性标准。
04
开关电源的故障诊断与排除
无输出故障
检查输入电压、开关管、变压器等关键元件 ,找出故障原因。
《开关电源基础教程》课件
![《开关电源基础教程》课件](https://img.taocdn.com/s3/m/c30e1b4b02d8ce2f0066f5335a8102d276a26181.png)
开关电源的工作流程
01
输入电路将交流电转换 为直流电。
02
通过开关管的控制,将 直流电输入变压器进行 电压转换。
03
通过输出电路的滤波和 稳定,输出稳定的直流 电。
04
控制电路监测电源的工 作状态,根据需要调整 开关管的通断。
开关电源的波形分析
01
02
03
04
输入波形
分析输入电压和电流的波形, 了解其是否满足开关电源的要
THANKS
感谢观看
详细描述
开关电源是一种将电能进行转换的设备,通过控制开关管开通和关断的时间比率 ,将输入的直流电压转换成特定的输出电压或电流。开关电源的核心是开关管, 通过控制其开通和关断的时间比率,实现电能的转换。
开关电源的特点
总结词
开关电源具有效率高、体积小、重量轻、动态性能好等特点。
详细描述
开关电源的效率一般在80%以上,甚至可以达到90%以上,相比传统的线性电源,具有更高的能源利用效率。由 于开关电源的开关管工作在高频率,使得其体积和重量相对较小,有利于设备的紧凑设计和轻量化。此外,开关 电源的动态性能较好,能够快速响应负载的变化,维持稳定的输出电压或电流。
高频化与小型化
随着技术的进步,开关电源正朝 着更高频率和更小体积的方向发 展,以满足便携式设备和穿戴设
备等新兴市场的需求。
智能化与网络化
智能化和网络化技术使得开关电源 具备远程监控、故障诊断和自动调 整等功能,提高了电源的管理效率 和可靠性。
绿色环保
随着环保意识的提高,低噪声、低 辐射、低能耗的绿色开关电源成为 未来的发展趋势,有助于减少对环 境的负面影响。
开关电源的应用前景
电动汽车与充电设施
开关电源基本知识培训讲议
![开关电源基本知识培训讲议](https://img.taocdn.com/s3/m/08fec228647d27284b735173.png)
①选取磁芯材料和磁芯结构
选用R2KB铁氧体材料制成的EE型铁氧体磁芯。其具有品种多,引线空间 大,接线操作方便,价格便宜等优点。
②确定工作磁感应强度Bm
R2KB软磁铁氧体材料的饱和磁感应强度Bs=0.47T,考虑到高温时Bs会下 降,同时为防止合闸瞬间高频变压器饱和,选定 Bm=1/3Bs=0.15T。
流4~16V,最大电流40A,工作频率50kHz。重点介绍了该电源的设计思想,工作原理及特 点。
引言:
在科研、生产、实验等应用场合,经常用到电压在5~15V,电流在5~40A的电源。而一般实
验用电源最大电流只有5A、10A。为此专门开发了 电压4V~16V连续可调,输出电流最大40A的开
关电源。它采用了半桥电路,所选用开关器件为功率MOS管,开关工作频率为50kHz,具有重量轻、
增加,电源处于限流状态。
第三部分
一.直流系统 1.系统拓朴
2.本 机供电电 源、风机
3.R1、R2类软启动
在电源接通时,因C1、C2电压不能瞬变,电路中将产生一近似短 路电流。为防止此现象的产生,设置R1、R2电路。 工作原理:系统接通电源时,外电通过R1、R2给C1、C2充电,
几个周期后,C1、C2电压到工作电流,此时启动系统工作,KM1合
用于 提高电源稳定度,消除L1对环路稳定性影响。
4.8 、过流保护电路 为增强电源可靠性,此电源采用初、次级两
级过流保护。初级采用电流互感器CT1检测初
级变压器电流,检测出的电流信号经R60转为 电压信号后,再 经D2~D4,C9整流滤波后, 经过电位器RV3分压,反相器N3反相后加在Q1 管基极。当初级电流超过正常时,反相器反转,
4.3、功率变压器的设计
1)工作频率的设定 工作频率对电源的体积、重量及电路特性影响很大。工作频率高,输出滤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源的基本原理介紹 开关电源的发展趋势 开关电源主要的元器件选择及应用
基本原理介紹
➢ AC 输入部分 ➢ EMI 滤波 部分 ➢ PFC 部分 ➢ DC-DC转换部分 ➢ 均流技術 ➢ 保護与反馈控制線路
开关电源的基本原理及功能框图
开关电源的基本原理
开关电源的发展趋势
开关电源的发展趋势
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管的输入阻抗及栅极电流
Ciss: C1+C2 C2
Coss: C2+C3
C3
Crss: C2
Q1 C1
功率场效应管 (Mosfet)
功率场效应管的输入阻抗及栅极电流 栅源极间的结电容不容忽略,为了快速
地开通和关断漏极电流,需要较大的栅 极电流驱动栅极电压快速 Nhomakorabea上升和下降。
Mosfet的常用类型
D
D
N channel
G
Q1
P channel G
Q2
S
N Mosfet
S
P Mosfet
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管的基本特点 > 开关速度快, ~100ns > 开关频率高,50Khz~400Khz > 输出功率大
功率场效应管 (Mosfet)
开关电源的最新的拓扑
半桥谐振 (LLC) 有源钳位 (Active clamp forward) ZVS 全桥 无桥PFC 跟多的交错式控制方式
主要元器件的选择及应用
开关电源主要元器件的选择及应用
开关电源主要元器件的选择及应用
功率场效应管 (Mosfet) 功率二极管 Fuse (保险丝) 电解电容
功率二极管
快恢复二极管(Fast Recovery Diode—FRD)
从性能上可分为快速恢复和超快速恢复两个等级。前 者反向恢复时间为数百纳秒或更长,后者则在100ns以 下,甚至达到20~30ns。
分为PN结型结构和PIN结构两种。采用外延型PIN结构 的的快速恢复外延二极管(Fast Recovery Epitaxial Diodes—FRED),其反向恢复时间比较短(可低于 50ns),正向压降也很低(0.9V左右),但其反向耐 压多在1200V以下
功率场效应管 (Mosfet)
功率场效应管的输入阻抗及栅极电流
功率场效应管 (Mosfet)
如上图所式,栅极电压从0V上升到10V过程中,栅极电流Ig包括I1和I2两 部分,
功率场效应管 (Mosfet)
需要栅极的总电流Ig为Ig=I1+I2=0.36+0.564=0.924A
功率场效应管 (Mosfet)
功率二极管
肖特基二极管
以金属和半导体接触形成的势垒为基础的二极管称为肖特基势垒 二极管(Schottky Barrier Diode——SBD),简称为肖特基二极 管20世纪80年代以来,由于工艺的发展得以在电力电子电路中广 泛应用
肖特基二极管的优点 反向恢复时间很短(10~40ns)正向恢复过程中也不会有明显的
电压过冲在反向耐压较低的情况下其正向压降也很小(一般0.5V 左右),明显低于快速恢复二极管(一般1V左右) 其开关损耗和正向导通损耗都比快速二极管还要小,效率高 肖特 基二极管的弱点 当反向耐压提高时其正向压降也会高得不能满足要求,因此多用 于200V以下反向漏电流较大且对温度敏感,因此反向稳态损耗不 能忽略,而且必须更严格地限制其工作温度.
源极,N沟道型Mosfet管适用于正电源供 电,P沟道型Mosfet管适用于负电源供电, 目前大部分开关电源功率管用N沟道增强 型,而N沟道耗尽型主要应用于小信号控 制。
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管的输出特性 (Id~Vds)
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
Mosfet的常用类型 功率场效应管的基本特点 功率场效应管工作原理 功率场效应管的输出特性 (Id~Vds) 功率场效应管的输入阻抗及栅极电流 功率场效应管栅极驱动上升和下降时间 功率场效应管栅极驱动电路 选择及应用注意事项
功率场效应管 (Mosfet)
功率场效应管栅极驱动上升和下降时间
导通延迟时间:
Trd=Vgsth(2.5V)-(0V)
关断延迟时间:
Tfd=Vgl(10V)-Vgsth(2.5V)
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管 (Mosfet)
功率场效应管栅极驱动电路
12 V1
1u C1
1K
R2 V2
10 R1
Q1 Q2N2222
Output PWM
Q2 Q2N2904
分离的图腾柱驱动电路
功率场效应管 (Mosfet)
功率场效应管选择及应用降额.
1> 最大允许的结温: 80% 2> 栅极最大电压:80% 3> 漏源最大电压: 80%
功率二极管
功率二极管的常用类型
1> 肖特基二极管 (<200V) 2> 快恢复二极管 (200V~800V) 3> 普通整流二极管(桥堆)
开关电源的发展趋势
数字化及多相控制技术 国际的数字通讯总线:PMbus,PSMI 功率管理 模块化设计 交差配合使用 高功率密度及用统一标准
开关电源的发展趋势
低成本 较短的开发及交货周期 高可靠性 :MTBF(1~4 百万小时) 高效率:94%~96% 更严格的安规标准 高度小型化发展
功率场效应管工作原理 Mosfet是三端电压控制型器件,而三极管
是电流控制型器件,当栅极有驱动电压 时Mosfet管完全导通,驱动电压需要满 足尽可能减小导通压降的要求。 当栅极 无驱动电压时Mosfet应关断。
功率场效应管 (Mosfet)
功率场效应管工作原理 Mosfet管的三端引脚分别是漏极,栅极和
功率二极管
普通整流二极管(桥堆)
又称整流二极管(Rectifier Diode) 多用于开关频率不高(1kHz以下)的整流
电路中其反向恢复时间较长,一般在 5 s以上,这在开关频率不高时并不重 要正向电流定额和反向电压定额可以达 到很高,分别可达数千安和数千伏以上
功率二极管