雷电电磁脉冲干扰与防护

合集下载

电子设备抗雷电电磁脉冲的干扰与接地

电子设备抗雷电电磁脉冲的干扰与接地

e e to i q pm e g i s i h i l cr m a n tcp s sd fe e tfo h i h i g h a e e sn he l cr n c e ui nta a n tlg tng ee to g e i ulei i r n r m t e lg tn ,t ew y ofr l a i g t
d s n fh niihige c o g eip l f lc o id vcs a o ss pa t vl f lc o g ei ei e tl t et man t us o et nc eie cn tutt el e o et man t g o t a —g n l r c e e r n j o th e e r c
电子设 备抗 雷 电 电磁脉 冲 的干 扰 与接 地
陈 逊
( 州广播 电视 传媒 集 团, 浙 江 温 州 3 5 0 ) 温 2 0 0
[ 摘 要] 雷 电电 脉冲是一种 携带 巨大雷 电能量的 电磁脉 冲干扰 信号 ,对现 代 电子设备造 成的危 害极 大。 磁
通 过 比较 , 电子 设 备 对 雷 电 电磁 脉 冲 的 防护 虽 然 有别 于直 击 雷 ,但 将 电磁 脉 雷 电 能 量泄 放 入地 的 做 法 与直 击 中的
c m pai iiy, fe a n h e s r so hil n ,a c si o s r e p o e to n itrn i s o d as o tb lt a trtki g t e m a u e fs edi g c e sng t u g r t c i n a d fle i g, t h ul l obe gr n d. ou de
[ 文章编 号 】 1 7 _ 3 6 2 1 0 — 0 0 0 1 4 2 ( 0l ) 2 0 6 — 3 6

雷击与电磁脉冲防护技术

雷击与电磁脉冲防护技术

雷击与电磁脉冲防护技术电子与电气工程是一门关于电力系统、电子设备和电磁场的学科,涵盖了广泛的领域,其中包括雷击与电磁脉冲防护技术。

雷击和电磁脉冲是电气工程中常见的问题,对电力系统和电子设备都可能造成严重的损坏。

因此,开发有效的防护技术对于保障电力系统和电子设备的正常运行至关重要。

雷击是指大气中形成的电荷差异引起的放电现象。

当云与地面或云与云之间的电荷差异达到一定程度时,就会形成雷电放电。

雷电放电会产生巨大的电流和电压,对电力设备和电子设备造成巨大的冲击。

为了防止雷击对电力系统和电子设备的损害,我们需要采取一系列的防护措施。

首先,我们可以在电力系统的设备和建筑物上安装避雷针和避雷网。

避雷针可以通过尖锐的尖端将雷电引向地面,避免其对设备和建筑物的直接冲击。

避雷网则可以将雷电分散到地面上,减小雷电对设备和建筑物的影响。

这些避雷设施可以有效地降低雷击风险,保护电力系统和电子设备的安全运行。

其次,我们还可以采取电磁屏蔽技术来防护电子设备。

电磁脉冲是由强电流和电压突变引起的短暂电磁波,可以对电子设备产生干扰甚至损坏。

为了防止电磁脉冲对电子设备的影响,我们可以在设备周围设置金属屏蔽,将电磁波引导到地下或远离设备。

此外,还可以使用特殊的材料和设计来减小电磁脉冲对设备的影响。

这些电磁屏蔽技术可以有效地保护电子设备免受电磁脉冲的损害。

除了以上的防护措施,我们还可以通过合理的电力系统设计来降低雷击和电磁脉冲的影响。

例如,可以采用合适的接地系统来分散雷击和电磁脉冲的能量,减小其对设备的冲击。

此外,还可以在电力系统中增加过电压保护装置,及时将过电压引向地面,保护设备的安全运行。

综上所述,雷击与电磁脉冲防护技术在电子与电气工程中具有重要的地位。

通过安装避雷设施、采用电磁屏蔽技术和合理的电力系统设计,我们可以有效地保护电力系统和电子设备免受雷击和电磁脉冲的损害。

随着科技的进步和工程技术的不断发展,我们相信雷击与电磁脉冲防护技术将会不断完善,为电力系统和电子设备的安全运行提供更可靠的保障。

雷电电磁脉冲防护基本原理和初步实践经验

雷电电磁脉冲防护基本原理和初步实践经验

太阳黑子
高压配电系统对地短路造成的过电压
上述七种外部干扰源经常出现并造成危
害的主要有 ∞ ° ≥∞ ° 和 ∞≥⁄ 在 ∞≤ ) 中对 ∞ ° 定义为 / 作为干扰源的
闪电电流和闪电电磁场 0与 ∞ ° 相比 ∞ ° 的电磁场强度!陡度和破坏范围都弱
得多 但雷电这一大气物理现象 每次释放的
数百兆焦耳 能量与足可影响敏感设备
在其
5过电压保护理论与实践6一书中列出防雷保护
系统框架图 经笔者修改后如下图 图 所示
外部防雷
内部防雷
过电压保护
接闪针网带
引下线
接地装置
空间屏蔽
等电位# 连接
防闪络 安全距离
∞≤
)
)
∞≤
∞≤
∞≤
∞≤
∞≤
)
图 雷电防护系统示意图
注 国际电信联盟公布的/ 干扰的防护0建议 × Ø 系列中 Ø ! ! ! ! ! ! ! ! ! ! ! 也有详细的规定和说明
就是电 距今也有 多年了 而对雷电波形
雷电流参数和电磁耦合过程的确认却是近十
几年的事
年 ∞≤
))和 年
∞≤
) 相继公布了雷电流参数 表 !表
! 表 和 雷 电 波 形 图 图 ! 图 ∞≤
) 的附录 ⁄ 提供了/ 电磁耦合过程0的
信息资料
表1 首次雷击的雷电流参数
雷电流参数 见图
Ι 幅值
Τ 波头时间 Λ
) 和 ∞≤ 提出如下注意事项
) 为准 笔者特
主要部分使用非金属材料 如木棍
或碳素纤维材料外表涂以漆物! 玻璃钢筒内
置高阻液体 的接闪装置 由于其通流后耐高
能量的能力低 接闪后容易炸断 在工程中应

雷电电磁脉冲对卫星接收系统的危害及防护

雷电电磁脉冲对卫星接收系统的危害及防护

雷电电磁脉冲对卫星接收系统的危害及防护作者:王昭俊来源:《科技传播》2016年第13期摘要卫星接收系统是卫星电视信号接收的的保证,在雷雨天气状况下,如果卫星接收系统受到雷击形成雷电电磁脉冲后,会严重的危害系统的运行,甚至破坏系统中的电子设备。

在本文中,首先介绍了雷电电磁脉冲对卫星接收系统的危害,接着分析了防护危害的措施,以降低雷电电磁脉冲对卫星接收系统的影响,保证卫星接收系统在雷雨天气下正常的运行。

关键词雷电电磁脉冲;卫星接收系统;危害;防护中图分类号 TN8 文献标识码 A 文章编号 1674-6708(2016)166-0160-01在自然界中,雷电脉冲放电过程所具备的能量是非常强大的,雷击多次进行后,释放出的能量可达到数百兆焦耳。

近年来,卫星接收系统的应用越来越普遍,在系统运行的过程中,雷电灾害频繁的发生,导致系统的运行受到较大的影响,除了直击危害外,雷电电磁脉冲也会对系统产生非常大的影响,阻碍系统的正常运行。

为了解决这一问题,就需要采取相应的防护措施降低雷电电磁脉冲所带来的危害。

1 雷电电磁脉冲对卫星接收系统的危害雷电就是闪电,较大的冲击电流及雷电流变化梯度、较短的时间、较高的冲击电压为雷电的主要特点。

在雷电电磁脉冲中,包含的过电压脉冲形式有3种,一是由雷电流所引起的,二是由云地间静电感应所引起的,三是由回击通道辐射电磁波感应引起的,这3种过电压脉冲形式所造成的影响都会很大[1]。

雷电电磁脉冲在进行传输时,主要有2种途径:一种是导线传输,另一种是辐射传输,无论哪种传输方式,其所带来的危害都是比较严重的。

卫星接收系统在运行的过程中,如未采取任何的防护措施或者防护不到位时,极易受到雷电的破坏,导致系统的运行受到阻碍,影响卫星信号的正常接收。

通常,雷电的破坏效应分为两种,一种为直接破坏,一种为间接破坏。

所谓直接破坏效应,是指雷电直接击中卫星接收系统后形成的破坏,雷电流热效应、雷电流冲击波效应等均为直接破坏效应,而间接破坏效应是雷击造成的雷电电磁脉冲干扰和损伤卫星接收系统。

(完整版)铁路信号设备电磁兼容及雷电电磁脉冲防护实施意见-00006

(完整版)铁路信号设备电磁兼容及雷电电磁脉冲防护实施意见-00006

附件铁路信号设备电磁兼容及雷电电磁脉冲防护实施意见目录1 总则 (3)2 铁路信号设备电磁兼容和雷电防护的基本要求 (4)2.1 电磁兼容试验 (4)2.2 雷电防护试验 (4)3 铁路信号设备专用防雷保安器(SPD)的基本要求 (5)3.1 一般要求 (5)3.2 电源防雷保安器的要求 (6)3.3 信号传输线防雷保安器的要求 (7)3.3.1 安装在室内的信号传输线防雷保安器(SPD)的要求 (7)3.3.2 安装在室外的信号传输线防雷保安器(SPD)的要求 (10)4 铁路信号设备用防雷元件的基本要求 (10)5 铁路信号设备综合防雷的基本要求 (11)5.1 信号楼的直击雷防护和屏蔽 (11)5.1.1 既有信号楼 (11)5.1.2 新建信号楼 (11)5.2 室外信号设备的直击雷防护和屏蔽 (12)5.3 接地系统 (13)5.3.1 一般要求 (13)5.3.2 既有信号楼接地系统改造 (14)5.3.3 新建信号楼接地系统建设 (15)5.4 接地汇集线及等电位连接 (16)6 防雷设备设置、安装和施工的基本要求 (19)6.1 一般要求 (19)6.2 电源防雷保安器(SPD) (20)6.3 信号传输线防雷保安器(SPD) (20)7 其他要求 (22)1 总则1.0.1为统一铁路信号设备电磁兼容性及雷电电磁脉冲的防护标准,提高信号设备抵抗电磁干扰能力,防止或降低雷电的危害,保证信号设备安全工作,制定本实施意见。

1.0.2信号设备本身应有符合规定的承受过电压和过电流的能力。

1.0.3 根据《铁道信号设备雷电电磁脉冲防护技术条件》(TB/T 3074-2003),铁路信号设备雷电电磁脉冲安全防护,应当采取以下措施:a.改善信号设备所处场地及机房电磁环境条件;b.机房和线路屏蔽;c.等电位连接;d.合理布线;e.在所有信号设备与外线的接口处设置防雷保安器等;f.良好地接地。

雷电电磁脉冲安全防护框图见图1。

雷电电磁脉冲及其防护

雷电电磁脉冲及其防护

雷电电磁脉冲及其防护1 、雷电电磁脉冲的物理特性(1)物理特性从积雨云的密布到发生闪电,会出现三种物理现象。

①云中静止电荷产生的静电场,产生静电感应现象,地面及各种导体会产生感应电荷,呈观静电场的作用。

这种作用随着距离的增大而迅速减小,与距离的三次方成反比。

②积雨云中电荷的移动(包括闪电)会产生磁场,若磁场强度发生变化就会出现电磁感应现象,这就是感应场产生的作用。

这种作用随着距离的增大而减小较快,与距离的平方成反比。

③闪电发生时,会出现电磁波辐射。

这种辐射场也随距离增大而减小,但比较缓慢,它与距离的一次方成反比。

除了注意上述三种物理现象,更应密切注意雷电流的变化特性,因为雷电的破坏作用与雷电流的峰值和波形密切相关。

现代防雷装臵正是根据雷电流的物理特性设计的,其主要的物理特性是:①峰值电流决定闪电的机械力和电力的作用大小以及雷灾的危害程度;②到达峰值的时间,数值愈小,冲击力愈大,在选用防雷元器件时应考虑响应速度;③最大电流变化率决定了闪电的电磁感应强弱,是电子设备防雷技术中应特别重视的参量,因为电子设备防雷技术中主要是对感应雷的防护;④半峰值时间或到达波尾中间的时间,是指回击电流减小到峰值一半时的时间,这个时间越长,热效应越大,容易造成元器件的损坏,也容易引起火灾。

超过lOO}上s就属于热闪电了。

(2)雷电电磁脉冲的频谱分析雷电电磁脉冲的频谱是研究避雷的重要依据,从频谱结构可以获得雷电电磁脉冲电压、电流的能量在各频段的分布。

根据这些资料可以估算通信设备或系统在其频率范围内可能遭受到的雷电冲击的幅度和能量大小,并以此作为确定避雷措施的参数。

①雷电流峰值比率的频率分析雷电流峰值比率的频率分布是指在雷电流的频谱范围内,每一个频率的电流峰值与雷电流峰值之比的频率分布。

雷电流主要贫布在低频部分,随频率升高迅速递减。

电波的波头越陡,高次谐波越丰富,波尾越长,低频部分越丰富。

②电流峰值比率积累的频率分布雷电流的破坏作用主要表现在对设备的过电压击穿和冲击能量过大的热击穿。

雷电电磁脉冲的防护

雷电电磁脉冲的防护

及 防雷 区交 界处 做等 电位 连接 。
()在 电 源线 和信 号线 上必 须 安装 相 应 的避 雷 3
器。
223 防雷 区 间内部 的等 电位连 接 ..
… 各 防雷 区间 内部应 设 有 闭合 环 形 的 等 电位 1 连 接 带 。该 连 接 带 至少 应 有 两 处 与 大 楼 主 钢 筋 相 连, 把各 种 接 地 线 连 成 到该 连 接 带 上 , 该 防雷 冉 使
用。
我们若 用 会属壳 体将 干扰 源 屏蔽起 来, 图 2f 如 b 所示 ,图 中 c 为干 扰 源 与屏 蔽 壳体 之 间 的 电容, ) l
c 为 电子设 备 与 屏 蔽壳 体 之 间 的 电容 , 2
为屏 蔽
() 3 把天 面 网格 、 引下线 、 平均 压环 、 地 网可 水 接 靠地 焊 接起来 。
环 路 感应 过 电压 ;④ 雷 电击在 远 处架 空 电力 线 上 ;
会属套 管两端 应做好 等 电位连 接 。
221 构造 “ .. 法拉 第 笼 ”
⑤ 雷 云 之 间放 电在 电力 线 上 弓起 感 应 雷 电波 及 过 I 电压 ; 雷击 通 信线 、 ⑥ 电力 线 附 近地 面或 地 面 上 其
同样 , 如果 干 扰 源不 屏 蔽, 而将 电子 设备 屏 蔽 ,
结 果 与上述 屏蔽 效果类 似 。 实 际工作 中, 在 是屏 蔽干 扰 源还 是 屏 蔽受 感 器, 议进 行综 合全 盘 考虑 。 根 建 应 据简便 、 济 、 作方 便 、 经 操 场地等 具体 情况 丽定 。 对 于平 行 导 线 , 于分 布 电容 较 大 , 合 干 扰 南 耦
一1一j) ( ) ( 1 [
各种 电源 线 、信 号线穿 金 属管 埋地 引 入 , 时信 号 同

《防雷击电磁脉冲》课件

《防雷击电磁脉冲》课件
雷击电磁脉冲通过电力线 路、通信线路等传输线路 传播,影响远距离的电子 设备和信息系统。
接地系统传播
雷击电磁脉冲通过接地系 统传播,影响建筑物内的 电子设备和信息系统。
影响范围
直接影响范围
雷击电磁脉冲的直接影响范围通常在 雷电放电点附近,影响范围内的电子 设备和信息系统可能受到不同程度的 干扰和损坏。
01
02
03
设备损坏
雷击产生的瞬时高电压和 电流会导致电子设备和信 息系统的损坏,造成经济 损失。
数据丢失
雷击电磁脉冲会对电子设 备和信息系统造成干扰, 导致数据丢失或损坏。
系统瘫痪
雷击电磁脉冲可能引发整 个系统的瘫痪,影响生产 和生活。
防雷击电磁脉冲的重要性
保障生命安全
促进经济发展
防雷击电磁脉冲可以减少雷击对人员 和设备造成的伤害,保障生命安全。
01
防雷击电磁脉冲概述
定义与特点
定义
防雷击电磁脉冲是指通过采取一系列措施,防止雷电产生的电磁脉冲对电子设 备和信息系统造成损坏或干扰。
特点
防雷击电磁脉冲具有广泛的应用范围,涉及电力、通信、交通、金融等多个领 域;同时,防雷击电磁脉冲需要综合考虑多种因素,包括设备接地、电磁屏蔽 、浪涌保护等。
雷击电磁脉冲的危害
护措施的设计和规划。
输标02入题
在进行防雷击电磁脉冲的工程设计时,需要考虑建筑 物、设备、线路等的雷电环境条件,包括雷电活动规 律、地形地貌、土壤电阻率等因素。
01
03
防雷击电磁脉冲的工程设计需要综合考虑多种防护措 施,包括接闪器、引下线、接地装置、电涌保护器等
,以确保建筑物、设备、线路等的防雷安全。
接地保护的原理是将雷电引入地下,通过大地将电流散播,从而避免对 建筑物和设备造成损害。

雷击电磁脉冲屏蔽措施

雷击电磁脉冲屏蔽措施

雷击电磁脉冲屏蔽措施1. 引言近年来,雷击电磁脉冲(LEMP)成为电子设备安全性的一个重要问题。

雷电击中发电线路或电信号传输系统可能会产生携带大量能量的电磁脉冲,对附近的电子设备造成严重的干扰甚至损坏。

为了保护设备免受雷击电磁脉冲的影响,应采取一些屏蔽措施。

本文将介绍一些常见的雷击电磁脉冲屏蔽措施和其原理。

2. 金属屏蔽柜金属屏蔽柜是最常见的屏蔽设备之一。

它通过使用金属材料(如铁、铝等)作为屏蔽外壳,将电磁辐射引导到地面上,从而减小电磁脉冲对内部设备的影响。

金属屏蔽柜可以有效地屏蔽电磁波,并提供可靠的保护。

金属屏蔽柜的设计包括外壳和接地系统两部分。

外壳必须完全密封,以阻止电磁波从缝隙中逸出。

接地系统需要良好连接到地面,以便将电磁脉冲排到地下。

金属屏蔽柜的屏蔽效果取决于金属壳体的材料和厚度。

通常情况下,金属屏蔽柜可提供90%以上的屏蔽效果。

3. 电磁屏蔽材料除了金属屏蔽柜外,还有一些其他的电磁屏蔽材料可用于屏蔽雷击电磁脉冲。

这些材料通常是导电的,可以将电磁波引导到地下。

常见的电磁屏蔽材料包括铜箔、银纤维、涂有导电材料的纺织品等。

这些材料可以被用于电磁屏蔽包装、电缆和电子设备的外壳等。

它们通过提供导电路径来屏蔽电磁波,从而保护设备免受雷击电磁脉冲的影响。

选择适当的电磁屏蔽材料时需要考虑其导电性、耐久性、成本等因素。

需要根据具体的应用需求进行选择。

4. 接地系统良好的接地系统是屏蔽雷击电磁脉冲的关键。

通过将设备的接地系统连接到地面,可以将电磁脉冲排到地下,从而减小对设备的影响。

接地系统应该采用低阻抗的接地方式,以确保电磁脉冲能够顺利流入地下。

接地系统的设计应符合相关的国家和地区的安全标准。

在设计接地系统时,还应考虑设备的地线长度和布线方式。

地线长度过长或布线方式不当可能会降低接地系统的效果。

5. 静电屏蔽静电屏蔽也是一种常见的屏蔽措施。

静电是指在两个物体之间由于电荷的不平衡而产生的电势差。

当静电积累到足够高时,可能会引发电弧放电,产生电磁脉冲。

雷电电磁脉冲的防护

雷电电磁脉冲的防护

国际电工委员会标准IEC61312-11995-02第一版雷电电磁脉冲的防护第一部分:通则Protection against lightning electromagneticImpulse —Part 1: General principles国际电工委员会雷电电磁脉冲的防护第一部分:通则前言1) IEC (国际电工委员会)是一个由各国电工委员会(IEC 国家委员会)组成的全球性的标准化组织。

IEC 的目标是促进在电气和电子领域内涉及标准化的所有问题的国际间的合作。

为此,除其它的工作外,IEC 还出版国际标准。

这些标准的编制是委托给合技术委员会的,对所涉课题感兴趣的任何一个IEC 国家委员会,均可参一标准的编制工作。

与IEC 保持联系的国际的政府及非政府组织也参与此编制工作。

IEC 根据与国际标准化组织(ISO )双方之间的协议所确定的条件与该组织紧密协作。

2)IEC 就有关的技术问题所通过的正式决定或协议(由代表了对相关问题有特别兴趣的所有国家委员会的各个技术委员会所编制),尽可能接近地表达了对所涉主题国际上的一致看法。

3)IEC 所通过的决定或协议,以标准、技术报告或指南的形式出版,并以推荐的形式供国际使用,在此意义上它们是为和国家委员会所接受的。

4)为了促进国际上的统一,各个IEC 国家委员会应致力于将IEC 国际标准尽可能最大程度地透明地应用于其国家标准及区域标准中去。

IEC 标准与相应的国家标准或区域标准中去。

IEC 标准与相应的国家标准或区域标准间的任何分歧应在后者中明确地指出。

IEC61312-1国际标准已由IEC 81 技术委员会(“防雷”)制订。

此标准的正文根据以下的文件写成:DIS (国际标准草案) 投票报告81(CO )21 81/66/RVD本标准的认可投票的详尽信息可在上表所示的投票报告上找到。

IEC61312-1构成了总标题为“雷电电磁脉冲的防护”的系列出版物的一部分。

雷电电磁脉冲(LEMP)的特性分析及屏蔽

雷电电磁脉冲(LEMP)的特性分析及屏蔽

雷电电磁脉冲(LEMP)的特性分析及屏蔽王庆祥1姚烨1崔喆1孙冬迪1薛文安2(1.天津市中力防雷技术有限公司,天津300384;2.中国民航大学,天津300384)摘要本文讨论了雷电电磁脉冲的危害,包括传导浪涌、辐射电磁场、感应电压,分析雷电电磁脉冲的特性;并以磁屏蔽为主介绍雷电电磁脉冲的防护,以及磁屏蔽的材料选择。

关键词雷电流;雷电电磁脉冲(LEMP);电磁屏蔽引言雷电是由带电的云在空中对地放电导致的一种特殊的天气现象,其具有选择性、随机性、不可预测性以及破坏性。

雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。

在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。

本文以磁屏蔽内容为主,介绍雷电电磁脉冲的防护。

1、雷电电磁脉冲(LEMP)的特性雷电电磁脉冲(LEMP)是由雷电流的电磁效应产生,它包括传导浪涌和辐射脉冲电磁场辐射作用。

传导浪涌又会在附近回路中产生感应电压;辐射脉冲磁场干扰附近电气电子设备正常工作。

1.1 传导浪涌雷电流是雷电造成各种损害的损害源,它表现为以下四种情况:S1:雷击建筑物;S2:雷击建筑物附近;S3:雷击连接到建筑物的线路;S4:雷击连接到建筑物的线路附近。

雷电流通过这四种形式在线路中产生传导浪涌。

表1 雷击低压系统浪涌过电流的预期值表2 雷击通信系统浪涌过电流的预期值过电流预期值,其中S3(直接雷击)是雷电直接击在了连接建筑物的线路上,在线路的两个方向上均有分流,与此同时,强大的直接雷击电流会产生强大的电磁场,在线路上再次产生浪涌,造成叠加性的伤害。

1.2 辐射电磁场1.2.1 附近雷击时LPZ1格栅形空间屏蔽如图1所示为附近雷击时的情况。

LPZ1屏蔽空间周围的入射场可以近似地当作平面波。

雷电电磁脉冲的产生机理、危害及其防护

雷电电磁脉冲的产生机理、危害及其防护
维普资讯
物理与工 程
Vo. 6 No 5 2 0 11 . 0 6
击 来 电 大产 生机 理 、 害及 其 防护 危
田杨 萌
( 京信 息科 技大 学基 础部 , 京 1 0 8 ) 北 北 0 0 5
( 稿 日期 ;20 —80 } 收 0 50—6 收修 改 稿 日期 :20 —40 ) 0 60 —4
1 ・ _ . 0 m s 。 当梯式 先 导通 道 的顶 端 到 达离 地 面 约 3 m~5 m 时 , 成 很 强 的地 面 大气 电场 , O 0 形 会从 地 面 较 突 出的 部 分 引 发 向上 的迎 面 先 导. 当迎 面 先 导 与下 行 先 导 相 遇 时 , 成 了 从 云 到 地 面 的强 烈 形 放 电通 道 , 生 回击 放 电 , 展 为 强 大 的 雷 电 流 产 发 ( 十到数 百 千安 ) 这就 是下 行 雷 的主 放 电 阶段 , 数 ,
道 再次 放 电 , 成 第 二次放 闪 电击 , 第 一 次 放 电 形 与 间隔 时 间约 为 几 十 毫 秒 . 次 放 电 先 导 比原 来 快 这
得多 , 平均 速度 为 2 0 m ・S 。称 为箭 式 先 导. ×1 _, 这 样 的放 电次 数可 高 达数 十 次之 多.
摘 要 阐述 了雷 电电磁 脉 冲 的产 生机理 、 播途 径 及 对 电子 设备 的危 害 , 传 并简 要 说 明 了其 防
护 措 施.
关 键词 雷 电电磁脉 冲 ; 电子设备 ; 害 ; 危 防护
M ECHANI M S OF PRODUCTI N ,H AZARD O AND P REVENTI N o oF G HTNI LI NG ELECTRoM AGNETI PULS C E

浅谈雷电电磁脉冲防护

浅谈雷电电磁脉冲防护

浅谈雷电电磁脉冲防护[摘要]:随着电子设奋的广泛使用。

雷电磁脉冲的危害也日益严重,雷电电磁脉冲的防护已成为现今雷电防护中最受关注的问题,本文就雷电电磁脉冲防护作一汽析。

并介绍具体实施的做法。

[关键词]:建筑物外部屏蔽合理布线信息系统设备的屏蔽线缆屏蔽电涌保护器21世纪,人类进入信息社会,以微电子技术和计算机网络为依托的信息技术极广泛地渗入政府各个部门、各行业和所有居民家中,与之不可分离的雷灾迅猛发展。

雷电造成自然灾害的范围随社会经济的发展而日益扩大,特别是雷电脉冲对各行各业广泛使用的微电子设备的破坏,使其影响到社会生活的各个方面。

我国每年因雷击破坏建筑物内电气设备的事件时有发生,所造成的损失非常巨大。

因此,建筑物雷电磁脉冲防护设计显得尤为重要。

设计的合理与否,对人身安全及电气设备的安全使用与运行有着至关重要的作用。

国际电工委员会编制的标准(IEC1024-1)将建筑物的防雷装置分为两大部分:外部防雷装置和内部防雷装置。

外部防雷装置(即传统的常规避雷装置)由接闪器、引下线和、接地装置三部分组成。

接闪器(也叫接闪装置)有三种形式:避雷针、避雷带和避雷网,它位于建筑物的顶部,其作用是引雷或叫截获闪电,即把雷电流引下。

引下线的作用是将接闪器与接地装置连接在一起,把接闪器截获的雷电流引至接地装置,使雷电流构成通路,接地装置位于地下一定深度,它的作用是使雷电流顺利流散到大地中去。

但外部防雷装置再完善,没有配套的内部防雷装置,仍无法获得好的防雷效果。

接闪装置接闪后,建筑物引下线附近的设备会受到雷电流的感应,这称作雷电电磁脉冲(LEMP)干扰。

雷电电磁脉冲的感应范围很大,对建筑物、人身和各种电气设备及管线都会有不同程度的危害。

现代电子技术日益向高精度、高灵敏度、高频率和高可靠性方向发展。

这些电子设备非常灵敏,但耐压很低,一般电子设各都承受不了正负5伏的电压波动。

因此必须采取必要的防护措施防止雷电电磁脉冲的干扰,以便在先进的建筑物内实现良好的电磁兼容性。

雷电电磁脉冲的辐射耦合效应及其防护

雷电电磁脉冲的辐射耦合效应及其防护
2 0 1 3年
第1 期
S C I E N C E&T E C H N O L O G Y I N F O R M A T I O N
O高校讲坛 0
科技信息
雷 电电磁脉冲的辐射耦合效应及其防护
周 闯
( 上海海事大学, 中国 上海 2 0 0 1 3 5 )
【 摘 要】 本文介绍 了雷电电磁脉 冲辐射耦合效应的危害, 并给 出了对 雷电电磁脉冲辐射耦合 效应危 害的防护措施 。

2 L E MP对环 路 的磁 场 耦 合
2 . 1 试验原理
由于雷电电磁场在近 区属于低阻场 .磁场强度 H大于 电场 强度 E, 近区场 以磁场为 主, 场对 回路的感应为磁场感应[ 5 1 。 L E M P 在 电子设备的闭合环路中产生 的感应 电压 :

单 d 一当 f 西 . t dt J
( 3 )
在入射波 的波长 的长远大于环路的尺寸时 . 可以等效 为偶极 子天 线[ 6 1 , 如图 3 所示 。 若环路面积 为 , 入射磁场 与环路法线 的夹角为 , 则环路感 应
的 电 压 为
U ( t ) = p c S H( t ) c o s O
( 4 )
1 L E MP对传 输线 的 电场 耦 合 【 关键词 】 雷 电磁脉冲 ; 辐射耦合 ; 防护
雷 电电磁脉冲 ( L E M P ) 是指伴随雷 电放 电发生的电流的瞬变和强 电磁场辐射 . 属于雷 电的二次效应 . 出现的频率 非常高 . 是最常见的天 然强 电磁脉 冲干扰源之一 雷 电电磁脉冲危害随着微 电子技术的发展 而 日益突出 . 由于雷 电电磁脉冲 的危害 区域远大于直击雷 . 它既可以 由云地闪 电产生 . 也 可以由云 内闪电和云际闪 电产生 . 影 响范围遍布 对流层 以下至地表 以上 区域 . 对空 中飞行 的火 箭 、 飞机 、 导弹 , 地面架 空输 电线 、 各种 电子 装备和深埋地 下的电缆及至油气输送 管道 . 都有 不同程度的危害 在直击雷 防护技术相对成熟 的今天 . 雷 电电磁脉 冲 所造成 的损失仍 呈逐年上升之势 . 特别 是 电力 、 通信 和航 空航天等部 门, 危害尤为严重。 因此 , 雷电电磁脉 冲的防护是信息化时代防雷技术 领域 中的薄弱环节_ l l 在大部分雷电防护规范、 标准 中常用“ 雷 电波侵入 ” 代指直击 雷或 雷 电电磁脉冲在导线或其它金属体上产生 的瞬 间大 电压 ( 或大 电流) . 在导线上传 导时又称为浪涌 根据耦合方式不 同划分 . L E M P 对 电路 的干扰途径包括传导耦合与辐射 耦合两种模式 传导耦合是指 L E M P 通过导体 、 电容 、 电感 、 互感等金属 导线或集 总元件 直接作 用与敏感电 路 的能量传递方式 。辐 射耦 合是指 电磁脉 冲通过设备 的各种等 效天 线, 如通信线 、 电路板布线 、 机壳 孔缝 、 发射 与接收天线 、 电源线等 , 在 电路 中感应 出电压或 电流 在实际工程中 . 它们往往是 同时存在 . 互相 联 系的。 传统 的防雷技术 比较重 视对直击雷和雷 电浪涌等传导耦合效应 的研究 . 对L E M P的辐射耦合 重视不够 . 随着微 电子技术 的进 步 . 这种 危 害 日益严重 , 因此现代防雷工程 必须 兼顾 L E M P的辐射耦合 . 才能 收到 预期效果I 2 1 由( 1 ) 式可得传输线上的感应电压为

雷电电磁脉冲的辐射耦合效应及其防护

雷电电磁脉冲的辐射耦合效应及其防护

雷电电磁脉冲(LEMP)是指伴随雷电放电发生的电流的瞬变和强电磁场辐射,属于雷电的二次效应,出现的频率非常高,是最常见的天然强电磁脉冲干扰源之一。

雷电电磁脉冲危害随着微电子技术的发展而日益突出,由于雷电电磁脉冲的危害区域远大于直击雷,它既可以由云地闪电产生,也可以由云内闪电和云际闪电产生,影响范围遍布对流层以下至地表以上区域,对空中飞行的火箭、飞机、导弹,地面架空输电线、各种电子装备和深埋地下的电缆及至油气输送管道,都有不同程度的危害。

在直击雷防护技术相对成熟的今天,雷电电磁脉冲所造成的损失仍呈逐年上升之势,特别是电力、通信和航空航天等部门,危害尤为严重。

因此,雷电电磁脉冲的防护是信息化时代防雷技术领域中的薄弱环节[1]。

在大部分雷电防护规范、标准中常用“雷电波侵入”代指直击雷或雷电电磁脉冲在导线或其它金属体上产生的瞬间大电压(或大电流),在导线上传导时又称为浪涌。

根据耦合方式不同划分,LEMP对电路的干扰途径包括传导耦合与辐射耦合两种模式。

传导耦合是指LEMP 通过导体、电容、电感、互感等金属导线或集总元件直接作用与敏感电路的能量传递方式。

辐射耦合是指电磁脉冲通过设备的各种等效天线,如通信线、电路板布线、机壳孔缝、发射与接收天线、电源线等,在电路中感应出电压或电流。

在实际工程中,它们往往是同时存在,互相联系的。

传统的防雷技术比较重视对直击雷和雷电浪涌等传导耦合效应的研究,对LEMP的辐射耦合重视不够,随着微电子技术的进步,这种危害日益严重,因此现代防雷工程必须兼顾LEMP的辐射耦合,才能收到预期效果[2]。

1LEMP对传输线的电场耦合图1传输线耦合模型图2LEMP对近地线缆耦合效应模拟试验示意图Cooray和Scuka[3]利用图中1所示的传输线耦合模型推导出有限导电大地上架空线缆的传输线方程,即d2U s dx2-γ2U s=dE ixdxd2I dx2-γ2I=-jωCE ix(1)式中为U s为传输线上的感应电压,I为相应的感应电流,ω为辐射波的角频率,E ix(x,h)为雷电电磁脉冲在距雷击点水平距离为x,距地面高度为h处产生的水平电场,γ为传输常数,即γ=jωC(R+jωL)姨。

雷电浪涌入侵分析及防护措施

雷电浪涌入侵分析及防护措施

雷电浪涌防护未 来发展展望
防雷技术发展趋势分析
智能化监测:利用物联网、大数据 等技术实现雷电活动的实时监测和 预警
创新材料:研发新型防雷材料,提 高防雷设备的性能和可靠性
添加标题
添加标题
添加标题
添加标题
综合防护:将防雷措施与建筑物、 设备等相结合,形成综合防雷系统
国际合作:加强国际交流与合作, 引进国外先进的防雷技术和经验
雷电浪涌防护措 施
室外防雷措施
安装避雷针:将避雷针安装在建筑物顶部,将雷电引入地下,避免雷电对建筑物造成损坏。
接地措施:将建筑物内的金属物体接地,使雷电电流能够安全地流入地下,避免对建筑物内的电 子设备造成损坏。
防雷器安装:在建筑物内安装防雷器,将雷电电流引入地下,保护建筑物内的电子设备免受雷电 浪涌的损坏。
防雷设备的安装与维护
安装位置:选择地势较高、无遮挡 物的开阔地带,确保设备能够接收 并导引雷电
设备连接:确保防雷设备的连接线 缆完好无损,无老化、破损现象
添加标题
添加标题
添加标题
添加标题
接地系统:确保防雷设备的接地电 阻符合标准,一般不大于4欧姆
定期检查:每年至少进行一次防雷 设备的检查和维护,确保其正常工 作
感谢您的观看
汇报人:
防雷击电磁脉冲:在 建筑物内安装防雷击 电磁脉冲的浪涌保护 器,以减少雷电对电 子设备的损害。
电子设备防雷措施
安装避雷针或避雷网,将雷电引入地下 电源线、信号线等金属线路应穿管埋地,并保持一定距离 电子设备应使用防雷插座,保证接地良好 安装浪涌保护器,抑制雷电过电压和电流冲击
人身安全防护措施
避免使用电子设备,如手机、 电脑等
雷电浪涌入侵对电子设备的影响

雷电电磁脉冲的防护措施有哪些

雷电电磁脉冲的防护措施有哪些

雷电电磁脉冲的防护措施有哪些
雷电电磁脉冲防护是电磁脉冲安全防护的一部分,是针对高能电磁脉冲中由自然界雷电所引起的高能电磁脉冲的防护,是通过组成拦截、疏导最后泄放入地的一体化系统方式以防止由直击雷或雷电电磁脉冲对建筑物本身或其内部设备造成损害的防护技术。

雷电电磁脉冲有哪些危害
(1)天空中雷电波的电磁辐射对建筑物内电力线路和电子设备的电磁干扰。

(2)建筑物的防雷装置接闪时,强大的瞬间雷电流对建筑物内电力线路和电子设备的干扰。

(3)由外部各种强、弱电架空线路或电缆线路传来的电磁波对建筑物内电子设备的干扰。

雷电电磁脉冲干扰与防护

雷电电磁脉冲干扰与防护

科目:电磁干扰与兼容任课老师:崔志伟作业:雷电电磁脉冲干扰与防护姓名:***学号:**********雷电电磁脉冲干扰与防护绪论雷电是由带电的云在空中对地放电导致的一种特殊的自然现象,其具有选择性、随机性、不可预测性以及破坏性。

雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。

在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。

电子设备包括信息电子设备和电力电子设备两大类,信息电子设备基本采用微电子控制技术,电力电子设备相对于信息电子设备无信号传输线路外,其控制单元也大多采用微电子控制技术。

近20 年来新发现的电子设备雷灾的起因是闪电的电磁脉冲(LEMP)辐射造成的,电子设备越先进、耐压等级越低、能耗越小,灵敏度越高、体积越小,则雷电电磁脉冲的危害范围越大。

电子设备抗雷电电磁脉冲的干扰危害已是一个不可回避的问题。

雷电电磁脉冲既是雷电,又是电磁脉冲,但它既有别于直击雷,又有别于普通意义上的电磁脉冲干扰信号。

现在对直击雷的防护技术已相当成熟,由于直击雷包含着巨大的能量,通常采用避雷针、避雷网等引雷入地,其实这就是将所接收到的雷电能量直接引向大地而起到分流雷电流的作用,但避雷针引下线由于电感的作用,最多也只能将5 0 % 的雷电流入地,余下的雷电流将通过其他途径或四处扩散后入地。

扩散入地的雷电流就以雷电电磁脉冲的形式出现,对雷电电磁脉冲的防护,要从干扰和所具有的巨大能量两个方面来综合考虑。

直击雷的强大能量需要入地释放,同理,雷电电磁脉冲的能量也必须旁路泄放入地,在入侵通道上将雷电电磁脉冲引起的过电压、电流加以阻挡,且直接或间接泄放入地,从而达到保护电子。

正文雷电防护系统( Lightning Protection System(LPS))是指用以对某一空间进行雷电效应防护的整套装置,它由外部雷电防护系统和内部雷电防护系统两部分组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科目:电磁干扰与兼容任课老师:崔志伟作业:雷电电磁脉冲干扰与防护姓名:***学号:**********雷电电磁脉冲干扰与防护绪论雷电是由带电的云在空中对地放电导致的一种特殊的自然现象,其具有选择性、随机性、不可预测性以及破坏性。

雷电存在的形式除了可以直观感受到的发光、发热、发声的雷电流以外,在雷电流形成的同时由于电磁效应还会产生雷电电磁脉冲。

在当今信息化的时代,强大的雷电电磁脉冲是造成电子设备损坏的重要原因,可导致各种微电子设备的运行失效甚至损坏,成为威胁航空航天、国防军事、铁路运输、计算机与通信等领域的一大公害。

电子设备包括信息电子设备和电力电子设备两大类,信息电子设备基本采用微电子控制技术,电力电子设备相对于信息电子设备无信号传输线路外,其控制单元也大多采用微电子控制技术。

近20 年来新发现的电子设备雷灾的起因是闪电的电磁脉冲(LEMP)辐射造成的,电子设备越先进、耐压等级越低、能耗越小,灵敏度越高、体积越小,则雷电电磁脉冲的危害范围越大。

电子设备抗雷电电磁脉冲的干扰危害已是一个不可回避的问题。

雷电电磁脉冲既是雷电,又是电磁脉冲,但它既有别于直击雷,又有别于普通意义上的电磁脉冲干扰信号。

现在对直击雷的防护技术已相当成熟,由于直击雷包含着巨大的能量,通常采用避雷针、避雷网等引雷入地,其实这就是将所接收到的雷电能量直接引向大地而起到分流雷电流的作用,但避雷针引下线由于电感的作用,最多也只能将5 0 % 的雷电流入地,余下的雷电流将通过其他途径或四处扩散后入地。

扩散入地的雷电流就以雷电电磁脉冲的形式出现,对雷电电磁脉冲的防护,要从干扰和所具有的巨大能量两个方面来综合考虑。

直击雷的强大能量需要入地释放,同理,雷电电磁脉冲的能量也必须旁路泄放入地,在入侵通道上将雷电电磁脉冲引起的过电压、电流加以阻挡,且直接或间接泄放入地,从而达到保护电子。

正文雷电防护系统( Lightning Protection System(LPS))是指用以对某一空间进行雷电效应防护的整套装置,它由外部雷电防护系统和内部雷电防护系统两部分组成。

注:在特定的情况下,雷电防护系统可以仅由外部防雷装置或内部防雷装置组成。

目前雷电电磁脉冲防护技术即防雷技术已经发展成熟,国内各大防雷企业都能够实现从设计、产品提供到施工及售后服务的防雷一体化体系解决方案(防雷体系)。

在一个完整的防雷体系按照功能的不同分为以下五个部分:1、直击雷防护(Direct Lightning Protection)直击雷防护是防止雷闪直接击在建筑物、构筑物、电气网络或电气装置上。

直击雷防护技术主要是保护建筑物本身不受雷电损害,以及减弱雷击时巨大的雷电流沿着建筑物泄入大地的过程中对建筑物内部空间产生影响的防护技术,是防雷体系的第一部分。

直击雷防护技术以避雷针、避雷带、避雷网、避雷线为主要,其中避雷针是最常见的直击雷防护装置。

当雷云放电接近地面时它使地面电场发生畸变,在避雷针的顶端,形成局部电场强度集中的空间,以影响雷电先导放电的方向,引导雷电向避雷针放电,再通过接地引下线和接地装置将雷电流引入大地,从而使被保护物体免遭雷击。

避雷针冠以“避雷”二字,仅仅是指其能使被保护物体避免雷害的意思,而其本身恰恰相反,是“引雷”上身。

目前,主要的避雷针包括常规避雷针,限流型避雷针和预放电型避雷针。

接地是一种有意或非有意的导电连接,由于这种连接,可使电路或电气设备接到大地或接到代替大地的、某种较大的导电体。

注:接地的目的是:(a)使连接到地的导体具有等于或近似于大地(或代替大地的导电体)的电位;(b)引导入地电流流入和流出大地(或代替大地的导电体)。

从定义上可以将接地分为:人工接地、自然界地;从工作性质上可分为接地保护(如防雷接地、防静电接地、设备接地、配点接地等)、工作接地(如电力设施的发、送、配电接地等工作接地还有不需要实际物理连接的电子线路逻辑地)两大类。

接地系系统是通过平衡包括阻值、结构、及相互之间配合等因素通过释放由直击雷击、雷电电磁脉冲、积累在设备上的静电、电力系统短路等状况带来的威胁及其他各类异常能量从而达到防护的目的。

目前,通用的接地材料是铜包钢、扁钢、镀铜钢。

其中导电效果最好、使用时间最长的是镀铜钢。

等电位连接(Equipotential Bonding)等电位连接是指将分开的装置、诸导电物体等用等电位连接导体或电涌保护器连接起来以减小雷电流在它们之间产生的电位差。

等电位连接原理是通过将正常情况下彼此独立的接地系统,通过等电位连接器自动导通系统之间的电位差,从而形成更大的联合接地系统,更有效地进行异下面分三个部分分别介绍;一,电子系统雷电电磁脉冲的防护雷电电磁脉冲通过四通八达的连接电缆耦合产生过电压、过电流传导到电子设备端口造成设备损害。

浪涌电流在电缆中流动时,将会产生纵向电压和横向电压。

芯线和电缆金属屏蔽层之间产生的纵向电压施加在所连接的设备输入端和接地外壳之间(共模电压);芯线之间的横向电压施加在所连接设备的输入电路上(差模电压)。

下面简要说明雷电电磁脉冲如何通过阻性耦合、感性耦合、容性耦合耦合到连接电缆上的。

1.1 阻性耦合如图1所示,雷击建筑物1,在其接地电阻上产生约100kV的电位差,该幅值足以击穿设备1和设备2的绝缘。

这样浪涌电流通过设备1沿着信号线流到设备2以及建筑物2的地网上,造成建筑物2的地电位抬升。

图1 阻性耦合如果信号电缆屏蔽层两端接地,浪涌电流沿着屏蔽层流到建筑物2的地网上,同样造成其地电位升。

建筑物2的地电位升又加到与其连接的其他电缆上,可能造成其他设备损害。

1.2 感性耦合由于雷电流具有很大的幅值和波头上升陡度,能在所流经的路径周围产生很强的瞬态脉冲电磁场。

根据电磁感应定律,这种变化的脉冲电磁场交链导体回路时,能在回路中感应出电动势,产生过电压和过电流。

图2和图3给出了信号电缆可能发生电磁感应的例子。

图2 感性耦合(信号线的芯线之间组成感应环)图3 感性耦合(信号线与地之间组成感应环)1.3 容性耦合当各类电缆上空有雷云生成并向下发展为下行先导时,由于雷云和先导通道的感应作用,在各类电缆内将出现反极性的感应电荷,如图4.4所示。

该图中示出的是常见的负雷云对地放电,雷云以及下行先导的电荷为负,而在电缆中感应的电荷为正,而电缆中的负电荷经泄漏电导入地。

这些感应电荷的聚积速度取决于先导发展的速度,由于先导发展速度比回击速度小100以上。

在雷击发生时,雷云以及下行先导的电荷迅速中和消散,而反极性感应电荷将失去束缚,但是这些电荷不能以与回击发展同样的速度来消散,因此形成了对地的过电压,如果在设备处发生闪络,将在电缆中形成浪涌电流。

显然,电缆越长,对地电容越大,越易形成容性耦合产生过电压。

图4 容性耦合1.4雷电防护区按EMC原理将建筑物按需要防护的空间由表及里划分为不同的雷电防护区(LPZ),有如下实际意义:•可以计算出各LPZ内空间雷击电磁脉冲的强度,以确认是否需采取进一步的屏蔽措施。

•可以确定等电位连接的位置(一般是各LPZ区交界处)。

•可以确定在不同LPZ交界处选用电涌保护器的具体指标。

•可以选定敏感电子设备的安全放置位置。

•可以确定在不同LPZ交界处等电位连接导体的最小芯线截面。

IEC61312-1将LPZ分为以下各区:LPZ 0A:直击雷非防护区:本区内的各物体都可能遭到直接雷击和导走全部雷电流,本区内的电磁场没有衰减,属完全暴露的未设防区。

LPZ 0B:直击雷防护区:本区内的各物体很少遭到直接雷击,但本区内电磁场没有衰减,属充分暴露的直击雷防护区。

(本区一般在外部防雷装置接闪器保护范围之内,从理论上本区不可能遭受直击雷,而事实上有这种可能)LPZ 1:第一屏蔽防护区:本区内的各物体不可能遭到直接雷击,在本区内所有导电部件上的雷电流比LPZ 0区内的电流进一步减小。

本区内的电磁场因屏蔽措施而有所衰减。

(本区一般指在钢筋结构的建筑物内)LPZ 2:第二屏蔽防护区:为了进一步减小导电部件上的雷电流和电磁场而引入的后续雷电保护区。

LPZ n:第n屏蔽防护区:需要进一步减小雷击电磁脉冲以保护敏感度水平高的设备的后续雷电保护区。

对此信号电缆的屏蔽方案应该做到:1)对于新建站点,如果需要敷设大量电缆,可建立有笼状结构的电缆沟。

电缆沟的钢筋必须焊接连通并且连接到建筑物的钢筋上。

如图5所示。

对于已经建好但是钢筋连通性不好的的电缆沟,可在电缆沟内敷设一到两根热镀锌扁钢,扁钢两端与地网可靠连接。

图5 笼状钢筋电缆沟2)敷设少量信号电缆时可采用套铁管地埋的方式,铁管两端可靠接地。

3)电缆屏蔽层必须两端可靠接地,为了使屏蔽层内的纵向屏蔽电流均匀分布以获得最大限度的屏蔽性能,连接端宜使用同轴连接器(例如可接地的革兰Gland),连接器对屏蔽层能够提供360度的电接触。

图64)对于已经建成在运行的站点(大部分站点属于这种情况),重新埋设电缆沟或者穿钢管以及使用同轴连接器在施工上都存在很大的困难,此时可进行简单连接,即使用接地卡将电缆外层铠装接地,再辅以信号保护器的配合,也能保证设备的安全。

5)对于重要性比较高或者容易雷击环境较恶劣的电缆,应采用双层屏蔽或者套铁管的方式。

如果条件有限无法实施,可应在电缆附近沿线敷设一根热镀锌扁钢,扁钢两端与地网可靠连接。

6)连接电缆中闲置不用的空线对应做好接地处理。

机房内部的等电位连接实施方案应为:各站点机房宜优先采用网状连接,可在机房内部沿墙壁设置均压环(一般设置在机房地板以下),均压环截面积应根据最大故障电流或材料机械强度来确定,一般应采用截面积不小于160mm2的铜排。

该均压环从机房的四角用镀锌扁钢或截面积不小于95平方毫米的多股铜线引出并和机房环形地网相连,所有连接皆采用焊接的方法并进行防锈蚀处理。

机房内各设备应就近与均压环可靠连接。

如果网状连接系统的实施或者改造有困难,也可以采用星形系统的连接。

星形系统连接只适用于设备所在区域面积较少的情况。

图7给出了一个在小型系统实施行星连接的例子。

VR:垂直主干接地母线FEB:楼层接地排CEF:电缆入口设施CEEB:电缆入口接地母线排图7 –星形连接系统举例另外,机房的接地与等电位连接系统还可根据建筑物的结构、楼层面积、楼层数量和设备布置等实际情况采用网状-星形混合连接形式。

图8给出了一个网状-星形混合连接结构的例子。

图8–网状-星形混合连接系统举例三,对建筑物雷电电磁脉冲进行防护一、防直击雷击系统二、建筑物外部应采用避雷针、避雷带(网)或避雷线等防直击雷保护,接闪器保护范围按滚球法计算。

所谓滚球法,就是以规定半径的球体,沿需要防直击雷的部位滚动,当球体只触及接闪器(包括被利用作为接闪器的金属物),或只触及接闪器和地面(包括与大地接触并能承受雷击的金属物),而不触及需要保护的部位时,则该部分就得到接闪器的保护。

相关文档
最新文档