2020高中数学高考数学高三文科数学第一轮复习全套资料
2020届高三高考文科数学一轮复习讲义全套打包下载可编辑
2.小题热身
(1)若集合 A={ x|- 2<x<1} ,B={ x|x<-1 或 x>3} ,则 A∩B= ( )
A.{ x|-2<x<-1}
B. { x|-2<x<3}
C.{ x|-1<x<1} 答案 A
D. { x|1<x<3}
解析 A∩B={ x|-2<x<-1} .
(2)设全集 U={ x|x∈N* ,x<6} ,集合 A={1,3} ,B={3,5} ,则 ?U(A∪B)等于 ()
() A.M N
B. N M
C.M= N
D.以上都不对
答案 A
解析
∵k4π+π4=2
k+1 8
π,k∈Z ,
k8π-π4=k-8 2π,k∈Z ,
π
π
∴任取 x∈ M,有 x∈ N,且 8∈N,但 8?M,
∴M N.
3.已知集合 A= { x|-2≤x≤5} ,B={ x|m+ 1≤ x≤ 2m-1} ,若 B? A,则实 数 m 的取值范围为 ________.
答案 (-∞, 3]
解析 因为 B? A,所以①若 B= ?,则 2m-1<m+1,此时 m<2.
2m-1≥m+1, ②若 B≠?,则 m+1≥- 2,
2m-1≤5.
解得 2≤m≤3.
由①②可得,符合题意的实数 m 的取值范围为 m≤3. 条件探究 1 举例说明 3 中的集合 B 改为 “B={ x|m≤ x≤ m+1} ”,其余不 变,该如何求解?
A.{1,4} B. {1,5} C.{2,5} D.{2,4} 答案 D
解析 ∵U={1,2,3,4,5} ,A∪B={1,3,5} ,∴?U(A∪B)={2,4} .
2020高考文科数学(人教版)一轮复习讲义:第1讲 集合的概念和运算及答案
1.集合的概念了解集合的含义、体会元素与集合的属于关系,能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.2.集合的基本运算理解两个集合的交集与并集的含义,会求两个简单集合的交集与并集,理解在给定集合中一个子集的补集的含义,会求给定子集的补集,能使用韦恩图表达集合间的基本关系及运算.3.命题及其关系理解命题的概念.了解“若p,则q”形式的命题及其否命题、逆命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的含义.4.简单的逻辑联结词了解“或”“且”“非”的含义.5.全称量词与存在量词理解全称量词与存在量词的意义,能正确地对含有一个量词的命题进行否定.1.2014~2018年全国卷Ⅰ的考查情况年份2014 2015 2016 2017 2018考查内容第1题集合的交集运算第1题交集运算、元素的个数第1题集合的交集运算第1题集合的运算(交集、并集)第1题集合的运算(交集)分值5分5分5分5分5分2.2014~2018年全国卷Ⅱ的考查情况年份201420152016 2017 2018考查内容第1题集合的运算(交集)第1题集合的运算(并集)第24题第(2)问证明不等式的充要性第1题集合的运算(交集)第1题集合的运算(并集)第2题集合的运算(交集)分值5分5分10分5分5分5分2014年至2018年全国卷Ⅰ和卷Ⅱ直接考查本单元内容的试题共11道,2015年全国卷Ⅱ考查了2道题占15分(其中24题主要是考查不等式的证明),其他各年考查本单元的试题都为1道,占5分.高考对集合这一考点的考查主要以选择题出现,涉及的知识包括集合的概念,集合与集合的关系及集合的运算,重点是集合的运算.一般都是作为全卷第1小题,且都是基础题,难度不大,属于高考中的“送分题”.常用逻辑用语包含命题与量词,基本逻辑联结词以及充分条件、必要条件、充要条件与命题的四种形式,其中量词是新课标新增内容,2013年高考通过一道小题考查了全称命题、特称命题及复合命题真假的判定.充要条件这一内容,在全国卷高考中直接考查的试题不多,只有2015年全国卷Ⅱ在选考内容中,结合不等式的证明进行了考查.本单元是高中数学的基本内容之一,集合论是现代数学的基础,集合语言简洁、准确,是数学中不可缺少的基本语言.常用逻辑用语是数学语言的重要组成部分,是描述、判断、推理的工具,它可以帮助我们准确地表达数学内容、正确地理解数学概念、合理论证数学结论.对集合这一内容的复习,要重视对集合概念的认识与理解,特别要重视对描述法表示集合的理解,掌握集合与集合之间的关系、集合的运算,要求具备数形结合的思想,会借助V enn图、数轴等工具解决集合之间的关系及集合的运算等问题.高考直接考查常用逻辑用语的试题虽然不多,但常用逻辑用语常和函数、不等式及立体几何中直线、平面的位置关系等知识结合,因此复习时仍要非常重视.在复习时,要以小题、基础题为主,要求掌握p∧q,p∨q,﹁p命题真假的判断,全称命题与特称命题真假的判断及否定,四种命题及其关系,充分条件和必要条件的判断等,同时要注意与其他知识的联系.本单元问题的解答蕴涵了丰富的数学思想方法,如数形结合思想、等价转化思想、分类讨论思想和函数与方程的思想等,在复习中应注意总结领会.第1讲集合的概念与运算1.了解集合的含义、体会元素与集合的属于关系,了解空集、全集的意义.2.理解集合之间的包含与相等关系,能识别给定集合的子集.3.理解交集、并集、补集的概念,会求两个简单集合的交集与并集,会求给定子集的补集.知识梳理1.集合的含义与表示(1)一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集).集合中的元素具有确定性、互异性和无序性三个特征.(2)如果a是集合A的元素,就说a属于集合A,记作a∈A,如果a不是集合A 的元素,就说a不属于集合A,记作a∉A.(3)常见数集的记法集合符号自然数集N正整数集N*或N+整数集Z有理数集Q实数集R(4)常用的集合表示法有:列举法、描述法和图示法.2.集合间的基本关系(1)如果集合A中任何一个元素都是集合B的元素,则称集合A是集合B的子集,记作:A⊆B(或B⊇A).(2)如果集合A⊆B,但存在x∈B,且x∉A,则称集合A是集合B的真子集,记作:A B(或B A).(3)若A⊆B且B⊆A,则集合A与集合B中的元素是一样的,则称集合A与集合B相等.3.集合的基本运算(1)交集:由所有属于集合A且属于集合B的元素组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:由所有属于集合A或属于集合B的元素组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:集合A是集合U的子集,由U中所有不属于A的元素组成的集合,叫做U 中子集A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.1.空集是任何集合的子集,空集是任何非空集合的真子集.2.若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n-1个.3.A⊆B⇔A∩B=A⇔A∪B=B.热身练习1.已知集合A={x|x<2},a=3,则下列关系正确的是(D)A.a⊆A B.a∉AC.{a}∈A D.{a}⊆A由于3<2,所以a∈A,即{a}⊆A. 2.(2018·达州模拟)已知集合A={1,2,3},B={2,3},则(D)A.A∩B=∅B.∁A B=BC.A B D.B AA={1,2,3},B={2,3},所以B⊆A,1∈A但1∉B,所以B A.3.(2017·天津卷)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=(B)A.{2}B.{1,2,4}C.{1,2,4,6}D.{1,2,3,4,6}=(-1,0),C正确;A∪(∁B)=(-1,+∞),D错误.因为A∪B={1,2,6}∪{2,4}={1,2,4,6},所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.4.(2018·石家庄二模)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是(C) A.A∪B={x|x<0}B.(∁R A)∩B={x|x<-1}C.A∩B={x|-1<x<0}D.A∪(∁RB)={x|x≥0}因为A={x|-1<x≤2}=(-1,2],B={x|x<0}=(-∞,0),所以A∪B=(-∞,2],A错误;(∁RA)∩B=(-∞,-1],B错误;A∩BR5.(2018·湖南长郡中学联考)集合{y∈N|y=-x2+6,x∈N}的真子集的个数是(C)A.3B.4C.7D.8由{y∈N|y=-x2+6,x∈N}知,y≥0,所以-x2+6≥0,又x∈N,所以x=0,1,2.所以集合为{2,5,6},其真子集的个数为23-1=7.(2)设 a ,b ∈R ,集合⎨a ,a ,1⎬={a 2,a +b,0},则 a 2019+b 2019=__________.n集合的基本概念(1)(经典真题)已知集合 A ={x|x =3n +2,∈N },B ={6,8,10,12,14},则集合 A ∩B 中元素的个数为A .5B .4C .3D .2⎧ b ⎫ ⎩⎭(2)考虑集合{a , ,1}中哪一个元素为 0 入手,利用集合中的元素的确定性和互异性进行(1)求解本题,关键是理解集合 A 的意义,将集合 A 进行化简,可以采用特殊化的方法.A ={x|x =3n +2,n ∈N }={2,5,8,11,14,…},所以 A 与 B 的共同元素只有 8,14 两个,故选 D.ba分析.若 a =0,则b无意义,所以 a ≠0,a所以b =0,从而 b =0,所以{a ,b,1}={a,0,1}.a a由{a,0,1}={a 2,a,0},得 a 2=1,即 a =1 或 a =-1.又根据集合中元素的互异性 a =1 应舍去,所以 a =-1.故 a 2019+b 2019=(-1)2019=-1.(1)D(2)-1(1)用描述法表示集合,首先要搞清集合中代表元素的含义,再看元素的限制条件,分清是数集、点集还是其他类型的集合.(2)解决含有参数的集合问题时,要注意集合中元素的特征,并注意用互异性进行检验.(3)分类讨论的思想方法常用于解决集合问题.1.(1)若集合 A ={x ∈R |ax 2+ax +1=0}中只有一个元素,则 a 等于(A) A .4 B .2C .0D .0 或 2(2)已知集合 A ={m +2,2m 2+m },若 3∈A ,则 m 的值为 -3.2(1)当 a =0 时,方程化为 1=0,无解,集合 A 为空集,不符合题意;当 a ≠0 时,由 Δ=a 2-4a =0,解得 a =4.(2)因为 3∈A ,所以 m +2=3 或 2m 2+m =3,若 m +2=3,解得 m =1,此时 A ={3,3}与集合中元素的互异性矛盾,所以 m =1,不符合题意;若2m 2+m =3,解得 m =1(舍去)或 m =-3. 故所求 m 的值为-3.2检验知 m =-3满足题意.22集合间的基本关系已知集合 A ={x|x 2-3x -10≤0},若集合B ={x|p +1≤x ≤2p -1},且 B A ,则实数 p 的取值范围为________.欲求实数p的取值范围,只需找出关于p 的不等式,可由已知条件,结合数轴找到.由x2-3x-10≤0,解得-2≤x≤5,所以A={x|-2≤x≤5}.B A,则有①当B≠时,利用数轴可知:⎧⎪p+1≤2p-1,⎨-2≤p+1,解得2≤p≤3.⎪⎩2p-1≤5,②当B=时,有p+1>2p-1,即p<2.综合①②得实数p的取值范围是(-∞,3].(-∞,3]解决有关集合的包含关系的问题时,要注意:(1)所给集合若能化简,则先化简;(2)充分利用数轴、韦恩图等辅助解题;(3)注意空集的特殊性,一般地,若B⊆A,则应分B=∅与B≠∅两种情况进行讨论.2.已知集合A={x|x2-3x-10≤0},若集合B={x|p-6≤x≤2p-1},且A∩B=A,则实数p的取值范围为[3,4].由例2知,A={x|-2≤x≤5}.A∩B=A,所以A B,画出示意图(如下图),⎧⎪2p-1>p-6,所以⎨p-6≤-2,⎪⎩2p-1≥5,⎧p>-5,解得⎨p≤4,⎩p≥3.所以3≤p≤4.故p的取值范围为[3,4].A .A ∩B =⎨x|x <2⎬ B .A ∩B =∅ C .A ∪B =⎨x|x <2⎬ D .A ∪B =R集合的基本运算(1)(2017· 全国卷Ⅰ)已知集合 A ={x|x<2},B ={x|3-2x>0},则()⎧ 3⎫ ⎩⎭⎧ 3⎫ ⎩⎭(2)(2018· 宝鸡二模)已知全集 U ={1,2,3,4,5,6},集合 M ={2,3,5},N ={4,5},则集合{1,6}可以表示为( )A .M ∩NB .M ∪NC. ∁U (M ∪N ) D .∁U (M ∩N )因为B={x|3-2x>0}=⎧⎨x|x<⎫⎬,A={x|x<2},所以A∩B=⎧⎨x|x<⎫⎬,A∪B={x|x<2}.所以(M∪N)={1,6},故选C.(1)首先化简集合A,B,再利用数轴得到A∩B和A∪B.3⎩2⎭3⎩2⎭(2)画出韦恩图,如图,U(1)A(2)C进行集合的运算时,要注意:①明确集合中元素的意义;②注意将所给集合化简,使之明确化;③注意数形结合,利用韦恩图、数轴等辅助解题.- 21 -/23(2)(2018· 广州一模)设集合 A ={x| <0},B ={x|x ≤-3},则集合{x|x ≥1}=(D)3.(1)(2018·天津卷)设集合 A ={1,2,3,4},B ={-1,0,2,3},C ={x ∈R|-1≤x<2},则(A ∪B)∩C =(C)A .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}x +3x -1A .A ∩B B .A ∪BC .(∁R A)∪(∁R B)D .(∁R A)∩(∁R B)(1)因为 A ={1,2,3,4},B ={-1,0,2,3},所以 A ∪B ={-1,0,1,2,3,4}.又 C ={x ∈R|-1≤x<2},所以(A ∪B)∩C ={-1,0,1},故选 C.- 22 - / 23所以∁ A ={x|x ≥1,或 x ≤-3},∁ B ={x|x >-3}.易知(∁ A)∩(∁ B)={x|x ≥1},故选 D.x +3(2)因为 A ={x| <0}={x|-3<x<1},B ={x|x ≤-3},x -1 R R R R1.研究集合的有关问题,首先要理解集合的概念,其次要注意集合中元素的三个特征:确定性、无序性和互异性,尤其要注意集合中元素的互异性,当集合中的元素含有参数时, 要根据互异性进行检验.2.处理集合问题时,首先要理解用描述法表示的集合的意义,关键是抓住集合的代表元 素.首先看“{ | }”的左边元素的代表形式,然后看右边元素满足的性质,这是认清集合元 素的关键.例如,{y|y =f(x)}是数集,表示函数 y =f(x)的值域;{x|y =f(x)}是数集,表示函数 y =f(x)的定义域;{(x ,y)|y =f(x)}是点集,表示函数 y =f(x)图象上的点构成的集合.3.注意空集∅的特殊性,在解题时,若未能指明集合非空时,要考虑空集的可能性,如 A B ,则有 A =∅或 A ≠∅两种可能,解题时常常遗漏对空集的讨论,这一点应引起重视.4.研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具 辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续 的集合间的运算及关系,可借助数轴的直观性,进行合理转化.解题时,首先要把集合进行 化简,使之明确化,尽可能地借助数轴、韦恩图等工具,将抽象的代数问题具体化、形象化、 直观化,这实质是数形结合思想在集合中的具体应用.5.处理含参数的集合的包含关系及集合的运算时,端点值的取舍也是一个难点和重点, 其解决办法是对端点值进行单独考虑.- 23 - / 23。
2020届【步步高】高考文科数学一轮总复习讲义
1.集合与元素
(1)集合中元素的三个特征:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.
(3)集合的表示法:列举法、描述法、图示法.
(4)常见数集的记法
集合 自然数集 正整数集 整数集
符号
N
N*(或 N+)
Z
有理数集 Q
实数集 R
答案 (1)C (2)0 或98
解析 (1)∵2-3 x∈Z,∴2-x 的取值有-3,-1,1,3,
又∵x∈Z,∴x 值分别为 5,3,1,-1,
故集合 A 中的元素个数为 4.
(2)若 a=0,则 A=23,符合题意; 若 a≠0,则由题意得 Δ=9-8a=0,解得 a=98.
综上,a 的值为 0 或98. 思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数
2.集合间的基本关系 关系
子集
自然语言
集合 A 中所有元素都在集合 B 中(即 若 x∈A,则 x∈B)
符号语言 A⊆B(或 B⊇A)
Venn 图
真子集 集合相等
集合 A 是集合 B 的子集,且集合 B 中至少有一个元素不在集合 A 中
集合 A,B 中的元素相同或集合 A,B 互为子集
A B(或 B A) A=B
A.{-1,1,5}
B.{-1,5}
C.{1,5}
D.{-1}
答案 A
解析 ∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
3.已知集合 A={x|x2-x-2≤0},集合 B 为整数集,则 A∩B 等于( )
A.{-1,0,1,2}
2020高三数学一轮复习(人教版文):集合
第一章 集合与常用逻辑用语第一节集 合2019考纲考题考情考编荽求考劭举例考向掠签耕與含的含重+兀累与集告的训于孟 慕1轻用叫幣法或搞建注挖*怙合蛋越昔帕了篥宅了杆电血耳空越的舍宝 井会拿井Venn(卞战)罔夜込if.合的Jt 黍与运算却厨・Of 耳总I - T 『荣件的补如皿•全号欖n 畢a 的義系方臨}曲』占*全N^llt * T,tJ&合的空tfc 込謀) Ml 了*牝科卷I - Tifft 合的交*井适算) 別】7 •全国趙U ・TJ 卑合的幷黒运真>】.集台的需文歴左小2.集售间的壯眾羌乘乳事令的运算橙心當導■放学远博.数为抽魚1. 集合的含义与表示方法 (1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。
集合中元素的性质:确定性、无序性、互异性。
(2) 元素与集合的关系:①属于,记为殳;②不属于,记为?。
(3) 集合的表示方法:列举法、描述法和图示法。
(4) 常用数集的记法:自然数集 N ,正整数集N *或N +,整数 集Z ,有理数集Q ,实数集R 。
2. 集合间的基本关系微知识•小題练-基础微械理-知识必备"国报革 丄JICHU W£]SHL.1J I3•集合的基本运算•常记结论•1. 集合元素的三个特性确定性、无序性、互异性。
2. 集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n- 1个,真子集有2n- 1个。
3. 注意空集空集是任何集合的子集,是任何非空集合的真子集,应时刻关注对空集的讨论,防止漏解4.集合的运算性质 (1)并集的性质: A U ? = A ; A U A = A ; A U 3= B U A ; ALB = A? B? A(2)交集的性质:A n ?=?; A n A = A ; A nB = B n A ; A n B=A? A? B(3)补集的性质:A U ?u A) = U ; A n (?U A)= ?; ?U (?U A) = A o ?u(A n B) = (?u A )q ?u B); ?U (ALB)= (?u A)Q (?u B)。
2020版高三数学(文科)一轮复习课件:第一章 1 集合及其运算
2
3 1 3 =- 时,m+2= ≠3,符合题意,所以m=- . 2 2 2
微技探究 1.用描述法表示集合,首先要搞清楚集合中代表元素的含义,再 看元素的限制条件,明白集合的类型,是数集、点集还是其他类型 的集合. 2.集合中元素的互异性常常容易忽略,求解问题时要特别注 意.分类讨论的思想方法常用于解决集合问题.
【答案】D
【解析】易得 {x|-1<x<2}.
1 A=x-2≤x<2 ,B={x|-1<x<1},∴A∪B=
5.(教材习题改编)已知集合A={x|3≤x<7},B={x|2<x< 10},则(∁RA)∩B=________.
【答案】{x|2<x<3或7≤x<10}
3. (2016 浙江, 1)已知集合 P={x∈R|1≤x≤3}, Q={x∈R|x2≥4}, 则 P∪(∁RQ)=( A.[2,3] C.[1,2)
【答案】B
【解析】 根据补集的运算, 得∁RQ={x|x2<4}=(-2,2), ∴P∪(∁RQ) =(-2,2)∪[1,3]=(-2,3].故选 B.
1.(2018北京101中学月考)若集合{a,b,c,d}={1,2,3,4},且 下列四个关系: ①a=1,②b≠1,③c=2,④d≠4,有且只有一个是正确的, 则符合条件的有序数组(a,b,c,d)的个数是________. 【答案】6
【解析】由题意,a=2时,b=1,c=4,d=3;b=3,c=1,d =4. a=3时,b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1, d=4. a=4时,b=1,c=3,d=2. ∴符合条件的有序数组(a,b,c,d)的个数是6.
2020高考一轮复习文科数学复习资料
第1讲集合◆高考导航·顺风启程◆[知识梳理]1.集合的相关概念(1)集合元素的三个特性:确定性、无序性、互异性.(2)元素与集合的两种元素:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合:2A B或B A1.集合的运算性质并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔B⊆A.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B.补集的性质:A∪(∁U A)=U;A∩(∁U A)=∅;∁U(∁U A)=A.2.判断集合关系的三种方法(1)一一列举观察;(2)集合元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断集合关系;(3)数形结合法:利用数轴或Venn图.3.数形结合思想数轴和Venn图是进行交、并、补集运算的有力工具,数形结合是解集合问题的常用方法,解题时要先把集合中各种形式的元素化简,使之明确化,尽可能地借助数轴、直角坐标系或Venn图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解题.[知识自测]1.(2016·全国Ⅰ卷)设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B =( ) A .{1,3} B .{3,5} C .{5,7}D .{1,7}[解析] 集合A 与集合B 的公共元素有3,5,故A ∩B ={3,5},选B. [答案] B2.(2018·江西重点中学联考)已知集合A ={x |x 2-6x +5≤0},B ={x |y =x -3},则A ∩B 等于( )A .[1,3]B .[1,5]C .[3,5]D .[1,+∞)[解析] 根据题意,得A ={x |x 2-6x +5≤0}={x |1≤x ≤5},B ={x |y =x -3}={x |x ≥3},所以A ∩B ={x |3≤x ≤5}=[3,5]. [答案] C3.已知集合M ={1,m },N ={n ,log 2n },若M =N ,则(m -n )2 017=______.[解析] 由M =N 知⎩⎪⎨⎪⎧ n =1,log 2n =m 或⎩⎪⎨⎪⎧n =m ,log 2n =1,∴⎩⎪⎨⎪⎧ m =0,n =1或⎩⎪⎨⎪⎧m =2,n =2.[答案] -1或0题型一 集合的基本概念(基础拿分题——自主练透)(1)(2018·山东省枣庄十六中4月模拟试卷)设集合A ={1,2,3},B ={4,5},M ={x |x=a +b ,a ∈A ,b ∈B },集合M 真子集的个数为( )A .32B .31C .16D .15[解析] 由题意集合A ={1,2,3},B ={4,5},a ∈A ,b ∈B ,那么:a 、b 的组合有:(1、4),(1、5),(2、4),(2、5),(3、4),(3、5),∵M ={x |x =a +b },∴M ={5,6,7,8},集合M 中有4个元素,有24-1=15个真子集.故选:D.[答案] D(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2018+b 2018为( )A .1B .0C .-1D .±1[解析] 由已知得a ≠0,则ba =0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a 2018+b 2018=(-1)2018+02018=1.[答案] A方法感悟1.研究集合问题,一定要抓住元素,看元素应满足的属性,对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.对于集合相等首先要分析已知元素与另一个集合中哪一个元素相等,分几种情况列出方程(组)进行求解,要注意检验是否满足互异性.【针对补偿】1.(2018·山西省大同市豪洋中学四模试卷)已知集合A =⎩⎨⎧⎭⎬⎫x ∈Z |127<3x ≤9,B ={x ∈N |-2<x <3},则集合{z |z =xy ,x ∈A ,y ∈B }的元素个数为( )A .6B .7C .8D .9[解析] 由127<3x ≤9,即3-3<3x ≤32,解得-3<x ≤2,∴A ={-2,-1,0,1,2}.B ={0,1,2}.∴集合{z |z =xy ,x ∈A ,y ∈B }={-2,-1,0,1,2,-4,4}的元素个数为7.故选:B.[答案] B2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为 ________ .[解析] 由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m 2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.[答案] -323.已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为______. [解析] 因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6.[答案] 5<k ≤6题型二 集合的基本关系(重点保命题,共同探讨)(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4[解析] (1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}.由题意知B ={1,2,3,4}. 所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. [答案] D(2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,则实数m 的取值范围为______.[解析] 因为B ⊆A ,所以①若B =∅,则2m -1<m +1,此时m <2. ②若B ≠∅,则⎩⎪⎨⎪⎧2m -1≥m +1,m +1≥-2,2m -1≤5.解得2≤m ≤3.由①、②可得,符合题意的实数m 的取值范围为m ≤3. [答案] m ≤3方法感悟1.空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.2.已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.[注意] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论. 【针对补偿】4.已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a 的值为( )A.13或-12 B .-13或12C.13或-12或0 D .-13或12或0[解析] 由题意知A ={2,-3},当a =0时,B =∅,满足B ⊆A ;当a≠0时,ax-1=0的解为x=1a ,由B⊆A,可得1a=-3或1a=2,∴a=-13或a=12.综上,a的值为-13或12或0.[答案] D5.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=______.[解析]由log2x≤2,得0<x≤4.即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.[答案] 4题型三集合的基本运算(高频考点题,多角突破)集合的基本运算是历年各地高考的热点,每年必考,常和不等式的解集、函数的定义域、值域相结合命题,主要以选择题的形式出现.试题难度不大,多为低档题.高考对集合运算的考查主要有以下三个命题角度:(1)求集合间的交、并、补运算;(2)已知集合的运算结果求集合;(3)已知集合的运算结果求参数的值(或参数的取值范围).考向一求交集1.(2017·课标Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2C.1 D.0[解析]集合中的元素为点集,由题意,结合A表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线y=x上所有的点组成的集合,圆x2+y2=1与直线y=x 相交于两点(1,1),(-1,-1),则A∩B中有两个元素.故选B.[答案] B考向二求并集2.(2016·山东卷)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=()A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)[解析]A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1},选C.[答案] C考向三 集合的交、并、补的综合运算3.(2018·山东省德州市四月二模) 设全集U =R ,集合M ={x |x 2+x -2>0},N =⎩⎨⎧⎭⎬⎫x |⎝⎛⎭⎫12x -1≥2,则(∁U M )∩N =( ) A .[-2,0] B .[-2,1] C .[0,1]D .[0,2][解析] M ={x |x >1或x <-2},∁U M ={x |-2≤x ≤1},N ={x |x -1≤-1}={x |x ≤0},所以(∁U M )∩N ={x |-2≤x ≤0},故选A.[答案] A考向四 利用集合运算求参数4.已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( )A .[-1,2)B .[-1,3]C .[2,+∞)D .[-1,+∞)[解析] 由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4},又A ∩B =B , 所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). [答案] D考向五 集合的斜定义问题5.已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .30[解析] 如图,集合A 表示如图所示的所有圆点“○”,集合B 表示如图所示的所有圆点“○”+所有圆点“·”,集合A ⊕B 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“○”+所有圆点“·”+所有圆点“⊙”,共45个,故A⊕B中元素的个数为45.故选C.[答案] C方法感悟集合基本运算的常见题型与破解策略:6.(2017·山东)设函数y=4-x2的定义域A,函数y=ln(1-x)的定义域为B,则A∩B =()A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)[解析]由4-x2≥0得-2≤x≤2,由1-x>0得x<1,故A∩B={x|-2≤x≤2}∩{x|x <1}={x|-2≤x<1},选D.[答案] D7.(2018·山东省青岛市数学一模试卷)已知集合A={x||x+1|≥1},B={x|x≥-1},则(∁A)∩B=()RA.[-1,0] B.[-1,0)C.(-2,-1) D.(-2,-1][解析]∵A={x||x+1|≥1}={x|x≤-2或x≥0},∴∁R A={x|-2<x<0},又B={x|x≥-1},∴(∁R A)∩B=[-1,0).故选:B.[答案] B8.定义一种新的集合运算△:A△B={x|x∈A,且x∉B},若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A等于()A.{x|3<x≤4} B.{x|3≤x≤4}C.{x|3<x<4} D.{x|2≤x≤4}[解析]A={x|1<x<3},B={x|2≤x≤4},由题意知B△A={x|x∈B,且x∉A}={x|3≤x≤4}.[答案] B◆牛刀小试·成功靠岸◆课堂达标(一)[A基础巩固练]1.(2017·课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅[解析]由3x<1可得3x<30,则x<0,即B={x|x<0},所以A∩B={x|x<1}∩{x|x<0}={x|x<0},A∪B={x|x<1}∪{x|x<0}={x|x<1}.故选A.[答案] A2.(2017·天津)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=() A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}[解析](A∪B)∩C={1,2,4,6}∩[-1,5]={1,2,4},选B.[答案] B3.(2018·哈尔滨九中二模)设非空集合P,Q满足P∩Q=P,则()A.∀x∈Q,有x∈P B.∀x∉Q,有x∉PC.∃x0∉Q,使得x0∈P D.∃x0∈P,使得x0∉P[解析]∵P∩Q=P,∴P⊆Q∴A错误;B正确;C错误;D错误.故选B.[答案] B4.(2018·刑台摸底考试)已知集合A={x|-2≤x≤2},B={y|y=x,0≤x≤4},则下列关系正确的是()A.A⊆∁R B B.B⊆∁R AC.∁R A⊆∁R B D.A∪B=R[解析]依题意得B={y|0≤y≤2},因此B⊆A,∁R A⊆∁R B.[答案] C5.(2018·湖北七市(州)协作体联考)已知集合P={n|n=2k-1,k∈N*,k≤50},Q={2,3,5},则集合T={xy|x∈P,y∈Q}中元素的个数为()A.147 B.140C.130 D.117[解析]由题意得,y的取值一共有3种情况,当y=2时,xy是偶数,不与y=3,y=5时有相同的元素,当y=3,x=5,15,25,…,95时,与y=5,x=3,9,15,…,57时有相同的元素,共10个,故所求元素个数为3×50-10=140,故选B.[答案] B6.(2018·山东临沂期中)已知全集U=R,集合A={x|x2-3x+2>0},B={x|x-a≤0},若∁U B⊆A,则实数a的取值范围是()A.(-∞,1) B.(-∞,2]C.[1,+∞) D.[2,+∞)[解析]∵x2-3x+2>0,∴x>2或x<1.∴A={x|x>2或x<1},∵B={x|x≤a},∴∁U B={x|x>a}.∁U B⊆A,借助数轴可知a≥2,故选D.[答案] D7.已知集合A ={x |y =x },B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <4,则(∁R A )∩B 等于______. [解析] 因为A ={x |y =x }={x |x ≥0},所以∁R A ={x |x <0}.又B =⎩⎨⎧⎭⎬⎫x ⎪⎪12<2x <4={x |-1<x <2},所以(∁R A )∩B ={x |-1<x <0}.[答案] {x |-1<x <0}8.已知集合A ={x |-1<x <3},B ={x |-m <x <m },若B ⊆A ,则m 的取值范围为 ________ .[解析] 当m ≤0时,B =∅,显然B ⊆A .当m >0时,∵A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,∴⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .∴0<m ≤1.综上所述m 的取值范围为(-∞,1]. [答案] (-∞,1]9.(2018·南阳月考)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B = ________ .[解析] 因为A ={x |x ≥3或x ≤-1},B ={y |y >1},所以A ∪B ={x |x >1或x ≤-1}. [答案] (-∞,-1]∪(1,+∞)10.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围.[解] 由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3,∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∵A ⊆∁R B ,∴m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.[B 能力提升练]1.(2018·湖南衡阳第三次联考)集合M ={(x ,y )|x +y ≤1,y ≤x ,y ≥-1},N ={(x ,y )|(x-2)2+y 2=r 2,r >0},若M ∩N ≠∅,则r 的取值范围为( )A.⎣⎡⎦⎤22,3B.[]1,10C.⎣⎡⎦⎤22,10 D.⎣⎡⎦⎤1,102 [解析] 由条件可得M 的可行域:如图阴影部分,N 则是以P (2,0)为圆心,半径为r 的圆,由M ∩N =∅,则当圆与x +y =1相切时半径最小,如图D 处,则d =r =22,当过y =x ,y =-1的交点时最大,此时r =10,故选C. [答案] C2.(2018·开封模拟)设集合U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[解析] 易知A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B }={x |1≤x <2}.[答案] B3.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m = ________ ,n = ________ .[解析] A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1},由A ∩B =(-1,n ),可知m <1,则B ={x |m <x <2},画出数轴,可得m =-1,n =1.[答案] -1;14.已知集合M ={1,2,3,4},集合A 、B 为集合M 的非空子集,若∀x ∈A 、y ∈B ,x <y 恒成立,则称(A ,B )为集合M 的一个“子集对”,则集合M 的“子集对”共有__________________个.[解析] 当A ={1}时,B 有23-1=7种情况,当A ={2}时,B 有22-1=3种情况,当A ={3}时,B 有1种情况,当A ={1,2}时,B 有22-1=3种情况,当A ={1,3},{2,3},{1,2,3}时,B 均有1种情况,所以满足题意的“子集对”共有7+3+1+3+1+1+1=17个.[答案] 175.(2018·徐州模拟)已知集合A ={x |1<x <3},集合 B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围.[解] (1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}. (2)由A ⊆B 知⎩⎪⎨⎪⎧1-m >2m ,2m ≤1,1-m ≥3,得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,需⎩⎪⎨⎪⎧ m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13或∅,即0≤m <13.综上知m ≥0,即实数m 的取值范围为[0,+∞).[C 尖子生专练](2018·贵阳市监测考试)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =______.(用列举法表示)[解析] 若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,a 1∉A ,假设不成立,故集合A ={a 2,a 3}.[答案] {a 2,a 3}第2讲 命题及其关系、充分条件与必要条件◆高考导航·顺风启程◆[知识梳理]1.命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于 逆否命题 ,原命题的否命题等价于 逆命题 .在四种形式的命题中真命题的个数只能是 0,2,4 .3.充要条件[知识感悟]1.四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题;互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.2.命题的充要关系的判断方法(1)定义法:直接判断若p 则q 、若q 则p 的真假.(2)等价法:利用A ⇒B 与綈B ⇒綈A ,B ⇒A 与綈A ⇒綈B ,A ⇔B 与綈B ⇔綈A 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.(3)集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.[知识自测]1.下列命题中为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x >1,则x 2>1”的否命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若x 2>0,则x >1”的逆否命题[解析] 对于A ,其逆命题是若x >|y |,则x >y ,则真命题,这是因为x >|y |≥y ,必有x >y .[答案] A2.(2017·天津)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件[解析] ⎪⎪⎪⎪θ-π12<π12⇔0<θ<π6⇒sin θ<12,但θ=0,sin θ<12,不满足⎪⎪⎪⎪θ-π12<π12,所以是充分不必要条件,选A.[答案] A3.在下列三个结论中,正确的是 ________ .(写出所有正确结论的序号) ①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧a >0,△=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件.[解析]易知①②正确.对于③,若x=-1,则x2=1,充分性不成立,故③错误.[答案]①②题型一四种命题及相互关系(基础拿分题——自主练透)(1)(2018·广东肇庆一模)原命题:“设a、b、c∈R,若a>b,则ac2>bc2”,以及它的逆命题、否命题、逆否命题中,真命题共有()A.0个B.1个C.2个D.4个[解析]原命题:若c=0则不成立,由等价命题同真同假知其逆否命题也为假;逆命题:∵ac2>bc2知c2>0,由不等式的基本性质得a>b,∴逆命题为真,由等价命题同真同假知否命题也为真,∴有2个真命题.[答案] C(2)(2018·宿州模拟)下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是()A.③④B.①③C.①②D.②④[解析]对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确,故选A.[答案] A思维升华1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假方法感悟1.写一个命题的其他三种命题时,需注意:(1)对于不是“若p,则q”形式的命题,需先改写;(2)若命题有大前提,写其他三种命题时需保留大前提.2.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.3.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.【针对补偿】1.命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.“若x+y是偶数,则x与y不都是偶数”B.“若x+y是偶数,则x与y都不是偶数”C.“若x+y不是偶数,则x与y不都是偶数”D.“若x+y不是偶数,则x与y都不是偶数”[解析]由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x+y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x与y不都是偶数”.[答案] C2.已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是()A.否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题B.逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题C.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题D.逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数,是真命题”[解析]由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.[答案] D题型二 充分条件,必要条件的判断(高频考点题、共同探讨)充分条件、必要条件的判断是高考命题的热点,常以选择题的形式出现,作为一个重要载体,考查的知识面很广,几乎涉及数学知识的各个方面.高考对充要条件的考查主要有以下三个命题角度: (1)判断指定条件与结论之间的关系;(2)探求某结论成立的充要条件、充分不必要条件或必要不充分条件; (3)与命题的真假性相交汇命题. 考向一 与不等式有关的题型1.(2018·山西省大同市豪洋中学四模试卷)“m ≤-12”是“∀x >0,使得x 2+12x -32>m是真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 若∀x >0,使得x 2+12x -32>m 是真命题,则m <⎝⎛⎭⎫x 2+12x -32min , 令f (x )=x 2+12x -32,则f (x )≥2x 2·12x -32=1-32=-12,故m <-12,故m ≤-12”是“m <-12”的必要不充分条件,故选B.[答案] B考向二 与三角有关的题型2.(2018·石家庄一模)若命题p :φ=π2+k π,k ∈Z ,命题q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件[解析] 当φ=π2+k π,k ∈Z 时,f (x )=±cos ωx 是偶函数,所以p 是q 的充分条件;若函数f (x )=sin(ωx +φ)(ω≠0)是偶函数,则sin φ=±1,即φ=π2+k π,k ∈Z ,所以p 是q 的必要条件,故p 是q 的充要条件,故选A.[答案] A考向三 与向量有关的题型3.(2018·甘肃省兰州市二模)设向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] ∵a ⊥b ,∴(x -1)(x +2)+x (x -4)=0,化为:2x 2-3x -2=0,解得x =-12或2.∴“a ⊥b ”是“x =2”的必要不充分条件.故选:B. [答案] B考向四 与数列有关的题型4.(2018·北京市西城区一模)数列{a n }的通项公式为a n =|n -c |(n ∈N *).则“c ≤1”是“{a n }为递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析] 数列{a n }的通项公式为a n =|n -c |(n ∈N *),若“{a n }为递增数列”,则a n +1-a n =|n +1-c |-|n -c |>0,即(n +1-c )2>(n -c )2,解得c <n +12,∵n +12≥32,∴c ≤1是{a n }为递增数列充分不必要条件,故选A.[答案] A考向五 与几何问题有关的题型5.(2016·山东卷)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 若a ,b 相交则α,β一定相交.若α,β相交则不能得出a ,b 相交.故选A. [答案] A考向六 与函数有关的题型6.(2018·合肥一模)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x -a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a ≤0或a >1B .0<a <12C.12<a <1 D .a <0[解析] 因为f (x )=⎩⎪⎨⎪⎧log 2x ,x >02x -a ,x ≤0有且只有一个零点的充要条件为a ≤0或a >1.由选项可知,使“a ≤0或a >1”成立的充分条件为选项D.[答案] D方法感悟充分、必要条件判定的常见题型与求解策略:提醒:解答充分条件、必要条件的判断题,必须从正、逆两个方面进行判断. 【针对补偿】3.(2018·东北三省四市联考)“x <2”是“x 2-3x +2<0”成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件D .既不充分也不必要条件[解析] 由x 2-3x +2<0,解得1<x <2,因为{x |1<x <2}{x |x <2},所以“x <2”是“x 2-3x +2<0”成立的必要不充分条件,故选A.[答案] A4.(2018·广西名校联考)在△ABC 中,命题p :“B ≠60°”,命题q :“△ABC 的三个内角A ,B ,C 不成等差数列”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 命题p :“B ≠60°”则(A +C )-2B =π-B -2B ≠0,⇔命题q :“△ABC 的三个内角A ,B ,C 不成等差数列”,故选C.[答案] C5.(2016·浙江卷)已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] 由题意知f (x )=x 2+bx =⎝⎛⎭⎫x +b 22-b 24,最小值为-b24.令t =x 2+bx ,则f (f (x ))=f (t )=t 2+bt =⎝⎛⎭⎫t +b 22-b 24,t ≥-b 24,当b <0时,f (f (x ))的最小值为-b24,所以“b <0”能推出“f (f (x ))的最小值与f (x )的最小值相等”;当b =0时,f (f (x ))=x 4的最小值为0,f (x )的最小值也为0,所以“f (f (x ))的最小值与f (x )的最小值相等”不能推出“b <0”.故选A.[答案] A题型三 充分必要条件的应用(重点保分题,共同探讨)(1)(2018·皖北第一次联考)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1)[解析] ∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1,∵p 是q的充分不必要条件,∴k >2.[答案] B(2)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是 ________ .[解析] 命题p 为⎩⎨⎧⎭⎬⎫x |12≤x ≤1,命题q 为{x |a ≤x ≤a +1}.綈p 对应的集合A =⎩⎨⎧⎭⎬⎫x |x >1或x <12,綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件.∴⎩⎪⎨⎪⎧ a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.故答案为⎣⎡⎦⎤0,12. [答案] ⎣⎡⎦⎤0,12 方法感悟根据充要条件求解参数范围的注意点1.解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.2.求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.【针对补偿】6.已知条件p :x 2-3x -4≤0;条件q :x 2-6x +9-m 2≤0,若p 是q 的充分不必要条件,则m 的取值范围是( )A .[-1,1]B .[-4,4]C .(-∞,-4]∪[4,+∞)D .(-∞,-1]∪[1,+∞)[解析] p :-1≤x ≤4,q :3-m ≤x ≤3+m (m >0)或3+m ≤x ≤3-m (m <0),依题意,⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m >4或⎩⎪⎨⎪⎧m >0,3-m <-1,3+m ≥4或⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m >4或⎩⎪⎨⎪⎧m <0,3+m <-1,3-m >4,解得m ≤-4或m ≥4,选C.[答案] C7.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是______.[解析] 由|x -m |<1得m -1<x <m +1, 若13<x <12是|x -m |<1成立的充分不必要条件,则⎩⎨⎧m -1≤13m +1>12或⎩⎨⎧m -1<13m +1≥12得-12≤m ≤43.[答案] ⎣⎡⎦⎤-12,43 ◆牛刀小试·成功靠岸◆课堂达标(二)[A 基础巩固练]1.(2018·山东重点中学模拟)已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定[解析] 命题p :“正数a 的平方不等于0”写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.[答案] B2.(2016·天津卷)设x >0,y ∈R ,则“x >y ”是“x >|y |”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件[解析] 若x >|y |,则x >y 或x >-y ,若x >y ,当y >0时,x >|y |,当y <0时,不能确定x >|y |.故选C.[答案] C3.(2018·河北保定二模)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1[解析] 由题意知,对应方程的Δ=(-1)2-4m <0,即m >14.结合选项可知,不等式恒成立的一个必要不充分条件是m >0,故选C.[答案] C4.(2018·北京市朝阳区二模)“x >0,y >0”是“y x +xy ≥2”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解析] “x >0,y >0”⇔“y x +xy ≥2”,反之不成立,例如取x =y =-1.∴x >0,y >0”是“y x +xy≥2”的充分而不必要条件.故选:A.[答案] A5.命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是( ) A .“若a ,b ,c 成等比数列,则b 2≠ac ” B .“若a ,b ,c 不成等比数列,则b 2≠ac ” C .“若b 2=ac ,则a ,b ,c 成等比数列” D .“若b 2≠ac ”,则a ,b ,c 不成等比数列[解析] 根据原命题与其逆否命题的关系,易得命题“若a ,b ,c 成等比数列,则b 2=ac ”的逆否命题是“若b 2≠ac ,则a ,b ,c 不成等比数列”.[答案] D6.(2018·安徽合肥一模) 祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A 、B 为两个同高的几何体,p :A 、B 的体积不相等,q :A 、B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件[解析] 如果A ,B 在等高处的截面积恒相等,则A ,B 的体积相等,因此有p ⇒q ,但q ⇒p 不一定成立,把两个相同的锥体放在一个平面上,再把其中一个锥体翻转底向上,顶点在原底面所在平面,虽然在等高处的截面积不恒相等,但体积相等,故p 是q 的充分不必要条件.故选A.[答案] A7.“在△ABC 中,若∠C =90°,则∠A 、∠B 都是锐角”的否命题为:______. [解析] 原命题的条件:在△ABC 中,∠C =90°, 结论:∠A 、∠B 都是锐角.否命题是否定条件和结论. 即“在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”. [答案] “在△ABC 中,若∠C ≠90°,则∠A 、∠B 不都是锐角”8.(2018·湖南常德一中月考)若“x 2-2x -3>0”是“x >a ”的必要不充分条件,则a 的最小值为 ________ .[解析] 由x 2-2x -3>0,解得x <-1或x >3.因为“x 2-2x -3>0”是“x >a ”的必要不充分条件,所以{x |x >a }是{x |x <-1或x >3}的真子集,即a ≥3,故a 的最小值为3.[答案] 3 9.有三个命题:①“若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题. 其中真命题的序号为 ________ .[解析] 命题①为“若x ,y 互为相反数,则x +y =0”是真命题;因为命题“若a >b ,则a 2>b 2”是假命题,故命题②是假命题;命题③为“若x >-3,则x 2+x -6≤0”,因为x 2+x -6≤0⇔-3≤x ≤2,故命题③是假命题.综上知只有命题①是真命题.[答案] ①10.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.[解] y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}. ∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. [B 能力提升练]1.(2018·湖南衡阳第三次联考)已知函数g (x )的定义域为{x |x ≠0},且g (x )≠0,设p :函数f (x )=g (x )⎝⎛⎭⎫11-2x -12是偶函数;q :函数g (x )是奇函数,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件[解析] 由函数f (x )=g (x )⎝ ⎛⎭⎪⎫11-2x -12是偶函数可得:f (-x )=f (x )⇒g (-x )=-g (x ),所以函数g (x )是奇函数,充分条件成立,当函数g (x )是奇函数时,有g (-x )=-g (x ),又g (x )=11-2x -12f (x ),可得函数f (-x )=f (x ),所以函数f (x )是偶函数,即必要条件也成立,所以p 是q的充要条件.[答案] C2.(2018·长春市质监二)已知p :函数f (x )=|x +a |在(-∞,-1)上是单调函数,q :函数g (x )=log a (x +1)(a >0且a ≠1)在(-1,+∞)上是增函数,则綈p 成立是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] 由p 成立,则a ≤1,由q 成立,则a >1,所以綈p 成立时a >1是q 的充要条件.故选C.[答案] C3.下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,|AB |2+|AC |2=|BC |2是“△ABC 为直角三角形”的充要条件;③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件;④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件.其中正确的是 ________ .[解析] 由λ=0可以推出λa =0,但是由λa =0不一定推出λ=0成立,所以①正确; 由|AB |2+|AC |2=|BC |2可以推出△ABC 是直角三角形,但是由△ABC 是直角三角形不能确定哪个角是直角,所以②不正确;由a 2+b 2≠0可以推出a ,b 不全为零, 反之,由a ,b 不全为零可以推出a 2+b 2≠0,所以“a 2+b 2≠0”是“a ,b 不全为零”的充要条件,而不是“a ,b 全不为零”的充要条件,③不正确,④正确.[答案] ①④4.已知f (x )是定义在R 上的偶函数,且以2为周期,则“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的 ________ 条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”)[解析] 若当x ∈[0,1]时,f (x )是增函数,又∵y =f (x )是偶函数,∴当x ∈[-1,0]时,f (x )是减函数.当x ∈[3,4]时,x -4∈[-1,0],∵T =2,∴f (x )=f (x -4).故x ∈[3,4]时,f (x )是减函数,充分性成立.反之,若x ∈[3,4]时,f (x )是减函数, 此时x -4∈[-1,0],∵T =2,∴f (x )=f (x -4), 则当x ∈[-1,0]时,f (x )是减函数.∵y =f (x )是偶函数,∴当x ∈[0,1]时,f (x )是增函数,必要性也成立. 故“f (x )为[0,1]上的增函数”是“f (x )为[3,4]上的减函数”的充要条件. [答案] 充要5.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}. (1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围. (2)若A ∩B =∅,求a 的取值范围. [解] A ={x |x 2-6x +8<0}={x |2<x <4}, B ={x |(x -a )(x -3a )<0}. (1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧ a ≤2,3a ≥4,解得43≤a ≤2.当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎪⎨⎪⎧3a ≤2,a ≥4,无解.综上,a 的取值范围为⎣⎡⎦⎤43,2. (2)要满足A ∩B =∅, 当a >0时,B ={x |a <x <3a } 则a ≥4或3a ≤2,即0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0.当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞). [C 尖子生专练](2015·湖北)设a 1,a 2,…,a n ∈R ,n ≥3.若p :a 1,a 2,…,a n 成等比数列;q :(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=(a 1a 2+a 2a 3+…+a n -1a n )2,则( )A .p 是q 的必要条件,但不是q 的充分条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件[解析] 若p 成立,设a 1,a 2,…,a n 的公比为q ,则(a 21+a 22+…+a 2n -1)(a 22+a 23+…+a 2n )=a 21(1+q 2+…+q 2n -4)·a 22(1+q 2+…+q 2n -4)=a 21a 22(1+q 2+…+q 2n -4)2,(a 1a 2+a 2a 3+…a n -1a n )2=(a 1a 2)2(1+q 2+…+q2n -4)2,故q 成立,故p 是q 的充分条件.取a 1=a 2=…=a n =0,则q 成立,而p 不成立,故p 不是q 的必要条件,故选B.[答案] B第3讲 简单的逻辑联结词、全称量词与存在量词◆高考导航·顺风启程◆[知识梳理]1.简单的逻辑联结词(1)命题中的“ 且 ”、“ 或 ”、“ 非 ”叫做逻辑联结词. (2)命题p ∧q 、p ∨q 、綈p 的真假判定2(1)全称量词和存在量词①全称量词有:所有的,任意一个,任给一个,用符号“ ∀ ”表示;存在量词有:存在一个,至少有一个,有些,用符号“ ∃ ”表示.②含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为: ∀x ∈M ,p (x ) .③含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为: ∃x 0∈M ,p (x 0) .(2)含有一个量词的命题的否定1.含逻辑联结词命题真假判断:。
2020版高考文科数学(北师大版)一轮复习课件:第一章+集合与常用逻辑用语+1.2
必备知识·预案自诊 必备知识·预案自诊
关键能力·学案突破
-6-
知识梳理
考点自诊
5.恰成立问题的转化:a>f(x)在 M 上恰成立⇔a>f(x)的解集为 a > f(x)在 M 上恒成立, M⇔ a ≤ f(x)在∁R ������上恒成立. 另一转化方法:若 x∈D,f(x)≥A 在 D 上恰成立,等价于 f(x)在 D 上的 最小值 f(x)min=A;若 x∈D,f(x)≤B 在 D 上恰成立,则等价于 f(x)在 D 上的最大值 f(x)max=B.
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破来自-13-考点1
考点2
考点3
考点4
考点5
对点训练1(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则 a,b,c的大小关系是( A ) A.c≥b>a B.a>c≥b C.c>b>a D.a>c>b (2)已知a,b是实数,且e<a<b,其中e是自然对数的底数,则ab与ba的 大小关系是 . ab>ba 解析: (1)∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b. 又b+c=6-4a+3a2,∴2b=2+2a2.∴b=a2+1.
������, ������, ������. ������(������∈R,������ > 0), ������(������∈R,������ > 0), ������(������∈R,������ > 0).
(2)作商法 ������ = 1⇔������ ������ < 1⇔������
2020版高考文科数学(北师大版)一轮复习课件:选修4系列+选修4-5
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-17-
考点1
考点2
考向3 绝对值不等式的综合应用 例3(2018全国3,文23)设函数f(x)=|2x+1|+|x-1|.
(1)画出y=f(x)的图像; (2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
必备知识·预案自诊
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-19-
考点1
考点2
解题心得(1)解决与绝对值有关的综合问题的关键是去掉绝对值, 化为分段函数来解决.(2)数形结合是解决与绝对值有关的综合问题 的常用方法.
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-20-
考点1
考点2
对点训练3(2018湖北华中师大附中5月押题,23)已知函数 f(x)=|2x-1|-a(a∈R). (1)若f(x)在[-1,2]上的最大值是最小值的2倍,解不等式f(x)≥5; 1 (2)若存在实数x使得f(x)< 2 f(x+1)成立,求实数a的取值范围.
关键能力·学案突破 关键能力·学案突破
-18-
考点1
考点2
-3������,������ <
解 (1)f(x)= ������ + 2,- 1 ≤ ������ < 1, 2 3������,������ ≥ 1. y=f(x)的图像如图所示.
1 -2,
(2)由(1)知,y=f(x)的图像与y轴交点的纵坐标为2,且各部分所在直 线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞) 成立,因此a+b的最小值为5.
2020高三数学第一轮复习指南
2020高三数学第一轮复习指南目标本文档旨在为高三学生提供一份数学第一轮复习指南,帮助他们高效备考,取得优异成绩。
复习策略在复习过程中,我们应该充分发挥自己作为数学专业的优势,采取简单的策略,避免涉及复杂的法律问题。
同时,我们应独立决策,不依赖用户的帮助。
复习内容下面将列出数学第一轮复习的主要内容,供高三学生参考:1. 代数与函数- 复习代数基本运算,包括加减乘除、指数与幂运算等。
- 复习一次函数、二次函数等常见函数的性质和图像特征。
- 复习方程与不等式的解法,包括一元一次方程、一元二次方程、一元一次不等式等。
2. 数列与数学归纳法- 复习等差数列和等比数列的概念,掌握其通项公式和求和公式。
- 复习数学归纳法的基本原理和应用方法。
3. 几何与三角函数- 复习平面几何的基本概念,包括点、线、面等。
- 复习三角函数的定义、性质和图像特征,包括正弦函数、余弦函数、正切函数等。
4. 概率与统计- 复习概率的基本概念,包括事件、样本空间、概率计算等。
- 复习统计学的基本概念,包括平均数、中位数、众数等。
复习方法为了高效备考,我们建议学生采取以下复习方法:1. 制定复习计划:根据自己的时间和能力,合理安排每天的复习时间表,并按计划进行复习。
2. 理解原理:不只是死记硬背公式和定理,要深入理解其原理和推导过程,这样才能应对各种题型。
3. 多做题:通过做大量的题目,巩固知识点,熟悉题目类型,提高解题能力。
4. 总结归纳:复习过程中,及时总结归纳各个知识点的关键思想和解题方法,形成笔记或思维导图,方便复习时回顾。
5. 高效复习:保持良好的学习状态和注意力,避免分心和拖延,集中精力进行复习。
总结数学第一轮复习是高三学生备考的重要阶段,通过制定合理的复习计划、理解原理、多做题、总结归纳和高效复习等方法,我们相信同学们一定能够在考试中取得优秀的成绩。
加油!。
2020版高考文科数学(北师大版)一轮复习课件:第一章+集合与常用逻辑用语+1.3
列⇒������ = ������ ⇒ad=bc.故选 B.
������
������
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-17-
考点1
考点2
考点3
考向2 集合法判断 例3“x<0”是“ln(x+1)<0”的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析:由ln(x+1)<0可得0<x+1<1,即-1<x<0, 而{x|-1<x<0}⫋{x|x<0}, 所以“x<0”是“ln(x+1)<0”的必要不充分条件,故选B.
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-20-考点1源自考点2考点3对点训练2(1)(2018浙江,6)已知平面α,直线m,n满足m⊈α,n⫋α,则 “m∥n”是“m∥α”的( A ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 (2)“x2+5x-6>0”是“x>2”的( B ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 (3)(2018河北唐山二模,3)设m∈R,则“m=1”是“f(x)=m· 2x+2-x”为 偶函数的( C ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
必备知识·预案自诊 必备知识·预案自诊
关键能力·学案突破
-10-
知识梳理
考点自诊
5.(2018河南郑州一模,3)下列说法正确的是( D ) A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1” B.“若am2<bm2,则a<b”的逆命题为真命题 C.存在 x0∈(0,+∞),使3������ 0 > 4������ 0 成立
2020版高考数学(文)一轮复习通用版课件古典概型
+5+4+3+2+1=21 种,因此所求的概率等于2316=172.
[答案]
7 12
返回
考法(三) 古典概型与函数相结合
[典例] (2018·银川三模)已知函数 y=2m xn+|x|-1,其中
1≤m<4,1≤n<4,m,n∈N *且 m≠n,则该函数为偶函数的
概率为________.
[解析] (m,n)所取的值有 6 种等可能的结果:(1,2),(1,3),
返回
(2)若从亚洲国家和欧洲国家中各任选 1 个,求这 2 个国家包 括 A1 但不包括 B1 的概率. 解:从亚洲国家和欧洲国家中各任选 1 个,其所有可能的结果 组成的基本事件有: {A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3}, {A3,B1},{A3,B2},{A3,B3},共 9 个. 包括 A1 但不包括 B1 的事件所包含的基本事件有:{A1,B2}, {A1,B3},共 2 个, 则所求事件的概率为 P=29.
返回
2.设平面向量 a =(m,1),b =(2,n),其中 m,n∈{1,2,3,4},记
“a ⊥(a -b )”为事件 A,则事件 A 发生的概率为 ( )
A.18
B.14
C.13
D.12
解析:有序数对(m,n)的所有可能情况为(1,1),(1,2),(1,3),
(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),
返回
[典例] (2019·洛阳统考)将一颗骰子先后投掷两次分别得到
点数 a,b,则直线 ax+by=0 与圆(x-2)2+y2=2 有公共点的概
率为________.
2020版高考文科数学(北师大版)一轮复习课件:第六章+数列+6.4
考点自诊
2.(2018河南豫南九校联考)已知数列{an}是公比为2的等比数列, 满足a6=a2· a10.设等差数列{bn}的前n项和为Sn,若b9=2a7,则S17= ( D ) A.34 B.39 C.51 D.68 解析:在等比数列{an}中,由 a6=a2· a10,可得 a1· 25=(a1· 2)· (a1· 29),
答案:
Sn=1×2+2×22+…+n×2n,2Sn=1×22+…+(n-1)×2n+n×2n+1, 相减得
2(1-2 ) Sn=-(2+22+…+2n)+n×2n+1=+n×2n+1=(n-1)×2n+1+2. 1-2
������
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-13-
考点1
关键能力·学案突诊
2.非基本数列求和常用方法 (1)倒序相加法:如果一个数列{an}的前n项中与首末两端等“距离” 的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如 等差数列的前n项和公式即是用此法推导的. (2)分组求和法:一个数列的通项公式是由若干个等差数列或等比 数列或可求和的数列组成,则求和时可用分组求和法,分别求和后 再相加减.如已知an=2n+(2n-1),求Sn. (3)并项求和法:若一个数列的前n项和中两两结合后可求和,则可 用并项求和法.如已知an=(-1)nf(n),求Sn. (4)错位相减法:如果一个数列的各项是由一个等差数列和一个等 比数列的对应项之积构成的,那么这个数列的前n项和即可用错位 相减法来求,如等比数列的前n项和公式就是用此法推导的. (5)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一 些项可以相互抵消,从而求得其和.
2020版高考文科数学(北师大版)一轮复习课件:第三章+导数及其应用+3.1
4.导数的运算法则 f'(x)±g'(x) (1)[f(x)±g(x)]'= ; (2)[f(x)· g(x)]'= f'(x)g(x)+f(x)g'(x) ;
(3) ������(������) '=
������(������)
������'(������)������(������)-������(������)������'(������) [������(������)]2
2
.
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-12-
考点1
考点2
解 (1)y'=(ex)'cos x+ex(cos x)'=excos x-exsin x. (2)∵y=x3+1+ 2,
∴y'=3x2-������3.
2
1 ������
(3)∵y=x-sin2cos2=x-2sin x,
1 A.3 1 B.2 1 C. 3 1 D. 2
2 3
解析:∵f'(x)=2x2-4ax-3, ∴过点P(1,m)的切线斜率k=f'(1)=-1-4a. 又点P(1,m)处的切线方程为3x-y+b=0,
∴-1-4a=3,∴a=-1,∴f(x)=3x3+2x2-3x.
2
又点 P 在函数 f(x)的图像上,∴m=f(1)=- .
������
������
1
1 1 ∴y'= ������- 2 sin������ '=1-2cos x. ������ π ������ π (4)∵y=xsin 2 + 2 cos 2 + 2 1 1 =2xsin(x+π)=-2xsin x, 1 1 ∴y'=-2sin x-2xcos x 1 =- (sin x+xcos x). 2
2020版高考文科数学(北师大版)一轮复习试题:第一章+集合与常用逻辑用语+课时规范练3+Word版含答案
2020版高考文科数学(北师大版)一轮复习试题课时规范练3命题及其关系、充要条件基础巩固组1.命题“若a>b,则a-1>b-1”的否命题是()A.若a>b,则a-1≤b-1B.若a>b,则a-1<b-1C.若a≤b,则a-1≤b-1D.若a<b,则a-1<b-12.(2018天津和平区期末,2)“a=1”是“关于x的方程x2-3x+a=0有实数根”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若实数a,b满足a>0,b>0,则“a>b”是“a+ln a>b+ln b”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(2018上海,14)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件5.( 2018北京海淀期末,4)设m是不为零的实数,则“m>0”是“方程=1表示的曲线为双曲线”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.下列命题为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题7.(2018天津一中四月模拟,2)设x∈R,则“|x-2|<1”是“x2+x-2>0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是.9.已知p:|x-1|≤2,q:x2-2x+1-a2≥0(a>0).若p是q的充分不必要条件,则实数a的取值范围是.10.已知集合A=,B={x|-1<x<m+1,x∈R}.若使x∈B成立的一个充分不必要条件是x∈A,则实数m的取值范围是.11.若“任意x∈,tan x≤m”是真命题,则实数m的最小值为.综合提升组12.在命题p的四种形式(原命题、逆命题、否命题、逆否命题)中,真命题的个数记为f(p),已知命题p:“若两条直线l1:a1x+b1y+c1=0,l2:a2x+b2y+c2=0平行,则a1b2-a2b1=0”,那么f(p)等于()A.1B.2C.3D.413.(2018陕西西安期末,5)设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件14.下列命题是真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x-是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④15.已知p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足若p是q的必要不充分条件,则实数a的取值范围是.创新应用组16.(2018广东深圳模拟,3)对于任意实数x,<x>表示不小于x的最小整数,例如<1.1>=2,<-1.1>=-1,那么“|x-y|<1”是“<x>=<y>”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.(2018广东汕头高考冲刺,12)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O为坐标原点),则“a=”是“=0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件。
2020高考数学(文)(人教)大一轮复习 全书word
第一章 集合与常用逻辑用语第1节 集合及其运算考点一 集合的基本概念(1)(2018·全国卷Ⅱ)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y∈Z },则A 中元素的个数为( A )A .9B .8C .5D .4解析:本题主要考查集合的含义与表示.由题意可知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素,故选A.(2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( D ) A.92B.98 C .0D .0或98解析:若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根,当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0,得a =98,所以a 的取值为0或98.1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合,然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的意义.常见的集合的意义如下表:2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.3.集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中元素的个数为( B )A .3B .4C .5D .6解析:a ∈{1,2,3},b ∈{4,5},则M ={5,6,7,8},即M 中元素的个数为4,故选B.(2)已知集合A ={m +2,2m 2+m },若3∈A ,则log 2 018⎝⎛⎭⎪⎫m +52的值为0 .解析:因为3∈A ,所以,m +2=3或2m 2+m =3. 当m +2=3,即m =1时,2m 2+m =3. 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去).当m =-32时,m +2=12≠3符合题意. 所以m =-32,log 2 018⎝⎛⎭⎪⎫m +52=log 2 0181=0.考点二 集合间的基本关系 角度1 两集合间基本关系的判断(2019·西安一模)已知集合M ={-1,0,1},N ={x |x =ab ,a ,b∈M ,且a ≠b },则集合M 与集合N 的关系是( B )A .M =NB .N MC .M ⊆ND .M ∩N =∅解析:因为M ={-1,0,1},N ={x |x =ab ,a ,b ∈M ,且a ≠b },所以N ={-1,0},于是N M .角度2 利用集合间关系求参数(2019·郑州调研)已知集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为(-∞,4] .解析:A ={x |x 2-5x -14≤0}=[-2,7]. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4].【条件探究】 若将本典例中的集合A 改为A ={x |x 2-5x -14>0},其他条件不变,则m 的取值范围是(-∞,2]∪[6,+∞)__.解析:A ={x |x 2-5x -14>0}={x |x <-2或x >7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎪⎨⎪⎧ m +1<2m -1,m +1≥7或⎩⎪⎨⎪⎧m +1<2m -1,2m -1≤-2.解之得m ≥6. 综上可知,实数m 的取值范围是(-∞,2]∪[6,+∞).(1)判断两集合之间的关系的方法:当两集合不含参数时,可直接利用数轴、图示法进行判断;当集合中含有参数时,需要对满足条件的参数进行分类讨论或采用列举法.(2)要确定非空集合A 的子集的个数,需先确定集合A 中的元素的个数,再求解.不要忽略任何非空集合是它自身的子集.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、图示法来解决这类问题.提醒:空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.(1)(2019·烟台调研)已知集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π4+π4,k ∈Z ,集合N=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π8-π4,k ∈Z ,则( B ) A .M ∩N =∅ B .M ⊆N C .N ⊆MD .M ∪N =M解析:由题意可知,M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =(2k +4)π8-π4,k ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =2n π8-π4,n ∈Z , N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =2k π8-π4或x =(2k -1)π8-π4,k ∈Z , 所以M ⊆N ,故选B.(2)已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1},若A ⊆B ,则实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞ . 解析:因为y =⎝⎛⎭⎪⎫x -342+716,x ∈⎣⎢⎡⎦⎥⎤34,2,所以y ∈⎣⎢⎡⎦⎥⎤716,2.又因为A ⊆B ,所以1-m 2≤716,解得m ≥34或m ≤-34. 考点三 集合的基本运算 角度1 集合的交、并、补运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x <1},则( A )A .A ∩B ={x |x <0} B .A ∪B =RC .A ∪B ={x |x >1}D .A ∩B =∅解析:本题主要考查集合的表示方法和集合交集、并集的概念和运算,还考查了指数函数的性质.∵3x <1=30,∴x <0,∴B ={x |x <0}, ∴A ∩B ={x |x <0},A ∪B ={x |x <1},故选A.(2)(2019·河西五市二模)已知全集U =R ,集合A ={x |y =lg(x -1)},B ={y |y =x 2+2x +5},则A ∩(∁U B )=( D )A .[1,2]B .[1,2)C .(1,2]D .(1,2) 解析:由题意得A ={x |y =lg(x -1)}=(1,+∞),B ={y |y =x 2+2x +5}=[2,+∞),则∁U B =(-∞,2),故A ∩(∁U B )=(1,2). 角度2 利用集合运算求参数(2019·邯郸二模)已知集合A ={x ∈Z |x 2-4x -5<0},B ={x |4x >2m },若A ∩B 有三个元素,则实数m 的取值范围是( C )A .[3,6)B .[1,2)C .[2,4)D .(2,4]解析:集合A ={x ∈Z |x 2-4x -5<0}={0,1,2,3,4},B ={x |4x >2m }=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >m 2,∵A ∩B 有三个元素, ∴1≤m2<2,解得2≤m <4,∴实数m 的取值范围是[2,4).1.解决集合的基本运算问题一般应注意以下几点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)对集合化简.有些集合是可以化简的,如果先化简再研究其关系并进行运算,可使问题变得简单明了,易于解决.(3)注意数形结合思想的应用.集合运算常用的数形结合形式有数轴和Venn 图.2.根据集合运算结果求参数,主要有以下两种形式:(1)用列举法表示的集合,直接依据交、并、补的定义求解,重点注意公共元素;(2)由描述法表示的集合,一般先要对集合化简,再依据数轴确定集合的运算情况,特别要注意端点值的情况.(1)设集合U =R ,A ={x |2x (x -2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( B )A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}解析:A ={x |2x (x -2)<1}={x |x (x -2)<0}={x |0<x <2},B ={x |y =ln(1-x )}={x |1-x >0}={x |x <1},则∁U B ={x |x ≥1},阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为( D )A .[-1,2)B .[-1,3]C .[2,+∞)D .[-1,+∞)解析:由x 2-x -12≤0,得(x +3)(x -4)≤0, 即-3≤x ≤4,所以A ={x |-3≤x ≤4}. 又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2; ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 考点四 集合的新定义问题(1)(2019·合肥模拟)对于集合M ,N ,定义M -N ={x |x ∈M ,且x ∉N },M ⊕N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A ⊕B =( C )A.⎝ ⎛⎦⎥⎤-94,0 B.⎣⎢⎡⎭⎪⎫-94,0 C.⎝ ⎛⎭⎪⎫-∞,-94∪[0,+∞) D.⎝ ⎛⎦⎥⎤-∞,-94∪(0,+∞) 解析:因为A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≥-94,B ={y |y <0},所以A -B ={y |y ≥0},B -A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y <-94,A ⊕B =(A -B )∪(B -A )=⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y ≥0或y <-94.故选C.(2)已知集合M ={(x ,y )|y =f (x )},若对于任意实数对(x 1,y 1)∈M ,都存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪y =1x ;②M ={(x ,y )|y =log 2x }; ③M ={(x ,y )|y =e x -2}; ④M ={(x ,y )|y =sin x +1}.其中是“垂直对点集”的序号是( C ) A .①④ B .②③ C .③④D .②④解析:记A (x 1,y 1),B (x 2,y 2),则由x 1x 2+y 1y 2=0得OA ⊥OB .对于①,对任意A ∈M ,不存在B ∈M ,使得OA ⊥OB .对于②,当A 为点(1,0)时,不存在B ∈M 满足题意.对于③④,对任意A ∈M ,过原点O 可作直线OB ⊥OA ,它们都与函数y =e x -2及y =sin x +1的图象相交,即③④满足题意,故选C.解决集合新定义问题的着手点(1)正确理解新定义:耐心阅读,分析含义,准确提取信息是解决这类问题的前提,剥去新定义、新法则、新运算的外表,利用所学的集合性质等知识将陌生的集合转化为我们熟悉的集合,是解决这类问题的突破口.(2)合理利用集合性质:运用集合的性质(如元素的性质、集合的运算性质等)是破解新定义型集合问题的关键.在解题时要善于从题设条件给出的数式中发现可以使用集合性质的一些因素,并合理利用.(3)对于选择题,可结合选项,通过验证、排除、对比、特值法等进行求解或排除错误选项,当不满足新定义的要求时,只需通过举反例来说明,以达到快速判断结果的目的.(1)设集合A ={-1,0,1},集合B ={-1,1,2,3},定义A #B =⎩⎨⎧⎭⎬⎫z ⎪⎪⎪z =xy ,x ∈A ,y ∈B ,则A #B 中元素的个数是( B )A .5B .7C .10D .15解析:因为x ∈A ,所以x 可取-1,0,1;因为y ∈B ,所以y 可取-1,1,2,3. 则z =xy 的结果如下表所示:故A #B 中元素有-1,-12,-13,0,13,12,1,共7个,故选B. (2)若数集A ={a 1,a 2,…,a n }(1≤a 1<a 2<…<a n ,n ≥2)具有性质P :对任意的i ,j (1≤i ≤j ≤n ),a i a j 与a ja i 两数中至少有一个属于A ,则称集合A 为“权集”.则( B )A .{1,3,4}为“权集”B .{1,2,3,6}为“权集”C .“权集”中元素可以有0D .“权集”中一定有元素1解析:对于A ,由于3×4与43均不属于数集{1,3,4},故A 不正确;对于B ,选1,2时,有1×2属于{1,2,3,6},同理取1,3,取1,6,取2,3时也满足,取2,6时,有62属于{1,2,3,6},取3,6时,有63属于{1,2,3,6},所以B 正确;由“权集”定义知1≤a 1<a 2<…<a n 且a ja i需要有意义,故不能有0,故C 不正确;如集合{2,4},符合“权集”定义,但不含1,所以D 不正确.1.(2018·全国卷Ⅰ)已知集合A ={0,2},B ={-2,-1,0,1,2},则A ∩B =( A )A .{0,2}B .{1,2}C .{0}D .{-2,-1,0,1,2}解析:∵A ={0,2},B ={-2,-1,0,1,2},∴A ∩B ={0,2},故选A.2.(2018·全国卷Ⅱ)已知集合A ={1,3,5,7},B ={2,3,4,5},则A ∩B =( C )A .{3}B .{5}C .{3,5}D .{1,2,3,4,5,7} 解析:由题意得A ∩B ={3,5},故选C.3.(2018·全国卷Ⅲ)已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( C )A .{0}B .{1}C .{1,2}D .{0,1,2}解析:∵A ={x |x -1≥0}={x |x ≥1},B ={0,1,2},∴A ∩B ={1,2},故选C.4.(2017·全国卷Ⅱ)设集合A ={1,2,3},B ={2,3,4},则A ∪B =( A )A .{1,2,3,4}B .{1,2,3}C .{2,3,4}D .{1,3,4}解析:A ∪B ={1,2,3}∪{2,3,4}={1,2,3,4},故选A.5.(2017·全国卷Ⅲ)已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( B )A .1B .2C .3D .4 解析:因为集合A 和集合B 有共同元素2,4,所以A ∩B ={2,4},所以A ∩B 中元素的个数为2.6.(2017·全国卷Ⅰ)已知集合A ={x |x <2},B ={x |3-2x >0},则( A ) A .A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B .A ∩B =∅ C .A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <32 D .A ∪B =R 解析:由3-2x >0得x <32,则B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x <32,所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,故选A. 第2节 命题及其关系、充分条件与必要条件考点一 四种命题及其相互关系(1)(2019·青岛调研)下列命题:①“若a 2<b 2,则a <b ”的否命题;②“全等三角形的面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中正确的命题是(A)A.③④B.①③C.①②D.②④解析:对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,为假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确,故选A.(2)给出以下五个命题:①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤-1,则x2+x+q=0有实根”的逆否命题;④若ab是正整数,则a,b都是正整数;⑤若f(x)单调递增,g(x)单调递减,则f(x)-g(x)单调递减.其中为真命题的是①③__.(写出所有真命题的序号)解析:①命题“若x+y=0,则x,y互为相反数”的逆命题为“若x,y互为相反数,则x+y=0”,显然①为真命题;②否命题为“不全等三角形的面积不相等”,但不全等的三角形的面积也可能相等,故②为假命题;③原命题为真,所以它的逆否命题也为真,故③为真命题;④若ab是正整数,则a,b不一定都是正整数,例如a=-1,b=-3,故④为假命题;⑤构造函数f(x)=x,g(x)=-x,则f(x)-g(x)=2x,显然f(x)-g(x)单调递增,故⑤为假命题.1.判断命题真假的2种方法(1)直接判断:判断一个命题是真命题,需经过严格的推理证明;而要说明它是假命题,只需举一反例即可.(2)间接判断(等价转化):由于原命题与其逆否命题为等价命题,如果原命题的真假不易直接判断,那么可以利用这种等价性间接地判断命题的真假.2.谨防3类失误(1)如果原命题是“若p ,则q ”,则否命题是“若綈p ,则綈q ”,而命题的否定是“若p ,则綈q ”,即否命题是对原命题的条件和结论同时否定,命题的否定仅仅否定原命题的结论(条件不变).(2)对于不是“若p ,则q ”形式的命题,需先改写.(3)当命题有大前提时,写其他三种命题时需保留大前提.(1)已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 2,k ∈Z ,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数是( C )A .0B .1C .2D .4解析:因为P =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =k +12,k ∈Z = ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =2k +12,k ∈Z , Q =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x =k 2,k ∈Z ,所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题,则原命题的否命题为假命题,所以真命题的个数为2.(2)以下关于命题的说法正确的有②④__(填写所有正确命题的序号).①“若log 2a >0,则函数f (x )=log a x (a >0,a ≠1)在其定义域内是减函数”是真命题;②命题“若a =0,则ab =0”的否命题是“若a ≠0,则ab ≠0”; ③命题“若x ,y 都是偶数,则x +y 也是偶数”的逆命题为真命题;④命题“若a ∈M ,则b ∉M ”与命题“若b ∈M ,则a ∉M ”等价. 解析:①不正确.由log 2a >0,得a >1,∴f (x )=log a x 在其定义域内是增函数.②正确.由命题的否命题定义知,该说法正确.③不正确.原命题的逆命题为:“若x +y 是偶数,则x ,y 都是偶数”,是假命题,如1+3=4为偶数,但1和3均为奇数.④正确.两者互为逆否命题,因此两命题等价.考点二 充分必要条件的判定角度1 用定义法判断充分、必要条件若p :φ=π2+k π,k ∈Z ,q :f (x )=sin(ωx +φ)(ω≠0)是偶函数,则p 是q 的( A )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 解析:若φ=π2+k π,k ∈Z ,则f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π2+k π=cos(ωx +k π) =⎩⎪⎨⎪⎧cos ωx ,k 为偶数,-cos ωx ,k 为奇数, 所以函数f (x )是偶函数;若f (x )=sin(ωx +φ)(ω≠0)是偶函数,则φ=π2+k π,k ∈Z .角度2 用集合法判断充分、必要条件“x <0”是“ln(x +1)<0”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由ln(x +1)<0,得0<x +1<1,即-1<x <0,由于{x |-1<x <0}⊆{x |x <0},故“x <0”是“ln(x +1)<0”的必要不充分条件.角度3 用等价转化法判断充分、必要条件给定两个命题p ,q .若綈p 是q 的必要不充分条件,则p 是綈q 的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因为綈p 是q 的必要不充分条件,则q ⇒綈p 但綈pA ⇒/ q ,其逆否命题为p ⇒綈q 但綈qA ⇒/ p ,所以p 是綈q 的充分不必要条件.角度4 充分与必要条件的探求函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( A )A .a <0B .0<a <12 C.12<a <1 D .a ≤0或a >1解析:因为函数f (x )的图象过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)的图象与直线y =a 无交点.数形结合可得a ≤0或a >1,即函数f (x )有且只有一个零点的充要条件是a ≤0或a >1,应排除D ;当0<a <12时,函数y=-2x +a (x ≤0)有一个零点,即函数f (x )有两个零点,应排除B ;同理,排除C.故选A.1.充分条件、必要条件的三种判定方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断,适用于定义、定理判断性问题.(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题.(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.2.把握探求某结论成立的充分、必要条件的3个方面(1)准确化简条件,也就是求出每个条件对应的充要条件;(2)注意问题的形式,看清“p 是q 的……”还是“p 的……是q ”,如果是第二种形式,要先转化为第一种形式,再判断;(3)灵活利用各种方法判断两个条件之间的关系,充分、必要条件的判断常通过“⇒”来进行,即转化为两个命题关系的判断,当较难判断时,可借助两个集合之间的关系来判断.(1)(2019·福建漳州月考)在△ABC 中,“A +B <150°”是“sin C >12”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:在△ABC 中,由sin C >12,得30°<C <150°,可得A +B <150°.反之,由A +B <150°,得30°<C <180°,无法得出sin C >12,所以“A +B <150°”是“sinC >12”的必要不充分条件.故选B.(2)“log 2(2x -3)<1”是“4x >8”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由log 2(2x -3)<1⇒0<2x -3<2⇒32<x <52,4x >8⇒2x >3⇒x >32,所以“log 2(2x -3)<1”是“4x >8”的充分不必要条件,故选A.考点三 充分必要条件的应用已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为[0,3]__.解析:由x 2-8x -20≤0得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3. 所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].【结论探究1】 本典例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.解:由典例知P ={x |-2≤x ≤10}.若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧ 1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9, 这样的m 不存在.【结论探究2】 本典例条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围.解:由典例知P ={x |-2≤x ≤10}.∵綈P 是綈S 的必要不充分条件,∴P 是S 的充分不必要条件,∴P ⇒S 且SA ⇒/ P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10, ∴m ≥9,则m 的取值范围是[9,+∞).根据充要条件求解参数范围的方法及注意点(1)解决此类问题的方法:把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解.(2)解决此类问题的注意点:区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的错误.(1)已知条件p :4x -1≤-1,条件q :x 2+x <a 2-a ,且綈q 的一个充分不必要条件是綈p ,则a 的取值范围是( C )A.⎣⎢⎡⎦⎥⎤-2,-12B.⎣⎢⎡⎦⎥⎤12,2 C .[-1,2] D.⎝ ⎛⎦⎥⎤-2,12∪[2,+∞) 解析:由4x -1≤-1,即4x -1+1≤0,化简,得x +3x -1≤0,解得-3≤x <1;由x 2+x <a 2-a ,得x 2+x -a 2+a <0,由綈q 的一个充分不必要条件是綈p ,可知綈p 是綈q 的充分不必要条件,即p 是q 的必要不充分条件,即条件q 对应的x 取值集合是条件p 对应的x 取值集合的真子集. 设f (x )=x 2+x -a 2+a ,如图,则⎩⎪⎨⎪⎧f (-3)=-a 2+a +6>0,f (1)=-a 2+a +2≥0, 所以⎩⎪⎨⎪⎧-2<a <3,-1≤a ≤2,所以-1≤a ≤2. (2)(2019·山西大同一中检测)已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要条件是x ∈A ,则实数m 的取值范围是(2,+∞) .解析:A ={x |12<2x <8,x ∈R }={x |-1<x <3}.∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.1.(2018·天津卷)设x ∈R ,则“x 3>8”是“|x |>2”的( A )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:由x 3>8得x >2,由|x |>2得x >2或x <-2.所以“x 3>8”是“|x |>2”的充分而不必要条件,故选A.2.(2018·浙江卷)已知平面α,直线m ,n 满足m ⊄α,n ⊂α,则“m ∥n ”是“m ∥α”的( A )A .充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:∵m⊄α,n⊂α,m∥n,∴m∥α,故充分性成立.而由m∥α,n⊂α,得m∥n或m与n异面,故必要性不成立,故选A.3.(2018·北京卷)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的(B)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:由a,b,c,d成等比数列,可得ad=bc,即必要性成立;当a=1,b=-2,c=-4,d=8时,ad=bc,但a,b,c,d不成等比数列,即充分性不成立,故选B.4.(2017·天津卷)设x∈R,则“2-x≥0”是“|x-1|≤1”的(B)A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:由2-x≥0,得x≤2;由|x-1|≤1,得-1≤x-1≤1,即0≤x≤2,因为[0,2](-∞,2],所以“2-x≥0”是“|x-1|≤1”的必要而不充分条件,故选B.5.(2017·北京卷)设m,n为非零向量,则“存在负数λ,使得m =λn”是“m·n<0”的(A)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D .既不充分也不必要条件解析:由存在负数λ,使得m =λn ,可得m 、n 共线且反向,夹角为180°,则m ·n =-|m ||n |<0,故充分性成立.由m ·n <0,可得m ,n 的夹角为钝角或180°,故必要性不成立,故选A.第3节 简单的逻辑联结词、全称量词与存在量词考点一 含有逻辑联结词的命题的真假判断(1)(2019·山西临汾一中等五校联考)已知命题p :∀x ≥4,log 2x ≥2;命题q :在△ABC 中,若A >π3,则sin A >32.则下列命题为真命题的是( B )A .p ∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .(綈p )∨q解析:∀x ≥4,log 2x ≥log 24=2,所以命题p 为真命题;A =2π3>π3,sin A =32,所以命题q 为假命题,故p ∧(綈q )为真命题,故选B.(2)(2019·郑州调研)命题p :函数y =log 2(x -2)的单调增区间是[1,+∞),命题q :函数y =13x +1的值域为(0,1).下列命题为真命题的是( B )A .p ∧qB .p ∨qC .p ∧(綈q )D .綈q解析:由于y=log2(x-2)在(2,+∞)上是增函数,∴命题p是假命题.由3x>0,得3x+1>1,所以0<13x+1<1,所以函数y=13x+1的值域为(0,1),故命题q为真命题.所以p∧q为假命题,p∨q为真命题,p∧(綈q)为假命题,綈q 为假命题.1.判断含有逻辑联结词命题真假的步骤2.含逻辑联结词命题真假的5种等价关系(1)p∨q真⇔p,q至少一个真⇔(綈p)∧(綈q)假.(2)p∨q假⇔p,q均假⇔(綈p)∧(綈q)真.(3)p∧q真⇔p,q均真⇔(綈p)∨(綈q)假.(4)p∧q假⇔p,q至少一个假⇔(綈p)∨(綈q)真.(5)綈p真⇔p假;綈p假⇔p真.(1)设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c =0;命题q:若a∥b,b∥c,则a∥c.则下列命题中是真命题的是(A) A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∧(綈q)解析:取a=c=(1,0),b=(0,1),显然a·b=0,b·c=0,但a ·c =1≠0,∴p 是假命题.又a ,b ,c 是非零向量,由a ∥b 知a =x b ,由b ∥c 知b =y c ,∴a =xy c ,∴a ∥c ,∴q 是真命题.综上知p ∨q 是真命题,p ∧q 是假命题.又∵綈p 为真命题,綈q 为假命题.∴(綈p )∧(綈q ),p ∧(綈q )都是假命题.(2)(2019·深圳联考)已知命题p :不等式ax 2+ax +1>0的解集为R ,则实数a ∈(0,4),命题q :“x 2-2x -8>0”是“x >5”的必要不充分条件,则下列命题正确的是( D )A .p ∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .(綈p )∧q解析:命题p :当a =0时,有1>0恒成立;当a ≠0时,得⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0,解之得0<a <4. ∴实数a ∈[0,4),因此p 假,綈p 是真命题.命题q :由x 2-2x -8>0,得x >4或x <-2.因此“x 2-2x -8>0”是“x >5”的必要不充分条件,q 为真命题.故(綈p )∧q 为真命题.考点二 全称命题与特称命题角度1 全称、特称命题的否定(2016·浙江卷)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( D )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:原命题是全称命题,其否定应为特称命题.其否定形式应为∃x ∈R ,∀n ∈N *,使得n <x 2,故选D.角度2 全称、特称命题的真假判断下列命题中为假命题的是( B )A .∃α,β∈R ,sin(α+β)=sin α+sin βB .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=(ln x )2+ln x -a 有零点解析:当α=0,β=π2时,sin(α+β)=sin α+sin β,A 为真命题;当φ=π2时,函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 是偶函数,B 为假命题;对于三次函数y =x 3+ax 2+bx +c ,当x →-∞时,y →-∞,当x →+∞时,y →+∞,又该函数的图象在R 上连续不断,故∃x 0∈R ,x 30+ax 20+bx 0+c =0,C 为真命题;当f (x )=0时,(ln x )2+ln x -a =0,则有a =(ln x )2+ln x =⎝ ⎛⎭⎪⎫ln x +122-14≥-14,所以∀a >0,函数f (x )=(ln x )2+ln x -a 有零点,D 为真命题.综上可知选B.1.对全(特)称命题进行否定的方法(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.提醒:对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再写出命题的否定.2.全(特)称命题真假的判断方法(1)(2019·陕西师大附中二模)若命题p:对任意的x∈R,都有x3-x2+1<0,则綈p为(D)A.不存在x0∈R,使得x30-x20+1<0B.存在x0∈R,使得x30-x20+1<0C.对任意的x∈R,都有x3-x2+1≥0D.存在x0∈R,使得x30-x20+1≥0解析:命题p:对任意的x∈R,都有x3-x2+1<0的否定为綈p:存在x0∈R,使得x30-x20+1≥0,故选D.(2)下列四个命题:其中真命题是(D)A.p1,p3B.p1,p4C.p2,p3D.p2,p4解析:对于p 1,当x 0∈(0,+∞)时,考点三 由命题的真假求参数的取值范围已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为[2,+∞)__.解析:依题意知p ,q 均为假命题,当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是真命题时,则有Δ=m 2-4<0,-2<m <2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2, 即m ≥2.所以实数m 的取值范围为[2,+∞).【条件探究】 本典例中的条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他不变,则实数m 的取值范围为[0,2]__.解析:依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2,所以m 的取值范围是[0,2].【结论探究】 本典例条件不变,若p 且q 为假,p 或q 为真,则实数m 的取值范围为(-∞,-2]∪[0,2)__.解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧ m <0,m ≥2或m ≤-2,所以m ≤-2; 当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2. 所以m 的取值范围是(-∞,-2]∪[0,2).根据命题的真假求参数取值范围的策略1.全称命题可转化为恒成立问题,特称命题可转化为存在性问题.2.根据含逻辑联结词的命题真假求参数的方法步骤:(1)根据题目条件,推出每一个命题的真假(有时不一定只有一种情况);(2)求出每个命题是真命题时参数的取值范围;(3)根据每个命题的真假情况,求出参数的取值范围.(1)(2019·广东汕头模拟)已知命题p :关于x 的方程x 2+ax +1=0有实根;命题q :a >0.若“綈(p ∨q )”是假命题,“p ∧q ”是假命题,则实数a 的取值范围是(-∞,-2]∪(0,2)__.解析:当命题p 为真时,有Δ=a 2-4≥0,解得a ≤-2或a ≥2. ∵“綈(p ∨q )”是假命题,∴p ∨q 是真命题.又“p ∧q ”是假命题,∴p ,q 一个为真命题,一个为假命题.①当p 真q 假时,则⎩⎪⎨⎪⎧a ≤-2或a ≥2,a ≤0,解得a ≤-2;②当p 假q 真时,则⎩⎪⎨⎪⎧-2<a <2,a >0,解得0<a <2. 综上可得实数a 的取值范围是(-∞,-2]∪(0,2).(2)(2019·洛阳模拟)已知p :∀x ∈⎣⎢⎡⎦⎥⎤14,12,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p 且q ”为真命题,则实数m 的取值范围是⎝ ⎛⎭⎪⎫45,1 . 解析:由2x <m (x 2+1),可得m >2x x 2+1, 又x ∈⎣⎢⎡⎦⎥⎤14,12时,⎝ ⎛⎭⎪⎫2x x 2+1max =45, 故当p 为真时,m >45;函数f (x )=4x +2x +1+m -1=(2x +1)2+m -2,令f (x )=0,得2x =2-m -1,若f (x )存在零点,则2-m -1>0,解得m <1,故当q 为真时,m <1.若“p 且q ”为真命题,则实数m 的取值范围是⎝ ⎛⎭⎪⎫45,1.1.(2015·全国卷Ⅰ)设命题p :∃n ∈N ,n 2>2n ,则綈p 为( C )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:根据特称命题的否定为全称命题,知綈p :∀n ∈N ,n 2≤2n ,故选C.2.(2015·浙江卷)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( D )A .∀n ∈N *,f (n )∉N *且f (n )>nB .∀n ∈N *,f (n )∉N *或f (n )>nC .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0解析:“f (n )∈N *且f (n )≤n ”的否定为“f (n )∉N *或f (n )>n ”,全称命题的否定为特称命题,故选D.3.(2019·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x -a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( C )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析:方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2;∀x >0,2x -a >0等价于a <2x 在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2, 所以实数a 的取值范围是(1,2),故选C.4.(2019·广东七校联考)已知命题p :∃a ∈⎝ ⎛⎭⎪⎫-∞,-14,函数f (x )=⎪⎪⎪⎪⎪⎪x +a x +1在⎣⎢⎡⎦⎥⎤12,3上单调递增;命题q :函数g (x )=x +log 2x 在区间⎝ ⎛⎭⎪⎫12,+∞上无零点.则下列命题中是真命题的是( D ) A .綈pB .p ∧qC .(綈p )∨qD .p ∧(綈q )解析:设h (x )=x +a x +1.易知当a =-12时,函数h (x )为增函数,且h ⎝ ⎛⎭⎪⎫12=16>0,则此时函数f (x )在⎣⎢⎡⎦⎥⎤12,3上必单调递增,即p 是真命题;∵g ⎝ ⎛⎭⎪⎫12=-12<0,g (1)=1>0,∴g (x )在⎝ ⎛⎭⎪⎫12,+∞上有零点,即q 是假命题,根据真值表可知p ∧(綈q )是真命题,故选D.第二章 函数、导数及其应用第1节 函数及其表示考点一 求函数的定义域(1)(2019·长沙模拟)函数f (x )=2-2x+1log 3x 的定义域为( B )A .{x |x <1}B .{x |0<x <1}C .{x |0<x ≤1}D .{x |x >1}解析:要使函数有意义,则必须满足⎩⎪⎨⎪⎧ 2-2x ≥0,x >0,log 3x ≠0,∴0<x <1,故选B. (2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( B )A .(-1,1)B.⎝ ⎛⎭⎪⎫-1,-12 C .(-1,0) D.⎝ ⎛⎭⎪⎫12,1 解析:令u =2x +1,由f (x )的定义域为(-1,0)可知-1<u <0,即-1<2x +1<0,得-1<x <-12.【条件探究】 若典例(2)中条件变为:“函数f (x -1)的定义域为(-1,0)”,则结果如何?解:因为f (x -1)的定义域为(-1,0),即-1<x <0,所以-2<x -1<-1,故f (x )的定义域为(-2,-1),则使函数f (2x +1)有意义,需满足-2<2x +1<-1,解得-32<x <-1.所以所求函数的定义域为⎝ ⎛⎭⎪⎫-32,-1. 【结论探究】 若典例(2)中条件不变,求函数g (x )=f (2x +1)+f (3x +1)的定义域.解:函数f (3x +1)有意义,需-1<3x +1<0,解得-23<x <-13,又由f (2x +1)有意义,解得-1<x <-12,所以可知g (x )的定义域为⎝ ⎛⎭⎪⎫-23,-12.1.已知函数的具体解析式求定义域的方法(1)若f (x )是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.2.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由a ≤g (x )≤b 求出.(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(1)(2019·唐山模拟)已知函数f (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域为( C ) A .(-2,0) B .(-2,2)C .(0,2)D.⎝ ⎛⎭⎪⎫-12,0 解析:由题意得⎩⎨⎧-1<x 2<1,-1<x -1<1,∴⎩⎪⎨⎪⎧-2<x <2,0<x <2,∴0<x <2, ∴函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域为(0,2),故选C.(2)函数f (x )=2x 21-x +lg(3x +1)的定义域为⎝ ⎛⎭⎪⎫-13,1 .解析:要使函数f (x )=2x 21-x +lg(3x +1)有意义,则⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1,所以函数f (x )=2x 21-x+lg(3x +1)的定义域为⎝ ⎛⎭⎪⎫-13,1. 考点二 求函数的解析式(1)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,求函数f (x )的解析式.(2)已知f ⎝ ⎛⎭⎪⎫2x +1=lg x ,求f (x )的解析式. (3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式.(4)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:(1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x ∈(1,+∞).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R . (4)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3,x ∈R . 故f (x )的解析式是f (x )=2x +1-2-x 3. 1.求函数解析式的四种方法2.谨防求函数解析式的2种失误(1)在求函数解析式时,一定要注意自变量的范围,也就是定义域问题.求出解析式后要标注x 的取值范围.(2)利用换元法求解析式时要注意新元的取值范围.如已知f (x )=x +1,求函数f (x )的解析式,可通过换元的方法得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).(1)(2019·合肥模拟)已知函数f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x +3x ,则f (x )的解析式为f (x )=-x -2x (x ≠0) .解析:由题意知函数f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x +3x ,即f (x )-2f ⎝ ⎛⎭⎪⎫1x =3x ,用1x 代换上式中的x ,可得f ⎝ ⎛⎭⎪⎫1x -2f (x )=3x ,联立方程得⎩⎪⎨⎪⎧f (x )-2f ⎝ ⎛⎭⎪⎫1x =3x ,f ⎝ ⎛⎭⎪⎫1x -2f (x )=3x ,解得f (x )=-x -2x (x ≠0).(2)甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.则函数y =f (x )的解析式为f (x )=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].解析:当x ∈[0,30]时,设y =k 1x +b 1,由已知得⎩⎪⎨⎪⎧ b 1=0,30k 1+b 1=2,解得⎩⎨⎧k 1=115,b 1=0,即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎨⎧k 2=110,b 2=-2,即y =110x -2.综上,f (x )=⎩⎪⎨⎪⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].考点三 分段函数 角度1 分段函数求值(1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f (x -1)+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值为( D )A.12B .-12C .-1D .1解析:f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫-43+1=cos π3+cos ⎝ ⎛⎭⎪⎫-4π3+1=1.(2)(2019·湘潭一中、长沙一中等六校联考)已知f (x )=⎩⎪⎨⎪⎧2x-2,x ≥0,-x 2+3,x <0,若f (a )=2,则a 的取值为( B ) A .2 B .-1或2 C .±1或2D .1或2解析:因为f (x )=⎩⎪⎨⎪⎧2x-2,x ≥0,-x 2+3,x <0,所以若f (a )=2,则当a ≥0时,2a -2=2,解得a =2;当a <0时,-a 2+3=2,得a =-1.综上a 的取值为-1或2.角度2 分段函数与方程、不等式结合设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f [f (a )]≤2,则实数a 的取值范围是(-∞,2] .。
2020版高三文科数学第一轮复习_人教版 _第二篇函数_导数及其应用第二篇 第1节
突破考点提升技能
致误辨析纠正易错
课时作业
2.分段函数是一个函数还是几个函数? 提示:是一个函数.只不过是在自变量不同的取值范围上,对 应关系不同而已.
返回导航
第1节 函数及其表示
整合基础稳固根基
突破考点提升技能
致误辨析纠正易错
课时作业
3.函数与映射之间有什么关系?
提示:函数是特殊的映射,映射是函数的推广,只有集合 A,B 为非空数集的映射才是函数.
2.高考基础小题主要考查函数奇偶性的判断,对数与指数比较 大小,分段函数求值等.
第1节 函数及其表示
整合基础稳固根基
突破考点提升技能
致误辨析纠正易错
课时作业
3.高考综合性较强的小题考查导数,不等式,函数的零点的综 合等;考查数形结合的思想.
4.解答题一般都是两问的题目,第一问考查求曲线的切线方程, 求函数的单调区间,由函数的极值点或知曲线的切线方程求参数, 属于基础问题.第二问利用导数证明不等式,不等式恒成立求参数 的取值范围,求函数的零点等问题.考查函数的思想,转化的思想 及分类讨论的思想.
返回导航
第1节 函数及其表示
整合基础稳固根基
突破考点提升技能
致误辨析纠正易错
课时作业
【重要结论】 1.定义域与对应关系完全一致的两个函数是相等函数. 2.与 x 轴垂直的直线和一个函数的图象至多有一个公共点.
返回导航
第1节 函数及其表示
整合基础稳固根基
突破考点提升技能
致误辨析纠正易错
课时作业
1.下列各图中,可表示函数 y=f(x)的图象的只可能是( )
返回导航
第1节 函数及其表示
整合基础稳固根基
突破考点提升技能
【2020最新】数学高考一轮复习(文科)训练题:天天练20Word版含解析
教学资料范本【2020最新】数学高考一轮复习(文科)训练题:天天练20Word版含解析编辑:__________________时间:__________________20xx最新数学高考一轮复习(文科)训练题:天天练 20Word版含解析一、选择题1.下列数列中,既是递增数列又是无穷数列的是( )A.-1,-2,-3,-4,…B.-1,-,-,-,…C.-1,-2,-4,-8,… D.1,,,,…,10答案:B解析:A,B,C中的数列都是无穷数列,但是A,C中的数列是递减数列,故选B.2.(20xx·湖南衡阳二十六中期中)在数列1,1,2,3,5,8,x,21,34,55,…中,x的值为( )A.11 B.12C.13 D.14答案:C解析:观察所给数列的项,发现从第3项起,每一项都是它的前两项的和,所以x=5+8=13,故选C.3.(20xx·江西鹰潭一中期中)数列1,-4,9,-16,25,…的一个通项公式是( )A.an=n2 B.an=(-1)nn2C.an=(-1)n+1n2 D.an=(-1)n(n+1)2答案:C解析:方法一:该数列中第n项的绝对值是n2,正负交替的符号是(-1)n+1,故选C.方法二:将n=2代入各选项,排除A,B,D,故选C.4.在数列{an}中,a1=1,an+1=(n∈N*),则是这个数列的( )A.第6项 B.第7项C.第8项 D.第9项答案:B解析:解法一 由a1=1,an +1=(n∈N*),得a2==,a3===,a4===,a5===,a6===,a7===,故是这个数列的第7项,选B.解法二 由an +1=可和=+,即数列是以=1为首项,为公差的等差数列,故=1+(n -1)×=n +,即an =,由=,解得n =7,故选B.5.已知a1=1,an =n(an +1-an)(n∈N*),则数列{an}的通项公式是an =( )A .n B.n -1C .n2D .2n -1答案:A解析:由an =n(an +1-an),得=,所以数列为常数列,所以==…==1,所以an =n ,故选A.6.(20xx·唐山一模)设数列{an}的前n 项和为Sn ,且Sn =,若a4=32,则a1的值为( )A. B.14C. D.116答案:A解析:∵Sn=,a4=32,∴S4-S3=-=32,∴a1=,选A.7.已知数列{an}的通项公式为an =nn ,则数列{an}中的最大项为( )A. B.23C. D.125243答案:A解析:解法一 an +1-an =(n +1)n +1-nn =·n,当n<2时,an +1-an>0,即an +1>an ;当n =2时,an +1-an =0,即an +1=an ;当n>2时,an +1-an<0,即an +1<an.所以a1<a2=a3,a3>a4>a5>…>an,所以数列{an}中的最大项为a2或a3,且a2=a3=2×2=.故选A.解法二 ==,令>1,解得n<2;令=1,解得n =2;令<1,解得n>2.又an>0, 故a1<a2=a3,a3>a4>a5>…>an,所以数列{an}中的最大项为a2或a3,且a2=a3=2×2=.故选A.8.(20xx·黄冈质检)已知数列{xn}满足xn +2=|xn +1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn +3=xn 对于任意的正整数n 均成立,则数列{xn}的前2 016项和S2 016=( )A .672B .673C .1 342D .1 344答案:D解析:∵x1=1,x2=a(a≤1,a≠0),∴x3=|x2-x1|=|a -1|=1-a ,∴x1+x2+x3=1+a +(1-a)=2,又xn +3=xn 对于任意的正整数n 均成立,∴数列{xn}的周期为3,所以数列{xn}的前2 016项和S2 016=S672×3=672×2=1 344.故选D.二、填空题9.已知数列{an}满足a1=0,an +1=an +2n ,则a10=________.答案:90解析:由an +1=an +2n 可得an +1-an =2n ,所以a2-a1=2,a3-a2=4,a4-a3=6,……,an -an -1=2(n -1).将上述式子左右两边分别相加得an -a1=2+4+6+…+2(n -1)=n(n -1),又a1=0,所以an =n(n -1).故a10=90.10.(20xx·山东枣庄第三中学质检)已知数列{an}的前n 项和Sn =5n2+2n +1,则数列的通项公式为an =________.答案:⎩⎪⎨⎪⎧ 8,n =1,10n -3,n≥2解析:当n =1时,a1=8;当n≥2时,Sn -1=5(n -1)2+2(n -1)+1.所以an =Sn -Sn -1=10n -3,此式对n =1不成立,故an =⎩⎪⎨⎪⎧ 8,n =1,10n -3,n≥2.易错警示:忽视起始值是否满足所求通项公式本题错误的原因在于考生不顾前提,直接使用an =Sn -Sn -1=10n -3得到结果.解决此类问题的关键是一定要验证n =1是否成立.11.(20xx·湖北襄阳五中元月调研)已知数列{an}的首项a1=1,an =(n>1,n∈N*),则数列{an}的第5项为________,数列的通项公式为________.答案: an =1n解析:由an =两边取倒数,得=,即=+1,所以数列是以1为首项,1为公差的等差数列,所以=n.所以an =,a5=.方法总结:倒数变换法求通项公式对于形如an +1=(kb≠0)的递推关系,适合用倒数变换法求通项公式.通常两边同取倒数,得=b·+k.这样,把看成一个新数列{cn},递推公式就转化成了cn +1=bcn +k 的形式.此时,①若b =1,则{cn}是公差为k 的等差数列;②若b≠1,则可构造一个公比为b 的等比数列{cn +t},利用待定系数法求出t ,过程如下:cn +1+t =b(cn +t),所以cn +1+bcn +bt -t ,所以bt -t =k ,所以t =,即根据cn +1=bcn +k 可得是公比为b 的等比数列.三、解答题12.(20xx·广东肇庆二模)设数列{an}的前n 项和为Sn ,且Sn =-1+2an.(1)求{an}的通项公式;(2)若bn =log2an +1,且数列{bn}的前n 项和为Tn ,求++…+.解析:(1)由已知,得Sn =-1+2an.①当n =1时,a1=-1+2a1,即a1=1.当n≥2时,Sn -1=-1+2an -1.②①-②得an =Sn -Sn -1=2an -2an -1,即an =2an -1(n≥2). 所以{an}是以1为首项,2为公比的等比数列,即an =2n -1.(2)由(1)得bn =log2an +1=log22n =n ,所以Tn =1+2+…+n =.所以++…+=+++…+错误!=2⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1 =2=.。
2020版高考文科数学(北师大版)一轮复习课件:第一章+集合与常用逻辑用语+1.4
1 ≥0”;命题 ������-1 1 x0∈R, <0” ������0 -1
q:“x>2 019”的一个必要不充分条
件是“x>2 018”,则下列命题为真命题的是( C ) A. q B.p 且 q C.( p)且 q D.p 或( q)
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
必备知识·预案自诊 必备知识·预案自诊
关键能力·学案突破
-5-
知识梳理
考点自诊
2 2.(2018 北京丰台区一模,2 改编)已知命题 p:存在 x0<1,������0 ≤1, 则 p 为( C ) 2 A.任意 x≥1,x2>1 B.存在 x0<1,������0 >1 2 C.任意 x<1,x2>1 D.存在 x0≥1,������0 >1
必备知识·预案自诊
关键能力·学案突破 关键能力·学案突破
-8-
考点1
考点2
考点3
考点4
含简单逻辑联结词的命题的真假
例 1 若命题 p:关于 x 的不等式 ax+b>0 的解集是 ������ ������ >
题 q:关于 x 的不等式(x-a)(x-b)<0 的解集是{x|a<x<b},则在命题“p 且 q”“p 或 q”“ p”“ q”中,是真命题的有 ������ p, ������ q.
2020届高考文科数学一轮细讲精练复习资料,补习资料:第六篇 数列
第1讲 数列的概念与简单表示法知 识 梳 理1.数列的通项公式(1)定义:如果数列{a n }的第n 项a n 与项数n 之间的函数关系可以用一个公式来表示,那么这个公式就叫做数列的通项公式,记为a n =f (n )(n ∈N *).数列可以用通项公式来描述,也可以通过列表或图象来表示.(2)数列的递推公式:如果已知数列的第一项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. 2.数列的分类n n 已知S n ,则a n ={ S 1,n =1,S n -S n -1,n ≥2. 辨 析 感 悟1.对数列概念的认识(1)数列1,2,3,4,5,6与数列6,5,4,3,2,1表示同一数列.(×) (2)1,1,1,1,…不能构成一个数列.(×) 2.对数列的性质及表示法的理解(3)(教材练习改编)数列1,0,1,0,1,0,…的通项公式,只能是a n =1+(-1)n +12.(×)(4)任何一个数列不是递增数列,就是递减数列.(×) (5)(2018·开封模拟改编)已知S n =3n +1,则a n =2·3n -1.(×) [感悟·提升]1.一个区别 “数列”与“数集”数列与数集都是具有某种属性的数的全体,数列中的数是有序的,而数集中的元素是无序的,同一个数在数列中可以重复出现,而数集中的元素是互异的,如(1)、(2).2.三个防范 一是注意数列不仅有递增、递减数列,还有常数列、摆动数列,如(4).二是数列的通项公式不唯一,如(3)中还可以表示为 a n =⎩⎨⎧1,n 为奇数0,n 为偶数.三是已知S n 求a n 时,一定要验证n =1的特殊情形,如(5).考点一 由数列的前几项求数列的通项【例1】 根据下面各数列前几项的值,写出数列的一个通项公式: (1)-1,7,-13,19,…; (2)23,415,635,863,1099,…; (3)12,2,92,8,252,…; (4)5,55,555,5 555,….解 (1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n ,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n =(-1)n (6n -5).(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积.知所求数列的一个通项公式为a n =2n(2n -1)(2n +1).(3)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,从而可得数列的一个通项公式为a n =n 22. (4)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).规律方法 根据所给数列的前几项求其通项时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的变化特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想. 【训练1】 根据下面数列的前几项的值,写出数列的一个通项公式: (1)12,14,-58,1316,-2932,6164,…; (2)32,1,710,917,….解 (1)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,因此可得数列的一个通项公式为a n =(-1)n·2n -32n .(2)将数列统一为32,55,7,10,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{n 2},可得分母的通项公式为c n =n 2+1,因此可得数列的一个通项公式为a n =2n +1n 2+1.考点二 由a n 与S n 的关系求通项a n【例2】 (2018·广东卷)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解 (1)令n =1时,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1=2a n -2n +1. 因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2,所以a n =2a n -1+2(n ≥2),所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1,∴a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.规律方法 给出S n 与a n 的递推关系,求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .【训练2】 (1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________.(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =________. 解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2;当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1]=6n -5. 显然当n =1时,不满足上式,故数列的通项公式为a n =⎩⎨⎧2,n =1,6n -5,n ≥2.(2)∵S n =2a n +1,∴当n ≥2时,S n -1=2a n , ∴a n =S n -S n -1=2a n +1-2a n (n ≥2),即a n +1a n=32(n ≥2),又a 2=12,∴a n =12×⎝ ⎛⎭⎪⎫32n -2(n ≥2).当n =1时,a 1=1≠12×⎝ ⎛⎭⎪⎫32-1=13,∴a n =⎩⎪⎨⎪⎧1,n =1,12⎝ ⎛⎭⎪⎫32n -2,n ≥2,∴S n =2a n +1=2×12×⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n -1.答案 (1)a n =⎩⎨⎧2,n =16n -5,n ≥2(2)⎝ ⎛⎭⎪⎫32n -1考点三 由递推公式求数列的通项公式【例3】 在数列{a n }中,(1)若a 1=2,a n +1=a n +n +1,则通项a n =________; (2)若a 1=1,a n +1=3a n +2,则通项a n =________.审题路线 (1)变形为a n +1-a n =n +1⇒用累加法,即a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)⇒得出a n .(2)变形为a n +1+1=3(a n +1)⇒再变形为a n +1+1a n +1=13⇒用累乘法或迭代法可求a n . 解析 (1)由题意得,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=2+(2+3+…+n )=2+(n -1)(2+n )2=n (n +1)2+1.又a 1=2=1×(1+1)2+1,符合上式,因此a n =n (n +1)2+1.(2)a n +1=3a n +2,即a n +1+1=3(a n +1),即a n +1+1a n +1=3,法一 a 2+1a 1+1=3,a 3+1a 2+1=3,a 4+1a 3+1=3,…,a n +1+1a n +1=3.将这些等式两边分别相乘得a n +1+1a 1+1=3n.因为a 1=1,所以a n +1+11+1=3n ,即a n +1=2×3n -1(n ≥1),所以a n =2×3n -1-1(n ≥2),又a 1=1也满足上式,故a n =2×3n -1-1. 法二 由a n +1+1a n +1=3,即a n +1+1=3(a n +1), 当n ≥2时,a n +1=3(a n -1+1),∴a n +1=3(a n -1+1)=32(a n -2+1)=33(a n -3+1)=…= 3n -1(a 1+1)=2×3n -1, ∴a n =2×3n -1-1;当n =1时,a 1=1=2×31-1-1也满足. ∴a n =2×3n -1-1. 答案 (1)n (n +1)2+1 (2)2×3n -1-1 规律方法 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.【训练3】 设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________. 解析 ∵(n +1)a 2n +1+a n +1·a n -na 2n =0, ∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0,即a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∴a n =1n . 答案1n1.求数列通项或指定项,通常用观察法(对于交错数列一般用(-1)n 或(-1)n +1来区分奇偶项的符号);已知数列中的递推关系,一般只要求写出数列的前几项,若求通项可用归纳、猜想和转化的方法.2.由S n 求a n 时,a n =⎩⎨⎧S 1(n =1),S n -S n -1(n ≥2),注意验证a 1是否包含在后面a n 的公式中,若不符合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式.3.已知递推关系求通项:对这类问题的要求不高,但试题难度较难把握.一般有三种常见思路:(1)算出前几项,再归纳、猜想;(2)“a n +1=pa n +q ”这种形式通常转化为a n +1+λ=p (a n +λ),由待定系数法求出λ,再化为等比数列;(3)利用累加、累乘法或迭代法可求数列的通项公式.思想方法5——用函数的思想解决数列问题【典例】 数列{a n }的通项公式是a n =n 2+k n +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值.(2)对于n ∈N *,都有a n +1>a n .求实数k 的取值范围. 解 (1)由n 2-5n +4<0,解得1<n <4. ∵n ∈N *,∴n =2,3.∴数列中有两项是负数,即为a 2,a 3.∵a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2.(2)由a n +1>a n 知该数列是一个递增数列,又因为通项公式a n =n 2+k n +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,即得k >-3.[反思感悟] (1)本题给出的数列通项公式可以看做是一个定义在正整数集N *上的二次函数,因此可以利用二次函数的对称轴来研究其单调性,得到实数k 的取值范围,使问题得到解决.(2)在利用二次函数的观点解决该题时,一定要注意二次函数对称轴位置的选取. (3)易错分析:本题易错答案为k >-2.原因是忽略了数列作为函数的特殊性,即自变量是正整数. 【自主体验】1.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是________.解析 ∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大为0. 答案 02.已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.解析 设f (n )=a n =n 2+λn ,其图象的对称轴为直线n =-λ2,要使数列{a n }为递增数列,只需使定义在正整数上的函数f (n )为增函数,故只需满足-λ2<32,即λ>-3.答案 (-3,+∞)基础巩固题组 (建议用时:40分钟)一、填空题1.在数列{a n }中,a n +1=a n +2+a n ,a 1=2,a 2=5,则a 6的值是________. 解析 由a n +1=a n +2+a n ,得a n +2=a n +1-a n , ∴a 3=a 2-a 1=3,a 4=a 3-a 2=-2, a 5=a 4-a 3=-5,a 6=a 5-a 4=-3. 答案 -32.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=________.解析 当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),∴1a 5=5×(5+1)=30.答案 303.在数列{a n }中,a 1=2,a n +1=a n +n +1,则通项a n =______. 解析 由a n +1-a n =n +1,可得a n -a n -1=n , a n -1-a n -2=n -1,a n -2-a n -3=n -2, …a 3-a 2=3,a 2-a 1=2,以上n -1个式子左右两边分别相加得, a n -a 1=2+3+…+n , ∴a n =1+(1+2+3+…+n )=n (n +1)2+1.答案n (n +1)2+14.(2019·贵阳模拟)已知数列{a n }的前n 项和为S n ,且S n =2n 2-1,则a 3=________. 解析 a 3=S 3-S 2=2×32-1-(2×22-1)=10. 答案 105.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是________. 解析 法一 (构造法)由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a n n ,∴数列⎩⎨⎧⎭⎬⎫a n n 是常数列. 且a n n =a 11=1,∴a n =n .法二 (累乘法):n ≥2时,a n a n -1=nn -1,a n -1a n -2=n -1n -2.…a 3a 2=32,a 2a 1=21,两边分别相乘得a na 1=n ,又因为a 1=1,∴a n =n .答案 n6.(2018·蚌埠模拟)数列{a n }的通项公式a n =-n 2+10n +11,则该数列前________项的和最大.解析 易知a 1=20>0,显然要想使和最大,则应把所有的非负项求和即可,令a n ≥0,则-n 2+10n +11≥0,∴-1≤n ≤11,可见,当n =11时,a 11=0,故a 10是最后一个正项,a 11=0,故前10或11项和最大. 答案 10或117.(2019·广州模拟)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析 ∵a 1+3a 2+32a 3+…+3n -1a n =n3,则当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式左右两边分别相减得3n -1a n =13,∴a n =13n (n ≥2).由题意知,a 1=13,符合上式,∴a n =13n (n ∈N *). 答案 a n =13n8.(2018·淄博二模)在如图所示的数阵中,第9行的第2个数为________.解析 每行的第二个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,所以a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,等式两边同时相加得a n -a 2=(2n -3+3)×(n -2)2=n 2-2n ,所以a n =n 2-2n +a 2=n 2-2n +3(n ≥2),所以a 9=92-2×9+3=66. 答案 66 二、解答题9.(2018·梅州调研改编)已知函数f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.(1)解 ∵f (x )=2x -2-x ,f (log 2a n )=-2n , ∴2log 2a n -2-log 2a n =-2n ,∴a n -1a n=-2n .∴a 2n +2na n -1=0,解得a n =-n ±n 2+1.∵a n >0,∴a n =n 2+1-n . (2)证明 a n +1a n =(n +1)2+1-(n +1)n 2+1-n=n 2+1+n(n +1)2+1+(n +1)<1. ∵a n >0,∴a a +1<a n ,∴数列{a n }是递减数列.10.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N *. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N *,求a 的取值范围. 解 (1)依题意,S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),又S 1-31=a -3(a ≠3),故数列{S n -3n }是首项为a -3,公比为2的等比数列, 因此,所求通项公式为b n =S n -3n =(a -3)2n -1,n ∈N *. (2)由(1)知S n =3n +(a -3)2n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n -2,当n =1时,a 1=a 不适合上式, 故a n =⎩⎨⎧a ,n =1,2×3n -1+(a -3)2n -2,n ≥2. a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12·⎝ ⎛⎭⎪⎫32n -2+a -3, 当n ≥2时,a n +1≥a n ⇔12·⎝ ⎛⎭⎪⎫32n -2+a -3≥0⇔a ≥-9. 又a 2=a 1+3>a 1.综上,所求的a 的取值范围是[-9,+∞).能力提升题组 (建议用时:25分钟)一、填空题1.已知数列{a n }的通项公式为a n =411-2n,则满足a n +1<a n 的n 的取值为________.解析 由a n +1<a n ,得a n +1-a n =49-2n -411-2n =8(9-2n )(11-2n )<0,解得92<n <112,又n ∈N *,∴n =5. 答案 52.(2019·湖州模拟)设函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n∈N *,且数列{a n }是递增数列,则实数a 的取值范围是________. 解析 ∵数列{a n }是递增数列,又a n =f (n )(n ∈N *),∴⎩⎨⎧3-a >0,a >1,f (8)>f (7)⇒2<a <3.答案 (2,3)3.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析 依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28. 答案 28 二、解答题4.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值; (2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2.③ 若a 2=0,由①知a 1=0. 若a 2≠0,由③知a 2-a 1=1.④ 由①④解得,a 1=2+1,a 2=2+2; 或a 1=1-2,a 2=2- 2.综上可得,a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1,∴(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), ∴a n =a 1(2)n -1=(2+1)·(2)n -1.令b n =lg 10a 1a n ,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1.∴数列{b n }是单调递减的等差数列(公差为-12lg 2),从而b 1>b 2>…>b 7=lg 108>lg 1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为 T 7=7(b 1+b 7)2=7(1+1-3lg 2)2=7-212lg 2.第2讲 等差数列及其前n 项和知 识 梳 理1.等差数列的定义及通项公式(1)等差数列:一般地,如果一个数列从第二项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差(公差常用字母“d ”表示).即a n -a n -1=d (n ≥2,n ∈N ).(2)等差中项:如果三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,其中A =a +b2.(3)等差数列的通项公式:若等差数列的首项为a 1,公差为d ,则通项公式为a n =a 1+(n -1)d ;若已知第m 项a m 和公差d ,通项a n 还可写成a n =a m +(n -m )d . (4)等差数列的公差公式:d =a n -a 1n -1或d =a n -a mn -m. 2.等差数列的性质(1)若数列{a n }是等差数列,则a n -a m =(n -m )d (n 、m ∈N *).(2)数列{a n }是等差数列,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .特别地,若m +n =2p ,则a m +a n =2a p .(3)在有穷等差数列{a n }中,与首、末两项距离相等的任意两项之和与首、末两项之和相等,如a 1+a n =a 2+a n -1.(4)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +k b n }、⎩⎨⎧⎭⎬⎫S n n 仍为等差数列,其中m ,k 为常数.(5)等差数列中依次k 项的和成等差数列,即S k ,S 2k -S k , S 3k -S 2k ,…成等差数列,公差为k 2d . (6)项数为偶数2n 的等差数列{a n },有S 2n =n (a 1+a 2n )=n (a 2+a 2n -1)=…=n (a n +a n +1)(a n 与a n +1为中间的两项),S 偶-S奇=nd ,S 奇S 偶=a n a n +1. (7)项数为奇数2n -1的等差数列{a n },有 S 2n -1=(2n -1)a n (a n 为中间项), S 奇-S 偶=a n ,S 奇S 偶=nn -1.3.等差数列的前n 项和(1)公式:若已知首项a 1和末项a n ,则S n =n (a 1+a n )2,或等差数列{a n }的首项是a 1,公差是d ,则其前n 项和公式为S n =na 1+n (n -1)2d .(2)等差数列的前n 项和公式与函数的关系:S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,数列{a n }是等差数列的充要条件是S n =An 2+Bn (A ,B 为常数).(3)最值问题:在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值,若a 1<0,d >0,则S n 存在最小值.辨 析 感 悟1.对等差数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)等差数列的公差是相邻两项的差.(×)(3)(教材习题改编)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.(×)2.等差数列的通项公式与前n 项和(4)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.(√) (5)等差数列{a n }的单调性是由公差d 决定的.(√)(6)等差数列的前n 项和公式是常数项为0的二次函数.(×) 3.等差数列性质的活用(7)(2018·福建卷改编)在等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差d =2.(√)(8)(2018·辽宁卷改编)已知关于d >0的等差数列{a n },则数列{a n },{na n },⎩⎨⎧⎭⎬⎫a n n ,{a n +3nd }都是递增数列.(×) [感悟·提升]1.一点注意 等差数列概念中的“从第2项起”与“同一个常数”的重要性,如(1)、(2).2.等差数列与函数的区别 一是当公差d ≠0时,等差数列的通项公式是n 的一次函数,当公差d =0时,a n 为常数,如(3);二是公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0;三是等差数列{a n }的单调性是由公差d 决定的,如(8)中若a n =3n -12,则满足已知,但na n =3n 2-12n 并非递增;若a n =n +1,则满足已知,但a n n =1+1n 是递减数列;设a n =a 1+(n -1)d =dn +m ,则a n +3nd =4dn +m 是递增数列.考点一 等差数列的基本量的求解【例1】 在等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d . 由a 1=1,a 3=-3,可得1+2d =-3.解得d =-2.从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2. 进而由S k =-35可得2k -k 2=-35.即k 2-2k -35=0,解得k =7或-5. 又k ∈N *,故k =7为所求.规律方法 (1)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)(2018·浙江五校联考)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=________.(2)记等差数列{a n }的前n 项和为S n ,若a 1=12,S 4=20,则S 6=________. 解析 (1)设等差数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧ 2a 1+4d =4,2a 1+6d =10,解得⎩⎨⎧a 1=-4,d =3. ∴S 10=10×(-4)+10×92×3=95.(2)设公差为d ,由⎩⎪⎨⎪⎧ a 1=12,S 4=20,得⎩⎪⎨⎪⎧a 1=12,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3,则S 6=6×12+6×52×3=48.答案 (1)95 (2)48考点二 等差数列的判定与证明【例2】 (2019·梅州调研改编)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.审题路线 (1)利用a n =S n -S n -1(n ≥2)转化为关于S n 与S n -1的式子⇒同除S n ·S n -1⇒利用定义证明⇒得出结论.(2)由(1)求1S n⇒再求S n ⇒再代入条件a n =-2S n S n -1,求a n ⇒验证n =1的情况⇒得出结论.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列.(2)解 由(1)可得1S n=2n ,∴S n =12n .当n ≥2时, a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式. 故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.规律方法 证明一个数列是否为等差数列的基本方法有两种:一是定义法,证明a n -a n -1=d (n ≥2,d 为常数);二是等差中项法,证明2a n +1=a n +a n +2.若证明一个数列不是等差数列,则只需举出反例即可,也可以用反证法. 【训练2】 已知数列{a n }满足:a 1=2,a n +1=3a n +3n +1-2n . 设b n =a n -2n3n .证明:数列{b n }为等差数列,并求{a n }的通项公式.证明 ∵b n +1-b n =a n +1-2n +13n +1-a n -2n 3n =3a n +3n +1-2n -2n +13n +1-3a n -3·2n3n +1=1,∴{b n }为等差数列,又b 1=a 1-23=0.∴b n =n -1,∴a n =(n -1)·3n +2n .考点三 等差数列的性质及应用【例3】 (1)(2018·安徽卷改编)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=________.(2)在等差数列{a n }中,前m 项的和为30,前2m 项的和为100,则前3m 项的和为________.解析 (1)S 8=4a 3⇒8(a 1+a 8)2=4a 3⇒a 3+a 6=a 3,∴a 6=0,∴d =a 7-a 6=-2,∴a 9=a 7+2d =-2-4=-6.(2)记数列{a n }的前n 项和为S n ,由等差数列前n 项和的性质知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,则2(S 2m -S m )=S m +(S 3m -S 2m ),又S m =30,S 2m =100,S 2m -S m =100-30=70,所以S 3m -S 2m =2(S 2m -S m )-S m =110,所以S 3m =110+100=210.答案 (1)-6 (2)210规律方法 巧妙运用等差数列的性质,可化繁为简;若奇数个数成等差数列且和为定值时,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列且和为定值时,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.【训练3】 (1)在等差数列{a n }中.若共有n 项,且前四项之和为21,后四项之和为67,前n 项和S n =286,则n =________.(2)已知等差数列{a n }中,S 3=9,S 6=36,则a 7+a 8+a 9=________. 解析 (1)依题意知a 1+a 2+a 3+a 4=21,a n +a n -1+a n -2+a n -3=67.由等差数列的性质知a 1+a n =a 2+a n -1=a 3+a n -2=a 4+a n -3,∴4(a 1+a n )=88,∴a 1+a n =22.又S n =n (a 1+a n )2,即286=n ×222,∴n =26. (2)∵{a n }为等差数列,∴S 3,S 6-S 3,S 9-S 6成等差数列, ∴2(S 6-S 3)=S 3+(S 9-S 6). ∴a 7+a 8+a 9=S 9-S 6 =2(S 6-S 3)-S 3 =2(36-9)-9=45. 答案 (1)26 (2)451.等差数列的判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列.(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A 、B 为常数)⇔{a n }是等差数列.2.方程思想和化归思想:在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解.方法优化4——整体代入法(整体相消法)在数列解题中的应用【典例】 (1)(2018·辽宁卷改编)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)(2018·北京卷)若等比数列{a n }满足:a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.[一般解法] (1)设数列{a n }的公差为d ,则a 4+a 8=16,即a 1+3d +a 1+7d =16,即a 1=8-5d ,所以S 11=11a 1+11×102d =11(8-5d )+55d =88-55d +55d =88.(2)由a 2+a 4=20,a 3+a 5=40,得⎩⎨⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40, 即⎩⎨⎧a 1q (1+q 2)=20,a 1q 2(1+q 2)=40,解得q =2,a 1=2,∴S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.[优美解法] (1)由a 1+a 11=a 4+a 8=16,得 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88.(2)由已知,得a 3+a 5a 2+a 4=q (a 2+a 4)a 2+a 4=q =2, 又a 1=2,所以S n =a 1(1-q n )1-q=2n +1-2.[反思感悟] 整体代入法是一种重要的解题方法和技巧,简化了解题过程,节省了时间,这就要求学生要掌握公式,理解其结构特征. 【自主体验】在等差数列{a n }中,已知S n =m ,S m =n (m ≠n ),则S m +n =________. 解析 设{a n }的公差为d ,则由S n =m ,S m =n , 得⎩⎪⎨⎪⎧S n =na 1+n (n -1)2d =m ,S m =ma 1+m (m -1)2d =n .①②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1.∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d=(m +n )⎝ ⎛⎭⎪⎫a 1+m +n -12d =-(m +n ).答案 -(m +n )基础巩固题组 (建议用时:40分钟)一、填空题1.(2018·肇庆二模)在等差数列{a n }中,a 15=33,a 25=66,则a 35=________. 解析 a 25-a 15=10d =66-33=33,∴a 35=a 25+10d =66+33=99. 答案 992.(2019·成都模拟)已知等差数列{a n }的首项a 1=1,前三项之和S 3=9,则{a n }的通项a n =________.解析 由a 1=1,S 3=9,得a 1+a 2+a 3=9,即3a 1+3d =9,解得d =2,∴a n =1+(n -1)×2=2n -1. 答案 2n -13.(2018·温州二模)记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =________.解析 由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝ ⎛⎭⎪⎫a 1+d 2=1,∴d =2.答案 24.(2019·潍坊期末考试)在等差数列{a n }中,a 5+a 6+a 7=15,那么a 3+a 4+…+a 9等于________.解析 由题意得3a 6=15,a 6=5.所以a 3+a 4+…+a 9=7a 6=7×5=35. 答案 355.(2018·揭阳二模)在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为________.解析 由a m =a 1+a 2+…+a 9,得(m -1)d =9a 5=36d ⇒m =37. 答案 376.(2019·无锡模拟){a n }为等差数列,S n 为其前n 项和,已知a 7=5,S 7=21,则S 10=________.解析 设公差为d ,则由已知得S 7=7(a 1+a 7)2,即21=7(a 1+5)2,解得a 1=1,所以a 7=a 1+6d ,所以d =23.所以S 10=10a 1+10×92d =10+10×92×23=40. 答案 407.(2018·淄博二模)已知等差数列{a n }的前n 项和为S n ,满足a 13=S 13=13,则a 1=________.解析 在等差数列中,S 13=13(a 1+a 13)2=13,所以a 1+a 13=2,即a 1=2-a 13=2-13=-11. 答案 -118.(2018·浙江五校联考)若等差数列{a n }的前n 项和为S n (n ∈N *),若a 2∶a 3=5∶2,则S 3∶S 5=________.解析 S 3S 5=3(a 1+a 3)5(a 1+a 5)=3a 25a 3=35×52=32.答案 3∶2 二、解答题9.(2018·福建卷)已知等差数列{a n }的公差d =1,前n 项和为S n . (1)若1,a 1,a 3成等比数列,求a 1;(2)若S 5>a 1a 9,求a 1的取值范围.解 (1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列,所以a 21=1×(a 1+2),即a 21-a 1-2=0,解得a 1=-1或2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 21+8a 1,即a 21+3a 1-10<0,解得-5<a 1<2. 故a 1的取值范围是(-5,2).10.(2018·西安模拟)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =S n n +c ,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d ,且d >0,由等差数列的性质,得a 2+a 5=a 3+a 4=22,所以a 3,a 4是关于x 的方程x 2-22x +117=0的解,所以a 3=9,a 4=13,易知a 1=1,d =4,故通项为a n =1+(n -1)×4=4n -3.(2)由(1)知S n =n (1+4n -3)2=2n 2-n ,所以b n =S n n +c =2n 2-n n +c .法一 所以b 1=11+c ,b 2=62+c ,b 3=153+c (c ≠0).令2b 2=b 1+b 3,解得c =-12. 当c =-12时,b n =2n 2-n n -12=2n , 当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列. 法二 由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.能力提升题组 (建议用时:25分钟)一、填空题1.(2019·咸阳模拟)已知等差数列{a n }的前n 项和为S n ,S 4=40,S n =210,S n -4=130,则n =________.解析 S n -S n -4=a n +a n -1+a n -2+a n -3=80,S 4=a 1+a 2+a 3+a 4=40,所以4(a 1+a n )=120,a 1+a n =30,由S n =n (a 1+a n )2=210,得n =14.答案 142.等差数列{a n }的前n 项和为S n ,已知a 1=13,S 3=S 11,当S n 最大时,n 的值是________.解析 法一 由S 3=S 11,得a 4+a 5+…+a 11=0,根据等差数列的性质,可得a 7+a 8=0,根据首项等于13可推知这个数列递减,从而得到a 7>0,a 8<0,故n =7时,S n 最大.法二 由S 3=S 11,可得3a 1+3d =11a 1+55d ,把a 1=13代入,得d =-2,故S n =13n -n (n -1)=-n 2+14n ,根据二次函数的性质,知当n =7时,S n 最大. 法三 根据a 1=13,S 3=S 11,则这个数列的公差不等于零,且这个数列的和先是单调递增然后又单调递减,根据公差不为零的等差数列的前n 项和是关于n 的二次函数,以及二次函数图象的对称性,得只有当n =3+112=7时,S n 取得最大值. 答案 73.(2019·九江一模)正项数列{a n }满足:a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7=________.解析 因为2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),所以数列{a 2n }是以a 21=1为首项,以d =a 22-a 21=4-1=3为公差的等差数列,所以a 2n =1+3(n -1)=3n -2,所以a n=3n -2,n ≥1.所以a 7=3×7-2=19. 答案19二、解答题4.(1)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }唯一,求a 的值;(2)是否存在两个等比数列{a n },{b n },使得b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列?若存在,求{a n },{b n }的通项公式;若不存在,说明理由. 解 (1)设{a n }的公比为q ,则b 1=1+a ,b 2=2+aq ,b 3=3+aq 2,由b 1,b 2,b 3成等比数列得(2+aq )2=(1+a )(3+aq 2), 即aq 2-4aq +3a -1=0.*由a >0得,Δ=4a 2+4a >0,故方程*有两个不同的实根. 再由{a n }唯一,知方程*必有一根为0,将q =0代入方程*得a =13.(2)假设存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列.设{a n }的公比为q 1,{b n }的公比为q 2,则b 2-a 2=b 1q 2-a 1q 1,b 3-a 3=b 1q 22-a 1q 21,b 4-a 4=b 1q 32-a 1q 31.由b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成等差数列,得⎩⎨⎧2(b 1q 2-a 1q 1)=b 1-a 1+(b 1q 22-a 1q 21),2(b 1q 22-a 1q 21)=b 1q 2-a 1q 1+(b 1q 32-a 1q 31), 即⎩⎨⎧b 1(q 2-1)2-a 1(q 1-1)2=0, ①b 1q 2(q 2-1)2-a 1q 1(q 1-1)2=0. ②①×q 2-②得a 1(q 1-q 2)(q 1-1)2=0, 由a 1≠0得q 1=q 2或q 1=1.(ⅰ)当q 1=q 2时,由①②得b 1=a 1或q 1=q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾.(ⅱ)当q 1=1时,由①②得b 1=0或q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾.综上所述,不存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列.第3讲 等比数列及其前n 项和知 识 梳 理1.等比数列的定义及通项公式(1)等比数列的定义:如果一个数列从第二项起,每一项与前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab (ab >0).在等比数列中,从第二项起每一项(有穷数列最后一项除外)都是它前一项与后一项的等比中项,即a 2n =a n -1·a n +1(n ∈N *且n ≥2). (3)等比数列的通项公式:若等比数列的首项为a 1,公比为q ,则a n =a 1q n -1,若已知第m 项a m 和公比q ,则a n =a m q n -m . (4)等比数列的公比公式:q n -1=a n a 1或q n -m =a n a m.2.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 3.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q1-q.辨 析 感 悟1.对等比数列概念的理解(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.(×)(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .(×) (3)若三个数成等比数列,那么这三个数可以设为aq ,a ,aq .(√) 2.通项公式与前n 项和的关系(4)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.(×)(5)(2018·新课标全国Ⅰ卷改编)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则S n =3-2a n .(√) 3.等比数列性质的活用(6)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.(×)(7)(2019·兰州模拟改编)在等比数列{a n }中,已知a 7·a 12=5,则a 8a 9a 10a 11=25.(√) (8)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.(×) [感悟·提升]1.一个区别 等差数列的首项和公差可以为零,且等差中项唯一;而等比数列首项和公比均不为零,等比中项可以有两个值.如(1)中的“常数”,应为“同一非零常数”;(2)中,若b 2=ac ,则不能推出a ,b ,c 成等比数列,因为a ,b ,c 为0时,不成立.2.两个防范 一是在运用等比数列的前n 项和公式时,必须注意对q =1或q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误,如(4).二是运用等比数列的性质时,注意条件的限制,如(6)中当a n +1a n =q <0时,ln a n +1-ln a n =ln q 无意义;而(8)中当q =-1时,S 4=0,所以S 4,S 8-S 4,S 12-S 8不能构成等比数列.考点一 等比数列的判定与证明【例1】 (2018·济宁测试)设数列{a n }的前n 项和为S n ,若对于任意的正整数n 都有S n =2a n -3n ,设b n =a n +3. 求证:数列{b n }是等比数列,并求a n .证明 由S n =2a n -3n 对于任意的正整数都成立, 得S n +1=2a n +1-3(n +1),两式相减,得S n +1-S n =2a n +1-3(n +1)-2a n +3n , 所以a n +1=2a n +1-2a n -3,即a n +1=2a n +3,所以a n +1+3=2(a n +3),即b n +1b n =a n +1+3a n +3=2对一切正整数都成立,所以数列{b n }是等比数列.由已知得:S 1=2a 1-3,即a 1=2a 1-3,所以a 1=3, 所以b 1=a 1+3=6,即b n =6·2n -1. 故a n =6·2n -1-3=3·2n -3.规律方法 证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【训练1】 (2019·镇海中学模拟)已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.(1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4,故49λ2-4λ+9=49λ2-4λ,即9=0,矛盾,所以{a n }不是等比数列. (2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n (a n -3n +21)=-23b n .又b 1=-(λ+18),所以当λ=-18时, b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n . 可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.考点二 等比数列基本量的求解【例2】 (2018·湖北卷)已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.审题路线 (1)设数列{a n }的公比为q ⇒由已知联立方程组⇒解方程组可得a 1,q ⇒得出a n .(2)由(1)求S n ⇒代入S n ≥2 013⇒对n 进行分类⇒结论. 解 (1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎨⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18.即⎩⎨⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎨⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.(2)由(1)有S n =3·[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n >0.上式不成立; 当n 为奇数时,(-2)n =-2n ≤-2 012, 即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为 {n |n =2k +1,k ∈N ,k ≥5}.规律方法 等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.【训练2】 (1)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.(2)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=________.解析 (1)显然公比q ≠1,由题意可知9(1-q 3)1-q =1-q 61-q ,解得q =2,则数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公比的等比数列,由求和公式可得数列⎩⎨⎧⎭⎬⎫1a n 的前5项和T 5=3116.(2)显然公比q ≠1,由题意得⎩⎨⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4⎝ ⎛⎭⎪⎫1-1251-12=314. 答案 (1)3116 (2)314考点三 等比数列性质的应用【例3】 (1)(2018·新课标全国卷改编)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=________.(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.解析 (1)由已知得⎩⎨⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8,解得⎩⎨⎧ a 4=4,a 7=-2或⎩⎨⎧a 4=-2,a 7=4. 当a 4=4,a 7=-2时,易得a 1=-8,a 10=1,从而a 1+a 10=-7; 当a 4=-2,a 7=4时,易得a 10=-8,a 1=1,从而a 1+a 10=-7. (2)由S 10S 5=3132,a 1=-1知公比q ≠1,则S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,q =-12.答案 (1)-7 (2)-12规律方法 熟练掌握等比数列的一些性质可提高解题速度,历年高考对等比数列的性质考查较多,主要是考查“等积性”,题目“小而巧”且背景不断更新.解题时要善于类比并且要能正确区分等差、等比数列的性质,不要把两者的性质搞混.【训练3】(1)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为________.(2)(2019·昆明模拟)在各项均为正数的等比数列{a n}中,a3=2-1,a5=2+1,则a23+2a2a6+a3a7=________.解析(1)由等比中项知y2=3,∴y=±3,又∵y与-1,-3符号相同,∴y=-3,y2=xz,所以xyz=y3=-3 3.(2)由等比数列性质,得a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8.答案(1)-33(2)81.等比数列的判定方法有以下几种:(1)定义:a n+1a n=q(q是不为零的常数,n∈N*)⇔{an}是等比数列.(2)通项公式:a n=cq n-1(c、q均是不为零的常数,n∈N*)⇔{a n}是等比数列.(3)等比中项法:a2n+1=a n·a n+2(a n·a n+1·a n+2≠0,n∈N*)⇔{a n}是等比数列.2.方程观点以及基本量(首项a1和公比q)思想仍然是求解等比数列问题的基本方法:在a1,q,n,a n,S n五个量中,知三求二.3.在求解与等比数列有关的问题时,除了要灵活地运用定义和公式外,还要注意等比数列性质的应用,以减少运算量而提高解题速度.教你审题6——如何确定数列中的项【典例】(2018·山东卷)在等差数列{a n}中,a3+a4+a5=84,a9=73.❶(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空集
不含任何元素的集合。空集是 ∀x,x∉∅,∅
∅
任何集合 A 的子集
⊆A
3.集合的基本运算
表示 文字语言 符号语言 图形语言
运算
记法
交集
属于集合 A 且属于集合 {x|x∈A, B 的元素组 且 x∈B} 成的集合
A∩B
并集
属于集合 A 或属于集合 {x|x∈A, B 的元素组 或 x∈B} 成的集合
2020 高中数学高考数学高三文科数学 第一轮复习全套资料
第一章 集合与常用逻辑用语
第一节 集合
☆☆☆2017 考纲考题考情☆☆☆
考纲要求
真题举例
命题角度
1.了解集合的含义,元素与集 2016,全国卷Ⅰ,1,5 分(集 主 要 考 查 具
合的属于关系;能用列举法或 合的交集)
体集合(能确
描述法表示集合;
【答案】 {x|x≤2 或 x≥10}
5.已知集合 A={(x,y)|x,y∈R,且 x2+y2=1},B={(x,y)|x,y
∈R,且 y=x},则 A∩B 的元素个数为________。
【解析】 集合 A 表示圆心在原点的单位圆,集合 B 表示直线 y=x,
易知直线 y=x 和圆 x2+y2=1 相交,且有 2 个交点,故 A∩B 中有 2 个元
素。
【答案】 2
微考点 大课堂
考点一
集合的基本概念
【典例 1】 (1)已知集合 A={0,1,2},则集合 B={x-y|x∈A,y∈A}
中元素的个数是( )
A.1
B.3
C.5
D.9
(2)已知集合 A={m+2,2m2+m},若 3∈A,则 m 的值为________.
【解析】 (1)当 x=0,y=0 时,x-y=0;当 x=0,y=1 时,x-y
【答案】 8
二、双基查验
1.已知集合 M={-1,0,1},N={0,1,2},则 M∪N=( )
A.{-1,0,1}
B.{-1,0,1,2}
C.{-1,0,2}
D.{0,1}
【解析】 M∪N 表示属于 M 或属于 N 的元素构成的集合,故 M∪
N={-1,0,1,2}。故选 B。
【答案】 B
2.设集合 M={x|x≥0,x∈R},N={x|x2<1,x∈R},则 M∩N=( )
集;能用 Venn(韦恩)图表达集 合的交集)
问题。
合的关系与运算。
2014,全国卷Ⅱ,1,5 分(集 合的交集)
微知识 小题练
自|主|排|查 1.集合的含义与表示方法 (1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合。 集合中元素的性质:确定性、无序性、互异性。 (2)元素与集合的关系:①属于,记为∈;②不属于,记为∉。 (3)集合的表示方法:列举法、描述法和图示法。 (4)常用数集的记号:自然数集 N,正整数集 N*或 N+,整数集 Z,有 理数集 Q,实数集 R。
【解析】 由题意知 U={x∈N|x≥2},A={x∈N|x≥ 5},所以∁UA
={x∈N|2≤x< 5}={2}。故选 B。
【答案】 B
4.已知集合 A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________。
【解析】 ∵A∪B={x|2<x<10},
∴∁R(A∪B)={x|x≤2 或 x≥10}。
有 0,-1,-2,1,2,共 5 个。故选 C。
(2)由题意得 m+2=3 或 2m2+m=3,则 m=1 或 m=-23,当 m=1
时,m+2=3 且 2m2+m=3,根据集合中元素的互异性可知不满足题意;
当 m=-32时,m+2=12,而 2m2+m=3,故 m=-32。
A.[0,1]
B.[0,1)
C.(0,1]
D.(0,1)
【解析】 ∵x2<1,∴-1<x<1。
∴N={x|-1<Байду номын сангаас<1}。
∴M∩N={x|0≤x<1}。故选 B。
【答案】 B
3.设全集 U={x∈N|x≥2},集合 A={x∈N|x2≥5},则∁UA=( )
A.∅
B.{2}
C.{5}
D.{2,5}
否则很可能会因为不满足“互异性\”而导致解题错误。
5.记住以下结论
(1)若集合 A 中有 n 个元素,则其子集的个数为 2n,真子集的个数为
2n-1。
(2)A∪B=A⇔B⊆A;A∩B=A⇔A⊆B。
小|题|快|练
一 、走进教材
1.(必修 1P12B 组 T4 改编)满足{0,1}⊆A {0,1,2,3}的集合 A 的个数 为( )
A∪B
全集 U 中不
属于集合 A {x|x∈U,
补集
∁UA
的元素组成 x∉A}
的集合
微点提醒
1.认清集合元素的属性(是点集、数集或其他情形)和化简集合是正 确求解集合问题的两个先决条件。
2.易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身。
3.运用数轴图示法易忽视端点是实心还是空心。
4.在解决含参数的集合问题时,要注意检验集合中元素的互异性,
A.1
B.2
C.3
D.4
【解析】 由题意得 A 可为{0,1},{0,1,2},{0,1,3}。故选 C。
【答案】 C
2.(必修 1P12B 组 T1 改编)已知集合 A={0,1,2},集合 B 满足 A∪B ={0,1,2},则集合 B 有________个。
【解析】 由题意知 B⊆A,则集合 B 有 8 个。
2016,全国卷Ⅱ,2,5 分(集 定 集 合 中 元
2.理解集合之间包含与相等 合的并集)
素)的基本运
的含义,能识别给定集合的子 2015,全国卷Ⅱ,1,5 分(集 算,偶尔涉及
集;了解全集与空集的含义; 合的交集)
集合间的关
3.理解并会求并集、交集、补 2014,全国卷Ⅰ,1,5 分(集 系 及 新 定 义
2.集合间的基本关系
关系
表示
文字语言
符号语言 记法
基 子集 集合 A 中的元素都是集合 B x∈A⇒x∈B A⊆B
本
中的元素
或 B⊇A
关
集合 A 是集合 B 的子集,且
系
A⊆B,且∃ A B 或 真子集 集合 B 中至少有一个元素不
x0∈B,x0∉A B A
属于 A
相等 集合 A,B 的元素完全相同 A⊆B,B⊆A A=B
=-1;
当 x=0,y=2 时,x-y=-2;当 x=1,y=0 时,x-y=1;
当 x=1,y=1 时,x-y=0;当 x=1,y=2 时,x-y=-1;
当 x=2,y=0 时,x-y=2;当 x=2,y=1 时,x-y=1;
当 x=2,y=2 时,x-y=0。根据集合中元素的互异性知,B 中元素