线性代数第一章线性方程组与矩阵重点word版本
线性代数各章节内容重点难点(大一第一学期)
线性代数各章节内容重点难点(大一第一
学期)
教学难点:向量空间、子空间、基、维数等概念的理解和应用,向量的内积和正交矩阵的性质的证明。
第一章:行列式
本章主要介绍了行列式的定义、性质和运算,以及克莱姆法则的应用。
学生需要了解行列式的基本概念和性质,掌握二、三、四阶行列式的计算方法,以及简单的n阶行列式的计算方法。
此外,学生还需要理解克莱姆法则的结论,并会应用于实际问题中。
本章教学难点在于行列式性质的证明。
第二章:矩阵
本章主要介绍了矩阵的概念和各种运算及其规律,包括单位矩阵、对角矩阵、三角矩阵、对称矩阵等的性质,矩阵的线性运算、乘法、转置等,以及逆矩阵、伴随矩阵、初等变换、矩阵等价、矩阵秩等概念和方法。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于矩阵可
逆的充分必要条件的证明,初等矩阵及其性质,以及分块矩阵及其运算。
第三章:向量
本章主要介绍了向量的概念和相关性质,包括向量组的线性相关与线性无关的概念和性质,向量组的极大线性无关组的概念,向量组的等价和向量组的秩的概念,向量组的秩与矩阵的秩之间的关系,以及向量空间、子空间、基、维数等概念和向量的内积、正交矩阵等性质。
学生需要掌握这些概念和方法,并能够灵活运用于实际问题中。
本章教学难点在于向量空间、子空间、基、维数等概念的理解和应用,以及向量的内积和正交矩阵的性质的证明。
线性代数第一章知识点总结
d 1
d2
d
r
,
0
0
即为所求非齐次线性方程组的一个特解.
向量aT (a1 , a2 , , an)的负向量记作 aT ,且 aT (a1 , a2 , , an).
2 向量的线性运算
向量加法 设 aT (a1 , a2 , , an),bT (b1 , b2 , , bn),定义
向量aT 与bT 的加法为: aT bT (a1 b1 , a2 b2 , , an bn) 向量减法定义为 aT bT (a1 b1 , a2 b2 , , an bn)
c1,n c2,n
1 cr,r 1 , 2 cr,r 1 , , nr c组成 n r阶 单位矩阵,于是得齐次线性方程组的一个基础解系
c1,r 1 c2,r1
c1,r 2 c2,r2
定理 (1)若向量组A : a1 , a2 , , am 线性相关,则向 量组B : a1 , a2 , , am , am1也线性相关.反言之,若 向 量 组B线 性 无 关, 则 向 量 组A也 线 性 无 关.
(2)设 a
j
a1 j , b j arj
a1 j
a
a rj
r 1,
6 向量组的秩
定义 设有向量组A,如果在A中能选出r个向量a1 , a2 , ,ar ,满足
(1)向量组 A0 : a1 , a2 , , ar 线性无关; (2)向量组A中任意r 1个向量(如果A中有r 1 个向量的话)都线性相关, 那么称向量组 A0 是向量组A的一个最大线性 无关向量组(简称最大无关组);最大无关组所含向 量个数r称为向量组A的秩.
Ax b
(4)
解向量 向量方程 (4)的解就是方程组 (3)的解向量.
线性代数课件 第一章
1 0 (5)单位矩阵 单位矩阵 0 1 E = En = L L O 0 0
称为单位矩阵( 单位阵) 称为单位矩阵(或单位阵). 单位矩阵
L 0 O L 0 L L L 1
a11 a 21 A= L a m1
简记为
a12 a 22 L am1
L a1 n L a2n L L L a mn
矩阵A的 (m, n)元
A = Am×n = (aij )m×n = (aij ).
这m × n个数称为 A的元素 ,简称为元 . 简称为元
a11 x1 + a12 x2 + L + a1n xn = b1 a x + a x +L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL am1 x1 + am 2 x2 + L + amn xn = bm
, , 系数 aij ( i =1,2,L m, j =1,2,L n) , 常数项 bi (i = 1,2,L,n)
全为1 全为
(6)方阵 方阵 主对角线
a11 a12 a21 a22 A= L L 副对角线 an1 an1
简记为
L a1n L a2 n L L L ann
n× n
矩 A 阵 的
( n, n) 元
A = An× n = ( aij )
.
矩阵的转置
a11 a 21 A= L a m1
定义3 如果矩阵A经过有限次的初等变换变成B 定义3 如果矩阵A经过有限次的初等变换变成B, 就称矩阵A与矩阵B等价, 就称矩阵A与矩阵B等价,记作 A ~ B . 矩阵之间的等价具有自反性、对称性和传递性. 矩阵之间的等价具有自反性、对称性和传递性. 例如 用矩阵的初等行变换 解线性方程组
(完整word)线性代数知识点全归纳,推荐文档
线性代数知识点1、行列式1. n 行列式共有n 2个元素,展开后有 n!项,可分解为2n行列式; 2. 代数余子式的性质:① 、Aj 和a ij 的大小无关;② 、某行(列)的元素乘以其它行(列)元素的代数余子式为 0;③ 、某行(列)的元素乘以该行(列)元素的代数余子式为A ;3代数余子式和余子式的关系: M j ( 1)i jA ijA ij ( 1)i jM ij4. 设n 行列式D :n (n 1)将D 上、下翻转或左右翻转,所得行列式为 D ,,则D , (1)~^ D ;n(n 1)将D 顺时针或逆时针旋转 90°,所得行列式为 D 2,则D 2 (1)~^ D ; 将D 主对角线翻转后(转置),所得行列式为 D 3,则D 3 D ;将D 主副角线翻转后,所得行列式为D 4,则D 4 D ;行列式的重要公式:主对角行列式:主对角元素的乘积;(1严 A B范德蒙行列式:大指标减小指标的连乘积; 特征值;① 、A A ; ② 、反证法;③ 、构造齐次方程组 Ax 0,证明其有非零解; ④ 、利用秩,证明r(A) n ; ⑤ 、证明0是其特征值;5. ④、 副对角行列式:副对角元素的乘积 上、下三角行列式(|| |i ) 匚和丄:副对角元素的乘积n(n 1)(1)h ;主对角元素的乘积;n(n 1)厂;拉普拉斯展开式:6. 对于n 阶行列式A ,恒有: E A1)kS k,其中 S k 为k 阶主子式;7. 证明A 0的方法:2、矩阵1.A是n阶可逆矩阵:A 0 (是非奇异矩阵);r(A) n (是满秩矩阵)A的行(列)向量组线性无关;齐次方程组Ax 0有非零解;b R n,Ax b总有唯一解;A与E等价;A可表示成若干个初等矩阵的乘积;A的特征值全不为0;A A是正定矩阵;A的行(列)向量组是R n的一组基;A是R n中某两组基的过渡矩阵;2. 对于n阶矩阵A : * *AA A AA E 无条件恒成立;… 1、* …*、 1 …1、T …T、1* T T *3. (A ) (A ) (A ) (A ) (A ) (A )T T T * * * 1 1 (AB) B A (AB) B A (AB) B A4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均 A、B可逆:A若A A2,则:OA sI、A I A/A L A s ;n、A1A11A2O ;A s1②、A1OA1O ;(主对角分块)O B O B 1③、O1AO B 1;(副对角分块)B O A 1O④、A1CA 1 A1CB 1C B;(拉普拉斯)O B O B 1⑤、A O1A11°;(拉普拉斯)C B B 'CA 1 B 13、矩阵的初等变换与线性方程组1. 一个m n矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:等价类:所有与 A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A、B,若r( A) r(B) A : B ;2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)r①、若(A, E) - (E ,X),则 A 可逆,且X A 1;c②、对矩阵(A, B)做初等行变化,当 A变为E时,B就变成A 1B,即:(A, B) (E, A 1B);③、求解线形方程组:对于rn个未知数n个方程Ax b,如果(A,b): (E,x),则A可逆,且x A 1b ;4.初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;5.矩阵秩的基本性质:①、0 r(A m n) min(m,n);②、r(A T) r (A);③、若 A : B,则r(A) r(B);④、若P、Q可逆,则r(A) r(PA) r(AQ) r(PAQ);(可逆矩阵不影响矩阵的秩)⑤、max(r(A),r(B))r(A,B) r(A) r(B);⑥、r(A B) r(A) r(B);E)⑦、r(AB) min(r(A),r(B));(探)E rO②、,左乘矩阵A,i乘A的各行元素;右乘, 乘A的各列元素;n③、对调两行或两列,符号④、倍乘某行或某列,符号11 1E(i,j),且 E(i, j) 1E(i, j),例如:1 11 1E(i(k)),且E(i(k))11E(i(-)),例如:11k11k(k10);11 k 1 kE(ij(k)),且 E(ij(k)) 1E(ij ( k)),如:1 1 (k 0);1 1⑤、倍加某行或某列,符号⑧ 、如果A 是m n 矩阵,B 是n s 矩阵,且AB 0,则:(探)I 、B 的列向量全部是齐次方程组 AX 0解(转置运算后的结论); n 、 r(A) r(B) n⑨ 、若A 、B 均为n 阶方阵,则r(AB) r(A) r(B) n ;8. 关于A 矩阵秩的描述:① 、r(A) n , A 中有n 阶子式不为0, n 1阶子式全部为0;(两句话) ② 、r(A) n , A 中有n 阶子式全部为0; ③ 、r(A) n , A 中有n 阶子式不为0;9. 线性方程组:Ax b ,其中A 为m n 矩阵,则:① 、m 与方程的个数相同,即方程组Ax b 有m 个方程;② 、n 与方程组得未知数个数相同,方程组Ax b 为n 元方程;10.线性方程组Ax b 的求解:① 、对增广矩阵B 进行初等行变换(只能使用初等行变换); ② 、齐次解为对应齐次方程组的解; ③ 、特解:自由变量赋初值后求得;6. 三种特殊矩阵的方幕:①、秩为1的矩阵:一定可以分解为 列矩阵行矩阵(向量)的形式, 再采用结合律;1 a ②、型如0 1 cb 的矩阵:利用二项展开式;二项展开式: (a b)n C °a n C ;a 1b 1 L C n ma L C ; 1a 1b nC ;bnmm.C ; a b注:I 、 (a b)n展开后有n 1项;n 、c mn(n 1)L L (n m 1)n! 1g2eg_ gmm!(n m)! 0 n C;Cn『组合的性质:c m C ; mC ;1c m_ m 1C nnC ; 2nrC n rnc n 1 ;③ 、禾u 用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:r(A *)r(A)r(A) r(A)②、伴随矩阵的特征值: (AXX,A * AA 1△x);③、AA 1、A ;14、 向 量 组 的 线 性 相 关 性1. m 个 n 维列向量所组成的向量组 A : 1, 2,L , m 构成 n m 矩阵 A( 1, 2,L , m ) ;T1 Tm 个n 维行向量所组成的向量组 B :;,:丄,:构成m n 矩阵B 2;MT m5含有有限个向量的有序向量组与矩阵一一对应;Ax 0 有、无非零解; (齐次线性方程组) Ax b 是否有解; (线性方程组) AX B 是否有解; (矩阵方程)3.矩阵A , n 与B l n 行向量组等价的充分必要条件是:齐次方程组Ax 0和Bx 0同解;(P 101例14)4. r(A TA) r(A);(卩仙例 15)5.n 维向量线性相关的几何意义: ① 、 线性相关 ② 、 , 线性相关 ③、 , , 线性相关, , 共面;6. 线性相关与无关的两套定理:若1, 2丄,s 线性相关,则1, 2 ,L , s , S1必线性相关;若1,2丄,s 线性无关,则1,2丄,s1必线性无关;(向量的个数加加减减,二者为对偶) 若 r 维向量组 A 的每个向量上添上 n r 个分量,构成 n 维向量组 B :a11x 1 a 12 x 2 L a1n x n b1 ①、a 21x 1 a 22 x 2 La2 n x nb2;L LLLLLLLLLLam1 x 1 a m2 x 2 Lanm x n bna11 a12 L a1nx1 b1②、a 21a 22 La2nx2b2Ax b(向量方程,A 为m n 矩阵,m 个方程,M M O MMMam1 am2 Lamnxm bmx1b1 ③、a1a 2 L a nx2(全部按列分块,其中b2);MMxnbn④、 a 1x 1 a 2x2 La n x n (线性表出)⑤、 有解的充要条件: r(A) r (A, ) n ( n 为未知数的个数或维数)11. 由 n 个未知数 m 个方程的方程组构成 n 元线性方程:n 个未知数)2.①、向量组的线性相关、无关② 、向量的线性表出 ③ 、向量组的相互线性表示0; 坐标成比例或共线(平行);14.1, 2 ,L , 存在一组不全为 线性相关0的数k i ,k 2丄,k s ,使得 k 1 1k 2 2 L k s s 0 成立;(定义)ss x 1x 2(1, 2,L , s )1 2 sMxs有非零解,即 Ax 0 有非零解;若 A 线性无关,则 B 也线性无关;反之若 B 线性相关,则 A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组 A (个数为 r )能由向量组 B (个数为 s )线性表示,且 A 线性无关,则 r s ; 向量组 A 能由向量组 B线性表示,则 r(A) r(B);向量组 A 能由向量组 B 线性表示AX B 有解; r(A) r(A,B)向量组 A 能由向量组 B 等价 r(A) r(B) r(A,B)8. 方阵 A 可逆 存在有限个初等矩阵 P i ,P 2,L ,P ,使 AP 1 P 2L P l ; ①、矩阵行等价 r: A~ B PA B (左乘, P 可逆)Ax 0与 Bx 0同解②、矩阵列等价 c: A~ BAQ B (右乘, Q 可逆);③、矩阵等价: A~B PAQ B (P 、Q 可逆);9. 对于矩阵 A m n 与 B l n :① 、若A 与B 行等价,则A 与B 的行秩相等;② 、若A 与B 行等价,则Ax 0与Bx 0同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③ 、矩阵的初等变换不改变矩阵的秩; ④ 、矩阵A 的行秩等于列秩;10. 若 A m s B s n C m n ,则:① 、 C 的列向量组能由 A 的列向量组线性表示, ② 、 C 的行向量组能由 B 的行向量组线性表示, 11. 齐次方程组 Bx 0的解一定是 ABx 0的解,【考试中可以直接作为定理使用,而无需证明 】① 、 ABx 0 只有零解 Bx 0 只有零解;②、 Bx 0 有非零解 A Bx 0一定存在非零解; 12.设向量组B n r : b,b 2丄,b r 可由向量组 代s 耳厶丄 玄线性表示为:(b 1,b 2,L ,b r ) (a 1,a 2,L ,a s )K (B AK )其中K 为s r ,且A 线性无关,则B 组线性无关r(K) r ; ( B 与K 的列向量组具有相同线性相关性)(必要性: Qr r(B) r(AK) r(K),r(K) r, r(K) r ;充分性:反证法) 注:当r s 时,K 为方阵,可当作定理使用;13.①、对矩阵A mn,存在Q n m ,AQ E m 「(A) m 、Q 的列向量线性无关; ②、对矩阵A mn,存在P n m ,PAE .「(A) n 、P 的行向量线性无关;r( 1, 2,L , s ) s ,系数矩阵的秩小于未知数的个数;B 为系数矩阵; A T为系数矩阵; (转置)15.设m n 的矩阵A 的秩为r ,则n 元齐次线性方程组 Ax 0的解集S 的秩为:r (S ) n r ;16.若*为Ax b 的一个解,!,2丄,nr 为AX 0的一个基础解系,则*,仆2、L , nr 线性无关;5、相似矩阵和二次型1.正交矩阵A T A E 或A 1A T(定义),性质:③ 、若A 、B 正交阵,则 AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化 和单位化;2. 施密特正交化:(a,a 2,L ,a r )b a ;b 2 a 2 gg LLL b a r 沖 g 3 g)2 L1;[b,b]也上] 血,唧 [b r —b rJ3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;4.①、A 与B 等价 A 经过初等变换得到 B ;②、A 与B 合同PAQ B , P 、Q 可逆; r (A ) r (B ),A 、B 同型;C TAC B ,其中可逆;③、 A 与B 相似 x T Ax 与x TBx 有相同的正、负惯性指数; P 1AP B :5.相似一定合同、合同未必相似;A: B ,(合同、相似的约束条件不同,相似的更严格)6. A 为对称阵,则 A 为二次型矩阵;7.n 元二次型x TAx 为正定:A 的正惯性指数为n ;A 与E 合同,即存在可逆矩阵 C ,使C TAC E ;A 的所有特征值均为正数; A 的各阶顺序主子式均大于 0;①、A 的列向量都是单位向量,且两两正交,即 Ta i a j②、若A 为正交矩阵,则A 1A T也为正交阵,且 A若C 为正交矩阵,则C TAC Ba 0, A 0 ;(必要条件)第一章随机事件互斥对立加减功,条件独立乘除清;全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。
线性代数第一章word版
第一章 矩阵§1.2 Gauss 消元法1. 基本概念一般的n 元线性方程组:)( b x a x a x a b x a x a x a b x a x a x a m n mn m m n n n n *⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++ 22112222212********* 未知数:n x x x ,,,21系数:),,2,1,,2,1( n j m i a j i ==; 常数项:m b b b ,,,21一个解:n 元有序数组n c c c ,,,21 ,令, , , ,2211n n c x c x c x === 使(*)的所有方程变为恒等式。
解集合:(*)的全部解的集合。
不相容线性方程组:解集合为空集。
一般解(通解):解集合中全部元素的通项表达式。
具体解(特解):解集合中一个特定元素。
解的存在性:解集合是否为空集。
解的唯一性:非空的解集合是否只有一个元素。
线性方程组同解:解集合相同。
非齐次线性方程组:m b b b ,,,21 不全为零 齐次线性方程组:m b b b ,,,21 全为零一般的n 元齐次线性方程组:)( x a x a x a x a x a x a x a x a x a n mn m m nn n n **⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111零解:所有未知数均取零的解 非零解:未知数不全取零的解2. Gauss 消元法例 1 解线性方程组:⎪⎩⎪⎨⎧=--=--=-+524314422321321321x x x x x x x x x阶梯形方程组: 从上到下,方程中具有非零系数的第一个未知数的下标严格增大. 例如…. 注:(1) 它包含两个过程: 一是消元; 二是回代. (2) 将方程组化为阶梯形时所做的操作有如下三种: (i) 交换某两个方程, 如第i 个和第j 个,表示为j i R R ↔. (ii) 用非零常数k 乘某个方程, 如第i 个方程, 表示为 i kR . (iii) 将第i 个方程的l 倍加到第j 个方程, 表示为 i j lR R +. 这三种变换称为线性方程组的初等变换. 定理 1线性方程组的初等变换将方程组化为同解的方程组.解线性方程组的步骤:第一步 若第一个方程的1x 的系数为零,则选择一个1x 的系数不为零的方程, 如第i 个方程,交换它们的位置, 即 i R R ↔1.第二步 用变换1kR 将1x 的系数化为1.第三步 用变换1,1>+i lR R i , 将1x 从第一个方程以下的所有方程中消去。
线性代数第二版 主编 吴传生 第一章 线性方程组的消元法和矩阵的初等变换)
a22 x2 a2 n xn b2
am 2 x2 am n xn bm
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组 (1) 分析系数
a11 x1 a12 x2 a1n xn b1
a21 x1 a22 x2 a2n xn b2
am1 x1 am2 x2 amn xn bm
两边同乘以已知常数 ,得到一个新的线性方程:
a1 x1 a2 x2 L an xn b.
线性方程与常数相乘,也称为方程的数乘。
线性方程的线性组合
将线性方程(1)和(2)分别称两个已知常数 1, 2
再将所得的两个方程相加,得到新方程:
1a11 2a21 x1 1a12 2a22 x2 L
方程组转换成 x2 , ,xn 的方程组来解 ,
若 x1 的系数不全为0,则利用变换(1),使 a11 0 . (2) 化简:利用初等变换(3),分别把第一个方程的 ai1 倍
a11 加到第 i 个方程,则方程组可以变成:
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
考查方程组
a11 x1 a12 x2 a1n xn b1
c11 x1 c12 x2 c1n xn d1
c22 x2 c2n xn d2
crr xr crn xn dr
0 dr1
00
00
(II)当 dr1 0 或方程组中根本没有0 0 的方程,分两种情形:
ii)r n . 这时阶梯型方程组为:
c11 x1 c12 x2 c1r xr c1,r1 xr1 c1n xn d1
定理1 线性方程组的初等变换总是把方程组变成 同解方程组 .
2、利用初等变换解一般线性方程组(化为阶梯型方程组)
线性代数重点复习(16页)
齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。
《线性代数》第1章线性方程组与矩阵
记为 En 或 E即,
1 0 L 0
E
0
1L
0
.
L L O M
0
0L
1
定义2 两个矩阵的行数相等、列数也相等,则称这两个矩阵为同型矩阵.
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
该线性方程组由常数 aij i 1,2,L ,m ; j 1,2,L ,n 和 bi i 1, 2,L , m完全确定, 可以用一个 mn 1 个数排成的 m 行 n 1列的数表
a11 a12 L
°A
a21
a22
L
M M
am1
am2
L
a1n b1
a2n
b2
M M
amn bm
一、矩阵的定义
得到的 n m 矩阵称为矩阵 A 的转置矩阵,记为 AT ,即
a11 a21 L
AT
a12
L
a22 L LL
a1n
a2n L
am1
am 2
.
L
anm
矩阵的转置满足下面的运算规律(这里 k 为常数, A 与 B 为同型矩阵):
数 aij 位于矩阵aij 的第 i 行第 j 列,称为矩阵的i, j 元素, 其中 i 称为元素 aij 的行标, j 称为元素 aij 的列标.
一般地,常用英文大写字母 A, B,L 或字母, , ,L 表示矩阵.
一、矩阵的定义
第1章 线性方程组与矩阵 6
元素是实数的矩阵称为实矩阵, 元素是复数的矩阵 称为复矩阵. 本书除特别指明外,都是指实矩阵.
线性代数知识点汇总1
第一章 矩阵矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==(一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0) 转置:A A T T =)( TT T B A B A +=+)( T T kA kA =)( TT T A B AB =)( 方幂:2121k k k kA AA += 2121)(k k k k A A +=逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, 且B A=-1矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置TA 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB ,但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B A 。
A 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵。
5、若A 可逆,则11--=A A逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。
分块矩阵:加法,数乘,乘法都类似普通矩阵转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素初等变换:1、交换两行(列)2.、非零k 乘某一行(列)3、将某行(列)的K 倍加到另一行(列) 初等变换不改变矩阵的可逆性,初等矩阵都可逆 初等矩阵:单位矩阵经过一次初等变换得到的矩阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r第二章 行列式N 阶行列式的值:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ行列式的性质:①行列式行列互换,其值不变。
线代必备资料:线性代数知识框架(word版)
分块对角阵相乘: A
A11
B11 , B A22
*
B22 AB*
A B AB 11 11
A22 B22
A BA* 分块对角阵的伴随矩阵: B
√ 矩阵方程的解法( A 0 ):设法化成(I)AX B
1 , 2 , , s 线性无关; 1 , 2 , , s 都是 Ax 0 的解;
③ s n r ( A) 每个解向量中自由未知量的个数 .
5
√ 一个齐次线性方程组的基础解系不唯一.
1 2 3 4 5
零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关 对应元素成比例;两两正交的非零向量组线性无关 p教材114 . 向量组 1 , 2 , , n 中任一向量 i (1 ≤ i ≤ n) 都是此向量组的线性组合. 向量组 1 , 2 , , n 线性相关 向量组中至少有一个向量可由其余 n 1 个向量线性表示. 向量组 1 , 2 , , n 线性无关 向量组中每一个向量 i 都不能由其余 n 1 个向量线性表示.
T
CT Dห้องสมุดไป่ตู้
A1 A 分块矩阵的逆矩阵: B A1 A C O B O
1
1
1 B A1CB 1 B
B
A 1 A
1
1
B 1
A1 O A O 1 1 B C B B CA
线性代数教案-线性方程组与矩阵
第一章线性方程组与矩阵
授课序号 01
教学基本指标
教学课题 教学方法 教学重点
参考教材
第一章 第一节 矩阵的概念及运算 讲授、课堂提问、讨论、启发、自学 矩阵的定义、矩阵的线性运算、矩阵的乘法、矩 阵的转置 同济版《线性代数》
课的类型 教学手段 教学难点
作业布置
新知识课 黑板多媒体结合 矩阵的乘法、矩阵的转置
kaij
.
mn
4. 矩阵的数乘运算满足的运算规律:
(1) k A B kA kB ;
(2) (k l) A kA lA ;
(3) (kl) A k(lA) l(kA) ;
(4) 1A A ;
(5) 1 A A ;
(6) 0 A Omn .
三、矩阵乘法:
1. 矩阵乘法的定义:设矩阵 A (aij ) 是一个 m p 矩阵,矩阵 B (bij ) 是一个 p n 矩阵,定义矩阵 A 与 B
的乘积是一个 m n 矩阵 C (cij ) ,其中矩阵 C (cij ) 的第 i 行第 j 列元素 cij 是由矩阵 A 的第 i 行元素
ai1, ai2, , aip 与矩阵 B 的第 j 列相应元素 b1j , b2 j , , bpj 乘积之和,即
p
cij = aikbkj ai1b1 j ai2b2 j aipbpj . k 1
a12 a22
a1n a2n
x1 x2
a11x1 a12 x2 a1n xn a21x1 a22 x2 a2n xn
.
am1
am2
amn xn
am1 x1
am2
x2
amn xn
再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示: Ax .
线性代数知识点总结
线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
线性代数第一章线性方程组与矩阵重点
2.已知 1 , 2 是方程组
x1 x 2 a x 3 3 3 x3 1 的两个不 2 x1 2 x1 a x 2 1 0 x 3 4
矩阵的初等行变换和矩阵的初等列变换统称为矩阵的初等变换. 阶梯形方程组所对应的增广矩阵称为行阶梯形矩阵. 可见, 行阶梯形矩阵应满足: (1)如果存在零行(元素全为零的行) ,则零行全在非零行的下方; (2)当非零行的首非零元(第一个不为零的元素)位于第 j 列时, 则该行以下每一行(若存在)的前 j 个元素全为零. 满足下面条件的行阶梯形矩阵称为行最简形矩阵:非零行的首非 零元为 1,且它所在列的其它元素都为零.
线性代数
第一章线性方程组与矩阵
一、高斯消元法解线性方程组 例1 解线性方程组
2 x1 x 2 2 x 3 6 ① ② x1 2 x 2 x 3 3 x1 x 2 x 3 1 ③
解① ③ x1 x 2 x 3 1 x1 2 x 2 x 3 3 2 x1 x 2 2 x 3 6 ① ② ③
x1 2 x 2 x 3 x 4 0 例 3 3 x1 6 x 2 x 3 3 x 4 0 5 x 10 x x 5 x 0 2 3 4 1
练习题 1. 讨论 取什么值时,下列方程组有解, 有唯一解?有无穷多组解?无解? 在有解时,求出其解.
a 或 A
ij
a
ij
mn
.
定义 3 对矩阵的行所作的下述三种变换, 称为矩阵的初等行变换: (1)互换矩阵某两 行的位置; (2)用非零常数乘矩阵某行所有元素; (3)用一个非零常数乘矩阵某行所有元素后 加到另一行对应元素上. 为了书写方便, 我们把第一种变换记为 ri r j , 第二种变换记为 k ri ,第三种变换记为 r j k ri . 若定义中的“行”换成“列” ,即得矩阵的初等 列变换,相应地记为 c i c j , k c i 和 c j k c i . 矩阵的初 等行 变换 和矩 阵的 初等 列变 换统称 为 矩阵的初等变换.
线性方程组与矩阵知识点
线性方程组与矩阵知识点线性方程组和矩阵是线性代数中的重要概念和工具,广泛应用于数学、物理、工程等领域。
本文将介绍线性方程组和矩阵的基本概念、性质以及解题方法。
一、线性方程组1. 定义线性方程组由多个线性方程组成,形式为:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙ其中,a₁₁, a₁₂, ..., aₙₙ和b₁, b₂, ..., bₙ是已知的常数,x₁, x₂, ..., xₙ是未知数。
这个方程组可以用矩阵形式表示为AX = B,其中A是一个m×n的矩阵,X是一个n×1的列向量,B是一个m×1的列向量。
2. 系数矩阵和增广矩阵在线性方程组中,常常用系数矩阵和增广矩阵来表示。
系数矩阵A是由线性方程组中各个方程的系数组成的矩阵,形式为:A = [a₁₁ a₁₂ ... a₁ₙa₂₁ a₂₂ ... a₂ₙ...aₙ₁ aₙ₂ ... aₙₙ]增广矩阵是在系数矩阵的右边增加一列,该列是线性方程组的等号右边,形式为:[A | B] = [a₁₁ a₁₂ ... a₁ₙ | b₁a₂₁ a₂₂ ... a₂ₙ | b₂...aₙ₁ aₙ₂ ... aₙₙ | bₙ]3. 解的存在性与唯一性解的存在性与唯一性是研究线性方程组时需要关注的重要问题。
对于一个线性方程组,它的解有以下几种可能:a) 无解:线性方程组不满足任何条件,无法找到一个符合所有方程的解;b) 唯一解:线性方程组满足一定条件,存在且只存在一个符合所有方程的解;c) 无穷解:线性方程组满足一定条件,存在不止一个符合所有方程的解。
解的存在性与唯一性可以通过高斯消元法、矩阵的秩以及行列式等方法来判断与求解。
二、矩阵1. 定义和基本运算矩阵是按照矩形排列的数的集合,是线性方程组理论的基础,也是线性代数的重要工具。
线性代数的考研讲义完整版
考研数学线性代数讲义目录第一讲基本概念线性方程组矩阵与向量初等变换和阶梯形矩阵线性方程组的矩阵消元法第二讲行列式完全展开式化零降阶法其它性质克莱姆法则第三讲矩阵乘法乘积矩阵的列向量和行向量矩阵分解矩阵方程逆矩阵伴随矩阵第四讲向量组线性表示向量组的线性相关性向量组的极大无关组和秩矩阵的秩第五讲方程组解的性质解的情况的判别基础解系和通解第六讲特征向量与特征值相似与对角化特征向量与特征值—概念,计算与应用相似对角化—判断与实现附录一内积正交矩阵施密特正交化实对称矩阵的对角化第七讲二次型二次型及其矩阵可逆线性变量替换实对称矩阵的合同标准化和规范化惯性指数正定二次型与正定矩阵附录二向量空间及其子空间附录三两个线性方程组的解集的关系附录四06,07年考题第一讲基本概念1.线性方程组的基本概念线性方程组的一般形式为:a11x1+a12x2+…+a1n x n=b1,a21x1+a22x2+…+a2n x n=b2,…………a m1x1+a m2x2+…+a mn x n=b m,其中未知数的个数n和方程式的个数m不必相等.线性方程组的解是一个n维向量(k1,k2, …,k n)(称为解向量),它满足:当每个方程中的未知数x i都用k i替代时都成为等式.线性方程组的解的情况有三种:无解,唯一解,无穷多解.对线性方程组讨论的主要问题两个:(1)判断解的情况.(2)求解,特别是在有无穷多接时求通解.b1=b2=…=b m=0的线性方程组称为齐次线性方程组.n维零向量总是齐次线性方程组的解,称为零解.因此齐次线性方程组解的情况只有两种:唯一解(即只要零解)和无穷多解(即有非零解).把一个非齐次线性方程组的每个方程的常数项都换成0,所得到的齐次线性方程组称为原方程组的导出齐次线性方程组,简称导出组.2.矩阵和向量(1)基本概念矩阵和向量都是描写事物形态的数量形式的发展.由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵.例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8是一个4⨯5矩阵.对于上面的线性方程组,称矩阵a11 a12…a1n a11 a12…a1n b1A= a21 a22…a2n 和(A|)= a21 a22…a2n b2…………………a m1 a m2…a mn a m1 a m2…a mnb m为其系数矩阵和增广矩阵.增广矩阵体现了方程组的全部信息,而齐次方程组只用系数矩阵就体现其全部信息.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素.元素全为0的矩阵称为零矩阵,通常就记作0.两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等.由n个数构成的有序数组称为一个n维向量,称这些数为它的分量.书写中可用矩阵的形式来表示向量,例如分量依次是a1,a2,⋯ ,a n的向量可表示成a1(a1,a2,⋯ ,a n)或a2,┆a n请注意,作为向量它们并没有区别,但是作为矩阵,它们不一样(左边是1⨯n矩阵,右边是n⨯1矩阵).习惯上把它们分别称为行向量和列向量.(请注意与下面规定的矩阵的行向量和列向量概念的区别.)一个m⨯n的矩阵的每一行是一个n维向量,称为它的行向量; 每一列是一个m维向量, 称为它的列向量.常常用矩阵的列向量组来写出矩阵,例如当矩阵A的列向量组为1,,⋯ ,n时(它们都是表示为列的形式!)可记A=(1,2,⋯ ,n).2矩阵的许多概念也可对向量来规定,如元素全为0的向量称为零向量,通常也记作0.两个向量和相等(记作=),是指它的维数相等,并且对应的分量都相等.(2) 线性运算和转置线性运算是矩阵和向量所共有的,下面以矩阵为例来说明.加(减)法:两个m⨯n的矩阵A和B可以相加(减),得到的和(差)仍是m⨯n矩阵,记作A+B (A-B),法则为对应元素相加(减).数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,法则为A的每个元素乘c.这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A.②加法结合律:(A+B)+C=A+(B+C).③加乘分配律:c(A+B)=c A+c B.(c+d)A=c A+d A.④数乘结合律: c(d)A=(cd)A.⑤c A=0⇔ c=0 或A=0.转置:把一个m⨯n的矩阵A行和列互换,得到的n⨯m的矩阵称为A的转置,记作A T(或A').有以下规律:①(A T)T=A.②(A+B)T=A T+B T.③(c A)T=c A T.转置是矩阵所特有的运算,如把转置的符号用在向量上,就意味着把这个向量看作矩阵了.当是列向量时,T表示行向量,当是行向量时,T表示列向量.向量组的线性组合:设1,2,…,s是一组n维向量, c1,c2,…,c s是一组数,则称c11+c22+…+c s s为1,2,…,s的(以c1,c2,…,c s为系数的)线性组合.n维向量组的线性组合也是n维向量.(3) n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵.把n阶矩阵的从左上到右下的对角线称为它对角线.(其上的元素行号与列号相等.)下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵:满足A T=A矩阵.也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n 阶矩阵.(反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.)3. 矩阵的初等变换和阶梯形矩阵矩阵有以下三种初等行变换:①交换两行的位置.②用一个非0的常数乘某一行的各元素.③把某一行的倍数加到另一行上.(称这类变换为倍加变换)类似地, 矩阵还有三种初等列变换,大家可以模仿着写出它们,这里省略了. 初等行变换与初等列变换统称初等变换.阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面.②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增.把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角.简单阶梯形矩阵:是特殊的阶梯形矩阵,特点为:③台角位置的元素为1.④并且其正上方的元素都为0.每个矩阵都可以用初等行变换化为阶梯形矩阵和简单阶梯形矩阵.这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练.请注意: 1.一个矩阵用初等行变换化得的阶梯形矩阵并不是唯一的,但是其非零行数和台角位置是确定的.2. 一个矩阵用初等行变换化得的简单阶梯形矩阵是唯一的.4. 线性方程组的矩阵消元法线性方程组的基本方法即中学课程中的消元法:用同解变换把方程组化为阶梯形方程组(即增广矩阵为阶梯形矩阵的方程组).线性方程组的同解变换有三种:①交换两个方程的上下位置.②用一个非0的常数乘某个方程.③把某个方程的倍数加到另一个方程上.以上变换反映在增广矩阵上就是三种初等行变换.线性方程组求解的基本方法是消元法,用增广矩阵或系数矩阵来进行,称为矩阵消元法.对非齐次线性方程组步骤如下:(1)写出方程组的增广矩阵(A|),用初等行变换把它化为阶梯形矩阵(B|γ).(2)用(B|γ)判别解的情况:如果最下面的非零行为(0,0, ⋯,0|d),则无解,否则有解.有解时看非零行数r(r不会大于未知数个数n),r=n时唯一解;r<n时无穷多解.(推论:当方程的个数m<n时,不可能唯一解.)(3)有唯一解时求解的初等变换法:去掉(B|γ)的零行,得到一个n×(n+1)矩阵(B0|γ0),并用初等行变换把它化为简单阶梯形矩阵(E|η),则η就是解.对齐次线性方程组:(1)写出方程组的系数矩阵A,用初等行变换把它化为阶梯形矩阵B.(2)用B判别解的情况:非零行数r=n时只有零解;r<n时有非零解(求解方法在第五章讲). (推论:当方程的个数m<n时,有非零解.)讨论题1.设A是n阶矩阵,则(A) A是上三角矩阵⇒A是阶梯形矩阵.(B) A是上三角矩阵⇐A是阶梯形矩阵.(C) A是上三角矩阵⇔A是阶梯形矩阵.(D) A是上三角矩阵与A是阶梯形矩阵没有直接的因果关系.2.下列命题中哪几个成立?(1) 如果A是阶梯形矩阵,则A去掉任何一行还是是阶梯形矩阵.(2) 如果A是阶梯形矩阵,则A去掉任何一列还是是阶梯形矩阵.(3) 如果(A|B)是阶梯形矩阵,则A也是阶梯形矩阵.(4) 如果(A|B)是阶梯形矩阵,则B也是阶梯形矩阵.(5) 如果 A 是阶梯形矩阵,则A和B都是阶梯形矩阵.B第二讲行列式一.概念复习1. 形式和意义形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1)a21 a22 (2)……… .a n1 a n2…a nn如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|.意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值.请注意行列式和矩阵在形式上和意义上的区别.当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|.行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0.2. 定义(完全展开式)2阶和3阶行列式的计算公式:a11 a12a21 a22 = a11a22-a12a21 .a11 a12 a13a21 a22 a23 = a11a22a33+ a12a23a31+ a13a21a32-a13a22a31- a11a23a32-a12a21a33.a31 a32 a33一般地,一个n阶行列式a11 a12 (1)a21 a22 (2)………a n1 a n2…a nn的值是许多项的代数和,每一项都是取自不同行,不同列的n 个元素的乘积,其一般形式为:n nj j j a a a Λ2121,这里把相乘的n 个元素按照行标的大小顺序排列,它们的列标j 1j 2…j n 构成1,2, …,n 的一个全排列(称为一个n 元排列),共有n!个n 元排列,每个n 元排列对应一项,因此共有n!个项.所谓代数和是在求总和时每项先要乘+1或-1.规定(j 1j 2…j n )为全排列j 1j 2…j n 的逆序数(意义见下面),则项n nj j j a a a Λ2121所乘的是.)1()(21n j j j Λτ-全排列的逆序数即小数排列在大数右面的现象出现的个数.逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数:023********,(436512)=3+2+3+2+0+0=10.至此我们可以写出n 阶行列式的值:a 11 a 12 … a 1na 21 a 22 … a 2n =.)1(21212121)(n n n nj j j j j j j j j a a a ΛΛΛτ-∑ … … …a n1 a n2 … a nn这里∑n j j j Λ21表示对所有n 元排列求和.称此式为n 阶行列式的完全展开式.用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算.例如对角行列式,上(下)三角行列式的值就等于主对角线上的元素的乘积,因为其它项都为0.2. 化零降阶法把n阶行列式的第i行和第j列划去后所得到的n-1阶行列式称为(i,j)位元素a ij的余子式,记作M ij.称A ij=(-1)i+j M ij为元素a ij的代数余子式.定理(对某一行或列的展开)行列式的值等于该行(列)的各元素与其代数余子式乘积之和.命题第三类初等变换(倍加变换)不改变行列式的值.化零降阶法用命题把行列式的某一行或列化到只有一个元素不为0,再用定理.于是化为计算一个低1阶的行列式.化零降阶法是实际计算行列式的主要方法,因此应该熟练掌握.3.其它性质行列式还有以下性质:①把行列式转置值不变,即|A T|=|A| .②某一行(列)的公因子可提出.于是, |c A|=c n|A|.③对一行或一列可分解,即如果某个行(列)向量则原行列式等于两个行列式之和,这两个行列式分别是把原行列式的该行(列)向量换为或所得到的行列式.例如|,1+2|=|,1|+|,2|.④把两个行(列)向量交换, 行列式的值变号.⑤如果一个行(列)向量是另一个行(列)向量的倍数,则行列式的值为0.⑥某一行(列)的各元素与另一行(列)的对应元素的代数余子式乘积之和=0.⑦如果A与B都是方阵(不必同阶),则A * = A O =|A ||B |.O B * B范德蒙行列式:形如1 1 1 (1)a 1 a 2 a 3 … a na 12 a 22 a 32 … a n 2…… … … a 1n-i a 2n-i a 3n-i … a n n-i的行列式(或其转置).它由a 1,a 2 ,a 3,…,a n 所决定,它的值等于).(i j ji a a -∏< 因此范德蒙行列式不等于0⇔ a 1,a 2 ,a 3,…,a n 两两不同.对于元素有规律的行列式(包括n 阶行列式),常常可利用性质简化计算,例如直接化为三角行列式等.4.克莱姆法则克莱姆法则 应用在线性方程组的方程个数等于未知数个数n (即系数矩阵为n 阶矩阵)的情形.此时,如果它的系数矩阵的行列式的值不等于0,则方程组有唯一解,这个解为(D 1/D, D 2/D,⋯,D n /D),这里D 是系数行列式的值, D i 是把系数行列式的第i 个列向量换成常数列向量所得到的行列式的值.说明与改进:按法则给的公式求解计算量太大,没有实用价值.因此法则的主要意义在理论上,用在对解的唯一性的判断,而在这方面法则不够. 法则的改进:系数行列式不等于0是唯一解的充分必要条件.实际上求解可用初等变换法:对增广矩阵(A|)作初等行变换,使得A变为单位矩阵: (A|)→(E|η),η就是解.用在齐次方程组上:如果齐次方程组的系数矩阵A是方阵,则它只有零解的充分必要条件是|A|≠0.二. 典型例题1.利用性质计算元素有规律的行列式例1① 2 a a a a ②1+x 1 1 1 ③1+a 1 1 1a 2 a a a 1 1+x 1 1 2 2+a 2 2a a 2 a a . 1 1 1+x 1 . 3 3 3+a 3 .a a a 2 a 1 1 1 1+x 4 4 4 4+aa a a a 2例2 1 2 3 4 52 3 4 5 13 4 5 1 2 .4 5 1 2 35 1 2 3 4例31+x1 1 1 11 1+x2 1 1 .1 1 1+x3 11 1 1 1+x4例4 a 0 b c0 a c b .b c a 0c b 0 a例5 1-a a 0 0 0-1 1-a a 0 00 -1 1-a a 0 . (96四)0 0 -1 1-a a0 0 0 -1 1-a2. 测试概念与性质的题例6 x3-3 1 -3 2x+2多项式f(x)= -7 5 -2x 1 ,求f(x)的次数和最高次项的系数.X+3 -1 33x2-29 x3 6 -6例7求x-3 a -1 4f(x)= 5 x-8 0 –2 的x4和x3的系数.0 b x+1 12 2 1 x 例8 设4阶矩阵A =(,1, 2 ,3),B =(, 1, 2 ,3),|A | =2, |B |=3 ,求|A +B | .例9 a b c d已知行列式 x -1 -y z+1 的代数余子式A 11=-9,A 12=3,A 13=-1,A 14=3,求x,y,z. 1 -z x+3 yy-2 x+1 0 z+3例10 求行列式 3 0 4 0 的第四行各元素的余子式的和.(01)2 2 2 20 -7 0 05 3 -2 23.几个n 阶行列式两类爪形行列式及其值:例11 a 1 a 2 a 3 … a n-1 a nb 1c 2 0 … 0 0证明 0 b 2 c 3 0 0 =11111(1)n i i i i n i b b a c c --+=-∑L L .… … … …0 0 0 … b n-1 c n提示: 只用对第1行展开(M 1i 都可直接求出).例12 a 0 a 1 a 2 … a n-1 a n b 1 c 1 0 … 0 0证明 b 2 0 c 2 … 0 0 =011111n n i i i i i n i i a c c c a b c c -+==-∑∏L L . … … … …b n … 0c n提示: 只用对第1行展开(M 1i 都可直接求出).另一个常见的n 阶行列式:例13 证明a+b b 0 … 0 0a a+b b … 0 0… … … … = 110n n n n i ii a b a b a b ++-=-=-∑(当a ≠b 时). 0 0 0 … a+b b0 0 0 a a+b提示:把第j 列(行)的(-1)j-1倍加到第1列(行)上(j=2,…,n),再对第1列(行)展开.4.关于克莱姆法则的题例14设有方程组x 1+x 2+x 3=a+b+c,ax 1+bx 2+cx 3=a 2+b 2+c 2,bcx 1+acx 2+abx 3=3abc.(1)证明此方程组有唯一解的充分必要条件为a,b,c 两两不等.(2)在此情况求解.参考答案例1 ①(2+4a)(2-a)4.②x3(x+4). ③a3(a+10). 例2 1875.例3 x1x2x3x4+x2x3x4+x1x3x4+x1x2x4+x1x2x3. 例4 (a+b+c)(a+b-c)(a-b+c)(a-b-c).例5 1-a+a2-a3+a4-a5.例6 9,-6例7 1,-10.例8 40.例9 x=0,y=3,z=-1.例10 -28.例14 x1=a,x2=b,x3=c..第三讲矩阵一.概念复习1. 矩阵乘法的定义和性质定义2.1 当矩阵A的列数和B的行数相等时,和A和B可以相乘,乘积记作AB.AB 的行数和A相等,列数和B相等.AB的(i,j)位元素等于A的第i个行向量和B的第j个列向量(维数相同)对应分量乘积之和.设a11 a12...a1n b11 b12...b1s c11 c12 (1)A= a21 a22...a2n B= b21 b22...b2s C=AB=c21 c (2)………………………a m1 a m2…a mn ,b n1 b n2…b ns ,c m1 c m2…c ms ,则c ij=a i1b1j+a i2b2j+…+a in b nj.矩阵的乘法在规则上与数的乘法有不同:①矩阵乘法有条件.②矩阵乘法无交换律.③矩阵乘法无消去律,即一般地由AB=0推不出A=0或B=0.由AB=AC和A≠0推不出B=C.(无左消去律)由BA=CA和A≠0推不出B=C. (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来.矩阵乘法适合以下法则:①加乘分配律A(B+C)= AB+AC,(A+B)C=AC+BC.②数乘性质(c A)B=c(AB).③结合律(AB)C= A(BC).④(AB)T=B T A T.2. n阶矩阵的方幂和多项式任何两个n阶矩阵A和B都可以相乘,乘积AB仍是n阶矩阵.并且有行列式性质: |AB|=|A||B|.如果AB=BA,则说A和B可交换.方幂设k是正整数, n阶矩阵A的k次方幂A k即k个A的连乘积.规定A 0=E. 显然A的任何两个方幂都是可交换的,并且方幂运算符合指数法则:①A k A h= A k+h.②(A k)h= A kh.但是一般地(AB)k和A k B k不一定相等!n阶矩阵的多项式设f(x)=a m x m+a m-1x m-1+…+a1x+a0,对n阶矩阵A规定f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E .称为A 的一个多项式.请特别注意在常数项上加单位矩阵E .乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解和乘法公式对于n 阶矩阵的不再成立.但是如果公式中所出现的n 阶矩阵互相都是乘法交换的,则乘法公式成立.例如当A 和B 可交换时,有: (A ±B )2=A 2±2AB +B 2;A 2-B 2=(A +B )(A -B )=(A +B )(A -B ).二项展开式成立: B AC B A -=∑=+1)(等等.前面两式成立还是A 和B 可交换的充分必要条件.同一个n 阶矩阵的两个多项式总是可交换的. 一个n 阶矩阵的多项式可以因式分解.3. 分块法则矩阵乘法的分块法则是简化矩阵乘法的一种方法.对两个可以相乘的矩阵A 和B ,可以先用纵横线把它们切割成小矩阵(一切A 的纵向切割和B 的横向切割一致!),再用它们来作乘法.(1)两种常见的矩阵乘法的分块法则A 11 A 12B 11 B 12 = A 11B 11+A 12B 21 A B 12+A 12B 22 A 21 A 22 B 21 B 22 A 21B 11+A 22B 21 A 21B 12+A 22B 22要求A ij 的列数B jk 和的行数相等. 准对角矩阵的乘法:形如A10 0A= 0 A2 0………0 0 …A n的矩阵称为准对角矩阵,其中A1,A2,…,A k都是方阵.两个准对角矩阵A10 ...0 B10 0A= 0 A2 ...0 , B= 0 B2 0………………0 0 …A k 0 0 …B k如果类型相同,即A i和B i阶数相等,则A1B10 0AB = 0 A2B2 …0 .………00 …A k B k(2)乘积矩阵的列向量组和行向量组设A是m⨯n矩阵B是n⨯s矩阵.A的列向量组为1,2,…,n,B的列向量组为1,,…,s, AB的列向量组为1,2,…,s,则根据矩阵乘法的定义容易看出(也是分块2法则的特殊情形):①AB的每个列向量为:i=A i,i=1,2,…,s.即A(1,2,…,s)=(A1,A2,…,A s).②=(b1,b2,…,b n)T,则A= b11+b22+…+b n n.应用这两个性质可以得到:如果i=(b1i,b2i,…,b ni)T,则=A I=b1i1+b2i2+…+b ni n.i即:乘积矩阵AB的第i个列向量i是A的列向量组1,2,…,n的线性组合,组合系数就是B的第i个列向量i的各分量.类似地, 乘积矩阵AB的第i个行向量是B的行向量组的线性组合,组合系数就是A的第i个行向量的各分量.以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出.它们无论在理论上和计算中都是很有用的.(1) 当两个矩阵中,有一个的数字很简单时,直接利用以上规律写出乘积矩阵的各个列向量或行向量,从而提高了计算的速度.(2) 利用以上规律容易得到下面几个简单推论:用对角矩阵从左侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各行向量; 用对角矩阵从右侧乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的各列向量.数量矩阵k E乘一个矩阵相当于用k乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵.两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘.求对角矩阵的方幂只需把对角线上的每个元素作同次方幂.(3) 矩阵分解:当一个矩阵C的每个列向量都是另一个A的列向量组的线性组合时,可以构造一个矩阵B,使得C=AB.例如设A=(α,β,γ), C=(α+2β-γ,3α-β+γ,α+2γ),令1 3 1B= 2 -1 0 ,则C=AB.-1 1 2(4) 初等矩阵及其在乘法中的作用对单位矩阵E作一次初等(行或列)变换,所得到的矩阵称为初等矩阵.有三类初等矩阵:E(i,j):交换E的i,j两行(或列)所得到的矩阵.E(i(c)):用非0数c乘E的第i行(或列)所得到的矩阵.也就是把E的对角线上的第i个元素改为c.E(i,j(c))(i≠j):把E的第j行的c倍加到第i行上(或把第i列的c倍加到第j列上)所得到的矩阵, 也就是把E的(i,j)位的元素改为c.命题对矩阵作一次初等行(列)变换相当于用一个相应的初等矩阵从左(右)乘它.4. 矩阵方程和可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算是解下面两种基本形式的矩阵方程:(I) AX=B.(II) XA=B.这里假定A是行列式不为0的n阶矩阵,在此条件下,这两个方程的解都是存在并且唯一的.(否则解的情况比较复杂.)当B只有一列时,(I)就是一个线性方程组.由克莱姆法则知它有唯一解.如果B有s列,设B=(1,2,…,s),则X也应该有s列,记X=(X1,X2,…,X s),则有AX i=i,i=1,2,…,s,这是s个线性方程组.由克莱姆法则,它们都有唯一解,从而AX=B有唯一解.这些方程组系数矩阵都是A,可同时求解,即得(I)的解法:将A和B并列作矩阵(A|B),对它作初等行变换,使得A变为单位矩阵,此时B变为解X.(A|B)→(E|X)(II)的解法:对两边转置化为(I)的形式:A T X T=B T.再用解(I)的方法求出X T,转置得X..(A T|B T)→(E|X T)矩阵方程是历年考题中常见的题型,但是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解.(2) 可逆矩阵的定义与意义定义设A是n阶矩阵,如果存在n阶矩阵B,使得AB=E, BA=E,则称A为可逆矩阵. 此时B是唯一的,称为A的逆矩阵,通常记作A-1.如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C.(左消去律);BA=0⇒B=0;BA=CA⇒B=C. (右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C. BA=C⇔B=CA-1.由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B .(II) XA=B的解X= BA-1.这种解法想法自然,好记忆,但是计算量比初等变换法大(多了一次矩阵乘积运算).(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A| 0.证明“⇒”对AA-1=E两边取行列式,得|A||A-1|=1,从而|A| 0. (并且|A-1|=|A|-1.) “⇐”因为|A| 0,矩阵方程AX=E和XA=E都有唯一解.设B,C分别是它们的解,即AB=E, CA=E. 事实上B=C(B=EB=CAB=CE=C),于是从定义得到A可逆.推论如果A和B都是n阶矩阵,则AB=E⇔BA=E.于是只要AB=E(或BA=E)一式成立,则A和B都可逆并且互为逆矩阵.可逆矩阵有以下性质:①如果A可逆,则A-1也可逆,并且(A-1)-1=A.A T也可逆,并且(A T)-1=(A-1)T.当c 0时, c A也可逆,并且(c A)-1=c-1A-1.对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k.(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k.)②如果A和B都可逆,则AB也可逆,并且(AB)-1=B-1A-1.(请自己推广到多个可逆矩阵乘积的情形.)初等矩阵都是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c)).(4) 逆矩阵的计算和伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1是矩阵方程AX=E的解,于是可用初等行变换求A-1:(A|E) (E|A-1)这个方法称为求逆矩阵的初等变换法.它比下面介绍的伴随矩阵法简单得多.②伴随矩阵若A是n阶矩阵,记A ij是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵为A11 A21…A n1A*= A12 A22…A n2 =(A ij)T.………A1n A2n…A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但是在A可逆时, A*和A-1有密切关系.基本公式: AA*=A*A=|A|E.于是对于可逆矩阵A,有A-1=A*/|A|, 即A*=|A|A-1.因此可通过求A*来计算A-1.这就是求逆矩阵的伴随矩阵法.和初等变换法比较, 伴随矩阵法的计算量要大得多,除非n=2,一般不用它来求逆矩阵.对于2阶矩阵a b * d -bc d = -c a ,因此当ad-bc 0时,a b -1 d -bc d = -c a (ad-bc) .伴随矩阵的其它性质:①如果A是可逆矩阵,则A*也可逆,并且(A*)-1= A/|A|=(A-1)*.②|A*|=|A|n-1.③(A T)*=(A*)T.④(c A)*=c n-1A*.⑤(AB)*=B*A*;(A k)*=(A*)k.⑥当n>2时,(A*)*=|A|n-2A;n=2时,(A*)*=A.二典型例题1.计算题例1=(1,-2,3) T,=(1,-1/2,1/3)T, A=T,求A6.讨论:(1)一般地,如果n阶矩阵A=T,则A k=(T)k-1A=(tr A)k-1A .(2)乘法结合律的应用:遇到形如T的地方可把它当作数处理.① 1 -1 1T= -1 1 -1 ,求T.(2003一)②设=(1,0,-1)T, A=T,求|a E-A n|.③n维向量=(a,0,⋯,0,a)T, a<0, A=E-T, A-1=E+a-1T,求a. (03三,四)④n维向量=(1/2,0,⋯,0,1/2)T, A=E-T, B=E+2T,求AB. (95四)⑤A=E-T,其中,都是n维非零列向量,已知A2=3E-2A,求T.例2(1999三) 1 0 1设A = 0 2 0 ,求A n-2A n-1.(n>1)例3 1 0 0设A = 1 0 1 ,(1)证明当n>1时A n=A n-2+A2-E. (2) 求A n.例4设A为3阶矩阵, 1,2,3是线性无关的3维列向量组,满足A1=1+2+3, A2=22+3, A3=22+33.求作矩阵B,使得A(1,2,3)=(1,2,3)B. (2005年数学四)例5设3阶矩阵A=(1,2,3),|A|=1,B=(1+2+3,1+22+33,1+4+93),求|B|.(05)2例6 3维向量1,2,3,1,2,3满足+3+21-2=0,31-2+1-3=0,2+3-2+3=0,1已知1,2,3|=a,求|1,2,3|.例7设A是3阶矩阵,是3维列向量,使得P=(,A,A2)可逆,并且A3=3A -2A2.又3阶矩阵B满足A=PBP-1.(1)求B.(2)求|A+E|.(01一)2 1 0例8 3阶矩阵A,B满足ABA*=2BA*+E,其中A= 1 2 0 ,求|B|.(04一)0 0 1例9 3 -5 1设3阶矩阵A= 1 -1 0 , A-1XA=XA+2A,求X.-1 0 2例10 1 1 -1设3阶矩阵A= -1 1 1 , A*X=A-1+2X,求X.1 -1 1例11 4阶矩阵A,B满足ABA-1=BA-1+3E,已知1 0 0 0A*= 0 1 0 0 ,求B. (00一)1 0 1 00 -3 0 8例12 3 0 0 1 0 0已知A= 2 1 0 , B= 0 0 0 , XA+2B=AB+2X,求X11.2 13 0 0 -1例13设1=(5,1,-5)T,2=(1,-3,2)T,3=(1,-2,1)T,矩阵A满足A1=(4,3) T, A2=(7,-8) T, A3=(5,-5) T,求A.2.概念和证明题例14 设A是n阶非零实矩阵,满足A*=A T.证明:(1)|A|>0.(2)如果n>2,则|A|=1.例15 设矩阵A=(a ij)3 3满足A*=A T,a11,a12,a13为3个相等的正数,则它们为(A) 3/3.(B) 3. (C)1/3. (D) 3. (2005年数学三)例16 设A和B都是n阶矩阵,C= A0 ,则C*=0 B(A) |A|A* 0 . (B) |B|B * 0 .0 |B|B * 0 |A|A*(C) |A|B* 0 . (D ) ||A* 0 .0 |B|A* 0 |A|B*例17 设A是3阶矩阵,交换A的1,2列得B,再把B的第2 列加到第3 列上,得C.求Q,使得C=AQ.例18 设A是3阶可逆矩阵,交换A的1,2行得B,则(A) 交换A*的1,2行得到B*.(B) 交换A*的1,2列得到B*.(C) 交换A*的1,2行得到-B*.(D) 交换A*的1,2列得到-B*.(2005年)例19 设A是n阶可逆矩阵, 交换A的i,j行得到B.(1) 证明B可逆.(2) 求AB-1.例20设n阶矩阵A满足A2+3A-2E=0.(1)证明A可逆,并且求A-1.(2)证明对任何整数c,A-c E可逆.讨论: 如果f(A)=0,则(1) 当f(x)的常数项不等于0时,A可逆.(2) f(c)≠0时,A-c E可逆.(3) 上述两条的逆命题不成立.例21设是n维非零列向量,记A=E-T.证明(1) A2=A⇔T=1.(2)T=1⇒ A不可逆. (96一)讨论: (2)的逆命题也成立.例22 设A,B都是n阶矩阵,证明E-AB可逆⇔ E-BA可逆.例23设3阶矩阵A,B满足AB=A+B.(1) 证明A-E可逆.(2) 设 1 -3 0B= 2 1 0 ,求A.0 0 2 (91)例24设A,B是3阶矩阵, A可逆,它们满足2A-1B=B-4E.(1) 证明A-2E可逆.(2) 设 1 -2 0B= 1 2 0 ,求A.0 0 2 (2002)例25设n阶矩阵A,B满足AB=a A+b B.其中ab≠0,证明(1) A-b E和B-a E都可逆.(2) A可逆⇔ B可逆.(3) AB=BA.例26设A,B都是n阶对称矩阵, E+AB可逆,证明(E+AB)-1A也是对称矩阵.例27 设A,B都是n阶矩阵使得A+B可逆,证明(1) 如果AB=BA,则B(A+B)-1A=A(A+B)-1B.(2) 如果A.B都可逆,则B(A+B)-1A=A(A+B)-1B.(3) 等式B(A+B)-1A=A(A+B)-1B总成立.例28设A,B,C都是n阶矩阵,满足B=E+AB,C=A+CA,则B-C为(A) E.(B) -E. (C) A. (D) -A. (2005年数学四)参考答案1 -1/2 1/3例1 35A=35 -2 1 –2/3 .3 -3/2 1①3.②a2(a-2n). ③-1. ④E. ⑤4.例2 O.例3 (1)提示: A n=A n-2+A2-E⇔A n-2(A2-E)=A2-E ⇔ A(A2-E)=A2-E.(2)n=2k时, 1 0 0A n = k 1 0 .k 0 1n=2k+1时, 1 0 0A n = k+1 0 1 .k 1 0例4 1 0 0B= 1 2 2 .1 1 3例5 2.例6 –4a.例7 0 0 0B= 1 0 3 . |E+A|=-40 1 -2例8 1/9.例9 -6 10 4X= -2 4 2 .-4 10 0例10 1 1 0(1/4) 0 1 11 0 1例11 6 0 0 0B= 0 6 0 0 .6 0 6 00 3 0 -1例12 1 0 02 0 0 .6 -1 -1例13 2 -1 1-4 -2 -5 .例15 (A).例16 (D).例17 0 1 1Q= 1 0 0 .0 0 1例18 (D).例19E(i,j).例22提示:用克莱姆法则.例如证明 ,即在E-AB可逆时证明齐次方程组(E-BA)X=0只有零解.例23 1 1/2 0A= -1/3 1 0 .0 0 2例24 0 2 0A= -1 -1 0 .0 0 -2例25 提示:计算(A-b E)(B-a E).例28 (A).第四讲向量组的线性关系与秩一.概念复习1. 线性表示关系设1,2,…,s是一个n维向量组.如果n维向量等于1,2,…,s的一个线性组合,就说可以用1,2,…,s线性表示.如果n维向量组1,2,…,t中的每一个都可以可以用1,2,…,s线性表示,就说向量,2,…,t可以用1,2,…,s线性表示.1判别“是否可以用1,2,…,s线性表示? 表示方式是否唯一?”就是问:向量方程x11+x22+…+x s s=是否有解?解是否唯一?用分量写出这个向量方程,就是以1,2,…,s为增广矩阵的线性方程组.反之,判别“以A为增广矩阵的线性方程组是否有解?解是否唯一?”的问题又可转化为“是否可以用A的列向量组线性表示? 表示方式是否唯一?”的问题.向量组之间的线性表示问题与矩阵乘法有密切关系: 乘积矩阵AB的每个。
线性代数详细知识点
线性代数 第一章 行列式§1 二阶和三阶行列式一、二元一次线性方程组与二阶行列式结论:如果112212210a a a a -≠,则二元线性方程组 11112212112222a x a xb a x a x b +=⎧⎨+=⎩的解为122122*********b a a b x a a a a -=-,1121212112121a b b a x a b b a -=-。
定义:设11122122,,,a a a a ,记11221221a a a a -为11122122a a a a 。
称11122122a a a a 为二阶行列式有了行列式的符号,二元线性方程组的求解公式可以改写为112222111122122b a b a x a a a a =,111122211122122a b a b x a a a a =二、三阶行列式与三元一次线性方程组定义:111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++---定理:如果1112132122233132330a a a D a a a a a a =≠,则***123(,,)x x x 是下面的三元线性方程组的解111122133121122223323113223333a x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎨⎪++=⎩当且仅当*1x =112132222333233/b a a b a a D b a a ,*2x =111132122331333/a b a a b a D a b a ,*3x =111212122231323/a a b a a b D a a b 其中111213212223313233a a a a a a a a a 为系数行列式。
线性代数 第一章 线性方程组与矩阵
x2
a2n xn
b2
am1x1 am x2 amn xn bm
其中 xj为自变量,aij为第i个方程中自变量xj的系数, bi为第i个方程的常数项.
当常数项不全为零时, 称该方程组为非齐次线性方 程组; 当常数项全为零时, 称之为齐次线性方程组.
非齐次线性方程组
2x1 5x2 3x3 3
取x3, x4为自由未知量,令 x3 t1, x4 t2 , 得到通解:
x1 2t1 2t2
x2 3t1 2t2 1 x3 t1
x4 t2
(t1, t2 R)
非齐次线性方程组的解有三种可能: 1.唯一解;2.无穷多组解;3.无解(不相容)
齐次线性方程组
a11x1 a12 x2 a1n xn 0
x1
7x2
5x3
2
x1
3x2
5x3
20
齐次线性方程组
2x1 5x2 3x3 0
x1 7x2 5x3 0
x1 3x2 5x3 0
2x1 5x2 3x3 3①
x1
7x2
5x3
2②
x1
3x2
5x3
20③
x17x2 5x3 2②
19
x2
13x3
1④
4x2 10x3 22⑤
a2n xn b2
am1x1 am2 x2 amn xn bm
{ 的解取决于
系数 aij i 1,2 m, j 1,2, , n, 常数项 bi i 1,2, , m
a11 x1 a12 x2 a1n xn b1
a21
x1 a22
x2
a2n xn b2
am1 x1 am2 x2 amn xn bm
(完整word版)线性代数教案
二次型是一个二次齐次多项式,其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n}a_{ij}x_ix_j$,其中$a_{ij}$是常数,$x_i$是变量。
标准型表示方法
通过正交变换,二次型可以化为标准型$f = lambda_1y_1^2 + lambda_2y_2^2 + ... + lambda_ny_n^2$,其中$lambda_i$是二次型的特征值。
03 向量空间与线性变换
向量空间概念及性质
向量空间定义
设V是一个非空集合,P是一个数域,若对V中任意两个元素α与β,总有唯一元素γ∈V与之对应,称为α与β的和 ,记为γ=α+β,且在加法运算下V封闭;又对P中任意数与V中任意元素α,总有唯一元素δ∈V与之对应,称为该 数与α的积,记为δ=kα(k∈P),且在数乘运算下V封闭,则称V是数域P上的线性空间,或向量空间。
向量空间维数
设V是数域P上的线性空间,若V中存在一个由n个向量组成的 基,且任意n+1个向量都线性相关,则称n为V的维数,记为 dimV=n。若V中不存在由有限个向量组成的基,则称V为无 限维的。
04 方程组求解与矩阵秩
齐次线性方程组求解方法
01
02
03
高斯消元法
通过消元将系数矩阵化为 上三角矩阵,然后回代求 解未知数。
向量空间性质
向量空间具有8条基本性质,包括加法交换律、加法结合律、零元存在性、负元存在性、数乘分配律、数乘结合 律、数乘单位元存在性以及数乘零元存在性。
线性变换定义及性质
线性变换定义
设V和W是数域P上的两个线性空间,σ是V到W的一个映射,若对V中任意元素α 、β和P中任意数k,都有σ(α+β)=σ(α)+σ(β),σ(kα)=kσ(α),则称σ是V到W的 一个线性映射或线性变换。
(完整word版)线性代数
1线性方程组1. 三种行初等变换倍加变换(某一行的倍数加到另一行)对换变换(两行交换)倍乘变换(某一行所有元素乘以同一个非零数)2. 行等价一个矩阵可经过一系列初等行变换成为另一个矩阵。
行变换可逆。
3。
若两个线性方程组的增广矩阵行等价,则它们有相同的解集。
4. 简化行阶梯矩阵a)非零行的先导元素为0b) 先导元素1是该元素所在列的唯一非零元素一个矩阵的简化行阶梯矩阵唯一。
5。
对应于主元列的变量称基本变量,其他变量称自由变量。
6。
向量的平行四边形法则若R2中的向量u,v用平面上的点表示,则u+v对应于u,v,0为三个顶点的平行四边形的第四个顶点。
[思考:即使u,v不是R2而是R3甚至R n中的向量,上述结论是否仍然成立?]7。
向量方程x1a1+x2a2+。
.。
+x n a n=b和增广矩阵如下的线性方程组[a1a2.。
. a n b]和矩阵方程Ax=b有相同的解集。
8. 方程Ax=b有解的条件:b是A的各列的线性组合。
9。
设A为mxn矩阵,以下命题等价:a) 对R m中每个b,Ax=b有解b) R m中的每个b都是A的列的一个线性组合c) A的各列生成R m(R m= Span{A各列})d) A在每一行都有一个主元位置(注意是A的每一行,*不*是A的增广矩阵的每一行)10。
方程Ax=0有非平凡解的条件:至少有一个自由变量。
11. 如果非齐次方程有多个解,其解可表示为一个向量(这个向量也是非齐次方程的特解)加上相应的齐次方程的解。
或者说:非齐次方程解=该方程特解+对应的齐次方程的通解12. 若一组向量v1,v2,。
..,v n组成的向量方程x1v1+x2v2+.。
+x n v n= 0仅有平凡解,则这些向量线性无关;否则这些向量线性相关。
同样,仅当矩阵方程Ax=0仅有平凡解,A的各列线性无关。
13. 单个的零向量线性相关,因为0x=0有非平凡解;同理,单个的非零向量线性无关.含有零向量的向量组必定线性相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x1 2 x2 3 x3 0
x2 5 x3 4
0 2
无解
例3 解线性方程组 x1 x2 x3 2
2
x1
x2
x3
2
3
x1
x2
3 x3
6
上述方程组通过三种初等变换可化为下面 阶梯形方程组
x1 x2 x3 2
x2 3x3 6
00
x1 4 2 k
x1 x2 3x3 1
例
1
2xx11
x2 x2
2x3 x3
3
1
x1 2x2 3x3 1
x1 2x2 3x3 x4 5
例
2
2 x1 - x1
4x2 2x2
0 x3 3x3
x4 3 2x4 8
x1 2x2 9x3 5x4 21
例
3
x1 3x1
3 x2 2 x3 4 ②
3 x2 4 x3 8 ③
② 1 ③
x1 x2 x3 1
3 x2 2 x3 4
2 x3 4
③ N o1 Ima2ge
x1 x2 x3 1
3 x2 2 x3 4
x3 2
① ② ③
阶梯形方程组
之后从最后一个方程开始回代,便得方程 组的解
x1 1
x2
0
x 3 2
定义1对线性方程组所作的下述三种变 换,统称为方程组的初等变换:
(1)交换方程组中某两个方程的置;
(2)给某个方程乘上一个非零常数;
(3)用一个非零常数乘某个方程后加 到另一个方程上.
线性方程组的初等变换的重要特性是 它不改变线性方程组的解.
定理1经初等变换后所得的方程组与原 方程组同解.
x1 x2 ax3 3
2
x1
3x3 1
的两个不
2 x1 ax2 10x3 4
同的解,求 a .
3.如果齐次方程组
2
x1 x1
2x2 x3 0 3x2 (a 2) x3
0
x1 ax2 2x3 0
只有
零解,求 a .
高斯消元法的本质就是通过对 方程组进行适当的初等变换,将原 方程组转化为相对简单的阶梯形的 同解方程组,从而比较容易地判断 原方程组是否有解.
例2 解线性方程组 2 x1 3 x2 x3 4
x1
2 x23 x3源自03 x1 5 x2 4 x3 2
上述方程组通过三种初等变换可化为下面 阶梯形方程组
a11 a12 L
a21
a22
L
M M
am1
am2
L
a1n
a2n M
.
amn
其中 aij 称为矩阵第 i 行第 j 列的元素.
矩阵通常用大写英文字母 A 、 B 、C 等表示.
上述矩阵可简记为 A
aij
或A
aij
.
mn
定义 3 对矩阵的行所作的下述三种变换, 称为矩阵的初等行 变换: (1)互换矩阵某两 行的位置; ( 2)用非零常数乘 矩阵某行所有元素; ( 3)用一个非零常 数乘矩阵某行所有元素后
加到另一行对应元 素上.
为了书写方便,我们把第一种变换记为 ri rj ,
第二种变换记为 kri ,第三种变换记为 rj kri .
若定义中的“行”换成 “列”,即得矩 阵 的初等
列变换,相应地记为 ci c j , kci 和 c j kci .
矩阵的初 等行 变换 和矩 阵的 初等 列变 换统称 为 矩阵的初等变换 .
(1)若 r n,即真方程的个数与未知量的
个数相同,则方程组有唯一解.
r n (2)若
,即真方程的个数小于未知量
的个数,则方程组有无穷多解.
二、矩阵及矩阵的初等变换
定义 2 由 m n 个数 aij i 1,2, …, m; j 1,2, …, n 排成的
m 行 n 列的数表称为一个 m n 矩阵,记为
非齐次线性方程组与齐次线性方程 组解的判定
定理 2 n 个未知量的非齐次线性方程组有解的 充分必要条件是它的系数矩阵 A 与增广矩阵 A
有相同的秩,且当 R A R A n 时方程组 有唯一解,当 R A R A r n 时方程组有
无穷多个解 .
定理 3 n 个未知量的齐次线性方程组有非零解 的充分必要条件是它的系数矩阵 A 的秩小于 n .
满足下面条件的行阶梯形矩阵称为行最简形矩阵:非零行的首非
零元为 1,且它所在列的其它元素都为零.
三、矩阵的秩及线性方程组解的判 定
定义 4 矩阵 A 经过初等行变换化为行阶梯形矩阵后, 行阶梯形矩阵中非零行的行数称为矩阵 A 的秩,
记作 R A .
元素全等于 0 的矩阵称为零矩阵,记作O . 规定零矩阵的秩为 0 .
矩阵的初等行变换和矩阵的初等列变换统称为矩阵的初等变换. 阶梯形方程组所对应的增广矩阵称为行阶梯形矩阵. 可见, 行阶梯形矩阵应满足: (1)如果存在零行(元素全为零的行),则零行全在非零行的下方;
(2)当非零行的首非零元(第一个不为零的元素)位于第 j 列时, 则该行以下每一行(若存在)的前 j 个元素全为零.
线性代数
第一章线性方程组与矩阵
一、高斯消元法解线性方程组 例1 解线性方程组
2x1x2 2x3 6 ① x12x2 x3 3 ② x1x2 x3 1 ③
解① ③
x1 x2 x3 1
①
x
1
2 x2
x3
3
②
2
x
1
x2
2 x3
6
③
① -1 + ② ; ① -2 + ③
x1 x2 x3 1 ①
x
2
6
3k
x 3 k
无穷解
由上述三个例子得到线性方程组解的情况:
1.最后一个方程是
0 c (左侧为零,右侧不为零),
( c 是非零常数) 此时原方程组无解. 2.最后一个方程左侧不等于零,则原方程组有
解. 此时又可分成两种情形. 设阶梯形 r
r 方程组中有 个系数不全为零的方程(也称为
r 个真方程).
2x2 6x2
x3 x3
x4 0 3x4 0
5x1 10x2 x3 5x4 0
练习题
1. 讨论 取什么值时,下列方程组有解,
有唯一解?有无穷多组解?无解? 在有解时,求出其解.
x1 x1
x2 x3 x2 x3
1 1
x1 x2 x3 1
2.已知 1,2 是方程组