2平面汇交讲义力系与平面力偶系

合集下载

第二章平面汇交力系及平面力偶系

第二章平面汇交力系及平面力偶系
一、几何法合成(作图法)
1、两力的合成方法——平行四边形法则。
2、多个力的合成。方法——力多边形法 则(依据平行四边形法则)。将汇交
力系各力平行移至首尾相接,起点至

终点连线为合力。
一 章
静 力 学 基 础
理论力学教学课件
第一节 平面汇交力系的合成
一、几何法(作图法)
F1
R12
O
F2
F3
R123
同理 :Ry= F1y+ F2y+ F3y
R FX 2 Fy 2
第二节 平面汇交力系合成的解析法
例 用 解 析 法 求 三 力 的 合 力 。 已 知 F1=100N ,
F2=200N,F3=300N 。
F1
45°
O
F2
解:F1X=F1COS45°=71N F1y=F1sin45°=71N F2X=F2=200N
静 力
自行封闭。
学 基

第二节 平面汇交力系的合成与 平衡的解析法
一、解析法合成(计算 ) 1、力在直角坐标轴上的投影
y
a’
A
αF
B
b’
oa
b
x
ab:F在x轴上的投影(Fx). a’b’:F在y轴上的投影(Fy)。
Fx=ab=Fsinα


Fy=a’ b’= - Fcosα

静 力 学 基 础
第二节 平面汇交力系合成的解析法
解:据平衡方程:ΣFx=0 ΣFy=0
ΣFy=-P- FD cos30°-FCBsin30°=0 FCB=-74.6 KN (BC杆受压) ΣF x=-FAB - FD sin30°FCBcos30°=0 FAB =54.6 KN (AB杆受拉)

平面汇交力系和平面力偶系

平面汇交力系和平面力偶系

第二章 平面汇交力系与平面力偶系§2.1平面汇交力系合成与平衡的几何法一、汇交力系合成与平衡的几何法 汇交力系:是指各力的作用线汇交于同一点的力系。

若汇交力系中各力的作用线位于同一平面内时,称为平面汇交力系,否则称为空间汇交力系。

1、平面汇交力系的合成先讨论3个汇交力系的合成。

设汇交力系1F ,2F ,3F汇交于O (图1),由静力学公理3:力的平行四边形法则(力的三角形)可作图2,说明)(),,(321F F F F=如图和图所示,其中321F F F F ++=F2F 3F OFO1F 2F 3F12F讨论:1)图2中的中间过程12F 可不必求,去掉12F 的图称为力多边形,由力多边形求合力大小和方向的方法称为合力多边形法则。

2)力多边形法则:各分力矢依一定次序首尾相接,形成一力矢折线链,合力矢是封闭边,合力矢的方向是从第一个力矢的起点指向最后一个力矢的终点。

3)上述求合力矢的方法可推广到几个汇交力系的情况。

结论:汇交力系合成的结果是一个合力,合力作用线通过汇交点,合力的大小和方向即:∑=i F F用力多边形法则求合力的大小和方向的方法称为合成的几何法。

2.平面汇交力系的平衡1F 2F iF 2-n F 1-n F n F设作用在刚体上的汇交力系),,(21n F F F 为平衡力系,即 0),,(21≡n F F F先将121,,-n F F F 由力多边形法合成为一个力1-N F,(∑-=-=111n i i N F F )0),(),,(121≡≡-n N n F F F F F由静力公理1,作用在刚体上二力平衡的必要充分条件是:1-N F 与n F等值,反向,共线,即n N F F =-1, 可得01=+-n N F F,或0=∑i F结论:平面汇交力系平衡的必要与充分条件是:力系中各力的乖量和为零,用几何法表示的平衡条件是0=∑i F,力多边形自行封闭。

例1. 已知:简支梁AB ,在中点作用力F,方向如图,求反力FA B C45F AF BACα 45FF BF α解:1。

第二章1平面汇交力系与平面力偶系

第二章1平面汇交力系与平面力偶系

2.欲将碾子拉过障碍物,水平拉力 F 至少多大? F 3.力 F 沿什么方向拉动碾子最省力,及此时力 多大?
解:取碾子画受力图. 用几何法,按比例画封闭力四边形
R h θ arccos 30 R
F B sin θ F F A F B cosθ P
F 1 1 .4 k N A
由合力投影定理可得:
F F 2 0 0 0 4 3 3 0 0 N 6 3 3 0 N x x
F F 0 2500 3000 N 550 N y y
则合力的大小为:
2 x 2 y 2 2
FF F 6 3 3 0 5 5 0 0 N 8 3 8 6 N
F , X 0 F , Y 0 8 0 4 5 4 R R 0 D A 4 5 PR A
各力的汇交点
(4) 解得
R A 5 P 22 . 4 kN 2
R R D A
1 10 kN 5
力的值为负值,表示假设的指向与实际指向相反.
例4. 简易压榨机如图所示。已知P试求当连杆AB、AC与铅垂线成角时,托板给被压物 体的力。
O
tg
F Ry F Rx
F F
RY
RX
平面汇交力系平衡的必要和充分条 y 件是该力系的合力为零: F R 0
F F 0 Rx X
O
F F 0 Ry X

例2.如图所示吊环受到三条钢丝绳的拉力作用。已知F1=2000N, F2=5000N,F3=3000N。试求合力。
FR F23 F1 F12 F2
F4
FR
F4
F2 F4
FR
F3

理论力学第二章汇交力系与平面力偶系

理论力学第二章汇交力系与平面力偶系

FBC= 224.23 kN 代入(3)、(4)解得
tan θ = 1.631 , θ = 58.5°
FA= 303.29 kN
y
FBC
FD
C
45°
30°
x
W2
y
FA
θB
x
45°
W1 F'BC
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
投影法的符号法则: 当由平衡方程求得某一未知力的值
y
FBC
B 30°
x
FAB
FD 30° W
b
联立求解,得
FAB= -54.5kN , FBC= 74.5kN
反力FAB为负值,说明该力实际指向与图上假定指向相反。 即杆AB实际上受拉力。
第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡
例2–5 如图已知W1=100 kN, W2=250 kN。不计各
Fx F cos
Fy
Fy F cos
O 2、力在空间直角坐标轴上的投影:
F
Fx x
一次投影法:
Z
Fx F cos Fy F cos
F
O
y
FZ F cos
第二章 汇交力系与平面力偶系
x
★§2–2 空间汇交力系的合成与平衡 二次投影法:
已知力F 和某一平面(oxy)的夹
角为θ,又已知力F 在该平面
杆自重,A,B,C,D各点均为光滑铰链。试求平衡状
态下杆AB内力及与水平的夹角。
A
θB
D
W1
45° C
30°
W2 第二章 汇交力系与平面力偶系
§2–1 平面汇交力系的合成与平衡

平面汇交力系与平面力偶系精品PPT课件

平面汇交力系与平面力偶系精品PPT课件

四块相同的均质板,各重P,长2b,叠放如图示。 在板I右端点A挂着重物B,其重2P。欲使各板都平衡, 求每块板可伸出的最大距离。
3P
P
N3
4P
P
N4
P 2P
求图示结构AB杆与AC杆所受的力,已知F力位于AD 的中点E且垂直AD。
FA FAB
A FA
FAC
45 o 45 o
F
FA
FD
450
F
B
C
D
W3
F
W2
W1
塔吊及所受荷载如图。自重P=200kN,中心 通过塔基中心。起重量W=25kN,距右轨B为 15m.平衡物重Q,距左轨A为6m,在不考虑风 荷载时, 求: (1)满载时,为了保证塔
身不至于倾覆,Q至 少应多大? (2)空载时,Q又应该不 超过多大,才不至于 使塔身向另一侧倾覆?
如图示,一钢筋混凝土梁BC置于砖墙上,挑出1.5m, 顶端C作用一集中力P=1kN,梁自重q=1.2kN/m,取 抗倾覆安全系数κ=1.5,试求BA段的长度a。
的力矩。
抗倾覆力矩(Mk):抵抗结构或构件倾覆
的力矩。
K=抗倾覆安全系数
K MK Mq
规范规定:钢筋砼构件的抗倾覆安全系数 K≥1.5
带有雨蓬的钢筋混凝土门顶过梁,尺寸如图示,梁 和板的长度均为4m。设在此梁上的砖砌至3m高时, 便欲将雨篷下的木支撑拆除。试验算此时雨蓬会不 会绕A点倾覆。已知钢筋混凝土容重为25kN/m3 , 砖砌体容重为19kN/m3 ,验算时应考虑雨蓬最外边 缘B上作用有施工荷载F=1kN。
3 如果力F通过矩心O,则mo(F)=0,此时力对物体
的作用效应为移动。
4 互成平衡的二力对同一点之矩的代数和等于零。

第2章 平面汇交力系和平面力偶系

第2章 平面汇交力系和平面力偶系

9
例题 1
解:
1. 选碾子为研究对象,受力分析如图b所示。
F
R O
各力组成平面汇交力系,根据平衡的几何条
件,力P , F , FA和FB组成封闭的力多边形。
qP
B
由已知条件可求得
A
h
cos q R h 0.866
(a)
R
q 30
FO
再由力多边形图c 中各矢量的 几何关系可得
解得
FB sin q F FA FB cosq P
(2)应用合力矩定理
MO (F ) MO (Fx ) MO (Fy )
F cosq l cosj F sinq l sinj Fl cos(q j)
22
§2—4 平面力偶 1.力偶与力偶矩
由两个大小相等、方向相反且不共线的平行力组成的力系,
称为力偶。如图所示,记作(F,F')。力偶的两力之间
如图轧路碾子自重P = 20
kN,半径 R = 0.6 m,障碍物高
h = 0.08 m碾子中心O处作用一
水平拉力F,试求: (1)当水平 拉力F = 5 kN时,碾子对地面和
R
FO
障碍物的压力;(2)欲将碾子拉
q
过障碍物,水平拉力至少应为多
B
大;(3)力F 沿什么方向拉动碾
A
h
子最省力,此时力F为多大。
大小取决于力的大小与力臂的乘积,平面力对点之矩是一 个代数量。它的转向人为规定一般取逆时针转向时为正, 反之为负。
F对矩心点O之矩
MO(F) r
ห้องสมุดไป่ตู้Oh
B F A
M O (F ) Fh 2 AOAB
式中 AOAB为三角形OAB 的 面积,如图所示。单位为 N•m或kN •m。

第二章:平面汇交力系与平面力偶系

第二章:平面汇交力系与平面力偶系

第二章平面汇交力系与平面力偶系一、要求1、掌握平面汇交力系合成(分解)的几何法。

能应用平衡的几何条件求解平面汇交力系的平衡问题。

2、能正确地将力沿坐标轴分解和求力在坐标轴上的投影。

对合力投影定理应有清晰的理解。

3、能熟练地运用平衡方程求解平面汇交力系的平衡问题。

4、对于力对点的矩应有清晰的理解,并能熟练地计算。

5、深入理解力偶和力偶矩的概念。

明确平面力偶的性质和平面力偶的等效条件。

6、掌握平面力偶系的合成方法,能应用平衡条件求解力偶系的平衡问题。

二、重点、难点1、 力在坐标轴上的投影,合力投影定理,平面汇交力系的平衡条件及求解平衡问题的解析法。

2、 力对点之矩的计算,力偶矩的概念,平面力偶性质和力偶等效条件。

三、学习指导平面汇交力系合成的结果是一个合力,合力作用线通过力系的汇交点,合力的大小和方向等于力系的矢量和,即∑==+⋅⋅⋅⋅⋅⋅++=ni i n F F F F R 121或简化为∑=F R上式是平面矢量方程,只可以求解两个未知数。

每一个力都有大小和方向两个要素(因为力的汇交点是已知的),因此,方程中只能有两个要素是未知的。

矢量方程的解法有:几何法和解析法。

只有力沿直角坐标轴分解的平行四边形才是矩形。

力在轴上投影的大小等于分力的大小,投影的正负表示分力沿坐标轴的方向。

平面汇交力系平衡的必要和充分条件是力系的合力为零。

即∑R=F这个平面的矢量方程可解两个未知数,解法有几何法和解析法。

(1)平衡的几何条件:平面汇交力系的力多边形封闭。

(2)平衡的解析条件:平面汇交力系的各分力在两个坐标轴上投影的代数和分别等于零即:∑=0YX;∑=0对于平衡方程,和平面汇交力系合成与分解的解析法一样,一般也选直角坐标系。

但在特殊情况下,有时选两个相交的相互不垂直的坐标轴,可使问题的求解简化。

这是因为平衡时合力恒等于零,合力在任一坐标轴的投影也恒等于零,所以,不一定局限在直角坐标系。

合力投影定理与合力矩定理是结构静力计算经常要用到的两个定理。

第2章平面汇交力系与平面力偶系

第2章平面汇交力系与平面力偶系
FBA
FBC
FAB
A
' F' FBA BC
B B
B
P
C
F2 F1
C
FCB
解:
y
FBA F2
600
300
(1) 取滑轮为研究对象,将其视为 一个几何点。受力如图所示。
其中 F1= F2 =P = 20 kN (2)选取图示坐标系。列方程
B
FBC
F1
x
X 0, Y 0,
FBA F1cos600 F2cos300 0 FBC F1cos300 F2cos600 0
解:(1)取碾子为研究对 象。 画受力图。
F
F
O B
O B
FB
P
P
A FA
A
(2)根据力系平衡的几何条件,作封闭的力多边形。
按比例,先画已知力,各力矢首位相接。
FB
a.从图中按比例量得
FA=11.4 kN , FB=10 kN 5 kN
FA
0

P
b.也可由几何关系计算
Rh cos 0.866 R
即:若作用在刚体上 {F1 , F2 ,, Fn } {FR }
则:
M O ( FR ) MO (Fi )
i 1
n
在古代,人们没有大型的 起重工具,只能依靠人力和畜力 。在建造宏伟的建筑物时,为了 将巨大的石柱竖立起来,可能采 用了右图所示的方法。其中起关 键作用的是用木材作成的 A 字形 支架。试从力学角度说明采用此 项措施的必要性。
P
解: 取梁为研究对象。 画受力图。
注意:这里所设力 FA 的方向与 实际方向相反。
解:取横梁为研究对象。画受力图。 建立图示直角坐标系。 由平面汇交力系的平衡条件列方程

理论力学第二章平面汇交力系与平面力偶系

理论力学第二章平面汇交力系与平面力偶系
FR FRx 2 FRy 2
合力作用点:为该力系的汇交点
2-2 平面汇交力系合成与平衡的解析法
(2)平面汇交力系平衡的充要条件: 各力在两个坐标轴上投影的代数和分别等于零。 ——平面汇交力系的平衡方程
X0,
Y
i 1
n
i
0
只可求解两个未知量
[ 例1 ] 系统如图,不计杆、轮自重,忽略滑轮大小, 已知: P=20kN; 求:系统平衡时,杆AB、BC受力。
解:AB、BC杆为二力杆,
取滑轮B(或点B),画受力图。 用解析法,建图示坐标系
Fix 0
FBA F1 cos 60 F2 cos 30 0

Fiy 0
FBC F1 cos 30 F2 cos 60 0
F1 F2 P
解得: FBC
27.32kN
②应用合力矩定理
mO ( F ) Fx l F y l ctg

m o (Q ) Q l
[例P28 2-4,习题P38 2-10]

[例2]水平梁AB受按三角型分布的载荷作用,如图所示。 载荷的最大值为q,梁长l ,试求合力作用线的位置。
解:在距A端x 的微段dx上, 作用力的大小为q’dx,其中 q’ 为该处的载荷强度。由图可知 ,q’=xq/l。,因此分布载荷合 力的大小为: l
2-2 平面汇交力系合成与平衡的解析法
二、平面汇交力系合成的解析法:
各分力在x轴和在y轴投影的代数 和 等于合力在对应轴上的投影。
FR x X 1 X 2 X 4
X
FR y Y1 Y2 Y3 Y4

Y

i
i

工程力学ppt 2平面汇交力系和平面力偶系

工程力学ppt 2平面汇交力系和平面力偶系
FR F1 F2 Fn Fi
i 1
(2-1)
a
b 图2.1
c
● 2.1.2 平面汇交力系合成的几何法
由力多边形法则知,平面汇交力系的合成结果为一合力,显然, 平面汇交力系平衡的必要和充分条件是该力系的合力等于零。如 果用矢量形式表示,即
FR
F
i 1
n
i
0
(2-2)
由力的合成的几何法可知,平面汇交力系的合力是由力多边形 的封闭边来表示的。在平衡的情形下合力为零,也就是力多边形 中最后一力终点与第一个力的起点重合,此时的力多边形称为封 闭的力多边形。于是得到如下结论:平面汇交力系平衡的必要和 充分条件是力多边形自行封闭。这就是平面汇交力系平衡的几何 条件。 运用平面汇交力系平衡的几何条件求解问题时,需要首先按比 例画出封闭的力多边形,然后用尺和量角器在图上量得所要求的 未知量;也可根据图形的几何关系,用三角公式计算出所要求的 未知量,这种解题方法称为几何法。
FA 22.4kN,FC 28.3kN
根据作用力和反作用力的关系,作用于杆DC在端C的力FC与 FC 的大小相等,方向相反,由此可知杆DC是受压杆,如图2.3(b)所 示。
应该指出,封闭的力的多边形也可以根据三角几何关系,作成 如图2.3(d)所示的力三角形,同样可求得力 FA 和 FC ,且结果相 同。 通过以上例题,可知用几何法求解平衡问题的主要步骤如下: (1) 选取研究对象。根据题意,分析已知量与待求量,选取恰 当的平衡物体作为研究对象,并画出分离体简图。 (2) 分析研究对象的受力情况,正确地画出其相应的受力图。 在研究对象上,画出其所受的全部外力。若某个约束反力的作用 线不能根据约束特性直接确定,而物体又只受三个力作用时,则 可根据三力平衡汇交的条件来确定未知力的作用线方位。 (3) 作封闭的力多边形图,求解未知量。可以应用比例尺直接 量出待求的未知量,也可以根据几何三角关系计算出来。

第2章 平面汇交力系与平面力偶理论

第2章 平面汇交力系与平面力偶理论
且在同一平面内,由平面力偶系的合成理论.其合力偶矩为
式中,负号表示合力偶的转向为顺时针方向转动。
欲求作用在A、B处的水平力,应以工件为研究对象,受力分析如图 2—13所示,由于工件在水平面内受四个力偶和两个螺栓的水平反力 的作用下而平衡。因为力偶只能与力偶平衡,故两个螺栓的水平反 力N一和jv”必然组成一个力偶。由平面力偶系的平衡方程
二、平面汇交力系合成与平衡的解析法
根据合力投影定理,可计算出合力R的投影Rx和Ry
合力R与x轴正向间的夹角为
平面汇交力系平衡的充要条件是该力系的合力R等于0,则有
上式成立,必须同时满足
平面汇交力系解析法平衡的必要与充分条件是:力系中所有 各力在两个坐标轴上投影的代数和分别等于零。
例2-2 图2-5(a)所示圆柱体A重Q,在中心上系着两条绳AB和 AC,并分别经过滑轮B和C,两端分别挂重为P和2P的重物,试 求平衡时绳AC和水平线所构成的角α及D处的约束反力。 解 选圆柱为研究对象,取分离体画受
(2)作用在同一平面内的两个力偶,只要它的力偶矩的大 小相等、转向相同,则该两个力偶彼此等效。这就是平面力 偶的等效定理。
定理的推论
(1)力偶可以在其作用面内任意移动,而不影响它对 刚体的作用效应。 (2)只要保持力偶矩大小和转向不变,可以任意改变 力偶中力的大小和相应力偶臂的长短。而不改变它 对刚体的作用效应 上述推论表明,在研究同一平面内有关力偶问题时, 只需考虑力偶矩的代数值,而不必研究其中力的大 小和力偶臂的长短。
从而解得
所以
例 图a 所示结构中,各构件自重不计。在构件AB 上作用1力 偶矩为M 的力偶,求支座A 和C 的约束力。
解(1)BC为二力杆: F c= −F B(图c) (2)研究对象AB,受力如图b 所示, F AFB' 构成力偶, 则

静力学第二章平面汇交力系与力偶系

静力学第二章平面汇交力系与力偶系

请思考:力矩和力偶矩的异同?
力偶矩:度量力偶对物体转动效应 的量。记作:M(F, F′)或M
A
F C d F′
M Fd
力偶矩正负号规定:
逆时针转动为正,反之为负
B
力偶矩正负号意义:表示力偶转向
请思考:平面(内)力偶等效的条件?
力偶矩大小相等、转动方向相同
平面力偶的性质
性质1 : 力偶无合力,即FR=0
第二章 平面汇交力系与平面力偶系
本章重点:
1、平面汇交力系(几何法、解析法)
2、力偶的概念
3、平面力偶系
§2-1 平面汇交力系
汇交力系:所有力的作用线
汇交于一点的力系。
共点力系:所有力的作用点为同一点的力系。
平面汇交力系合成—几何法
力多边形
平面汇交力系平衡—几何法
平衡几何条件:汇交力系的力多边形自行封闭。
平面力偶系的简化结果: Mo
平面力偶系的平衡条件:Mo = 0
平衡方程:
M
0
例5 图中M, r 均为已知, 且 l=2r, 各杆自重不计。
求:C 处的约束力。
解:取 BDC 为研究对象
作出受力图 由力偶理论,知 FB = FC M 0
2 2 FB r FB 2r M 0 2 2 注意:计算(FB,FC )的力偶矩
性质2 : 力偶作用效应只与力偶矩有关 性质3 : 力偶只能与力偶矩相等的另一力偶等效 性质4 : 力偶对其作用面上任一点的矩等于力偶矩
F

F

F
F´ F/2
(d)
F´/ 2
只要保持力偶矩不变,力偶必等效
F

M
M
M

理论力学2—平面汇交力系与平面力偶系

理论力学2—平面汇交力系与平面力偶系
解: ①选碾子为研究对象 ②取分离体画受力图
∵当碾子刚离地面时NA=0,拉力F最大, 这时拉力F和自重及支反力NB构成一平衡力系。 由平衡的几何条件,力多边形封闭,故
F Ptg
NB
P
cos
又由几何关系: tg
r2 (rh)2 rh 0.577
所以
F=11.5kN , NB=23.1kN
由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。 此题也可用力多边形方法用比例尺去量。
力对点之矩是一个代数量,它的绝对值等于力的大小与力 臂的乘积,它的正负可按下法确定:力使物体绕矩心逆时针转 动时为正,反之为负。
MO (F) Fh 2AOAB
力矩的单位常用N·m或kN·m。
(1)2.合3力.2矩合定力理 矩定理与力矩的解析表达式
平面汇交力系的合力对于平面内任一点之矩等于 所有各分力对于该点之矩的代数和。
Fi 0
在平衡的情形下,力多边形中最后一力的 终点与第一力的起点重合,此时的力多边形称 为封闭的力多边形。于是,平面汇交力系平衡 的必要与充分条件是:该力系的力多边形自行 封闭,这是平衡的几何条件。
[例1] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
转动状态。力偶对物体的转动效应用力偶矩来度量。平面力偶 对物体的作用效应由以下两个因素决定:
(1) 力偶矩的大小; (2) 力偶在作用面内的转向。
平面力偶可视为代数量,以M 或M(F, F')表示,
M Fd 2 AABC
A
F Dd
B
C
F'
平面力偶矩是一个代数量,其绝对值等于力的大小与力偶 臂的乘积,正负号表示力偶的转向:一般以逆时针转向为正, 反之则为负。力偶的单位与力矩相同。

理论力学第二章平面汇交力系与平面力偶系思维导图

理论力学第二章平面汇交力系与平面力偶系思维导图

①掌握力偶、力偶矩的基本概念及其力偶的基本性质。

力沿坐标轴的分力是一矢量,其合力和分力之间应满足力的平行四边形规则。

一般情况下,力在坐标轴上投
影的大小不等于力沿坐标轴分解的分力的大小。

只有当α(由平行四边形面积表达式证出)平面力对点之矩简称力矩,是一代数量,其绝对值等于力的大小与力臂的乘
积,正负号表示力矩的转向,一般以逆时针转向为正,反之为负
平面力对点之矩还可应用合力矩定理求解。

特别是在力臂计算不方便时,若将其分解
为两个正交分力并用合力矩定理计算则较方便,注意表达中的负号。

由等值、反向、不共线的两个平行力组成的力系效应用力偶矩来度量。

力偶没有合力,力偶只能用力偶来平衡力偶力偶矩
在平面问题中,力偶矩是一个代数量,其绝对值等于力的大小与力偶臂的乘积
解析法根据合力投影定理求出合力在
合力的大小和方向余弦
平衡的几何条件:力多边形自行封闭
平衡的解析条件:力系中各分力在两个坐标轴上的投影的代数和分
别等于零
平面力偶系可合成为一个力偶,称为合力偶。

合力偶矩等于各分力偶矩的代数和
(注意区分转向,即正负号)
平面力偶系平衡的充分和必要条件是:所有各分力偶矩的代数和等于零。

山东大学《理论力学》教案第2章 平面汇交力系与平面力偶系

山东大学《理论力学》教案第2章  平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系一、目的要求1.平面汇交力系(多个力)合成与平衡的几何法,并能应用平衡的几何条件求解平面汇交力系的平衡问题。

2.能正确地将力沿坐标轴分解和求力在坐标轴上的投影,对合力投影定理有清晰的理解,掌握汇交力系合成的解析法和平衡方程,并能熟练的应用平衡方程求解汇交力系的平衡问题。

3. 理解力对点之矩的概念,并能熟练地计算。

4.深入理解力偶和力偶矩的概念,明确平面力偶的性质和平面力偶的等效条件。

二、基本内容1.平面汇交力系合成的几何法·力多边形法则平面汇交力系可合成为通过汇交点的合力,其大小和方向等于各分力的矢量和。

即∑==+++=n i i 11F F F F F n 2R 或 ∑=F F R合力R F 的大小和方向可用力三角形法则或力多边形法则得到。

作出图示首尾相接的开口的力多边形,封闭边矢量即所求的合力。

2.平面汇交力系平衡的几何条件平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

其矢量表达式为∑==0F F R (2-2) 力系平衡的几何条件是:力系的力多边形自行封闭。

如图2-4所示。

3.力在正交坐标轴系的投影与力的解析表达式力F 在y x ,轴上的投影分别为cos cos sin x y F F F F F αβα=⎫⎪⎬==⎪⎭力的投影是代数量。

4.平面汇交力系合成的解析法合力投影定理:合力在某轴上的投影等于各分力在同一轴上投影的代数和。

平面汇交力系平衡的必要和充分条件是:各力在两个坐标轴上的投影的代数和分别为零。

即00x y F F ⎫=⎪⎬=⎪⎭∑∑ 两个独立的平衡方程,可解两个未知量。

5.平面内的力对点O 之矩是代数量,记为M o (F )ABO Fh M o ∆±=±=2)(F其中F 为力的大小,h 为力臂,∆ABO 为力矢AB 与矩心O 组成三角形的面积。

一般以逆时针转向为正,反之为负。

力矩的解析表达式为: 合力矩定理: 6.力偶和力偶矩:·大小相等,方向相反,作用线平行的两个力称为力偶。

第2章 平面汇交力系与平面力偶系

第2章 平面汇交力系与平面力偶系

离d称为该力偶的力偶臂。
力偶的作用面:力偶所在的平面称为力偶的作用面。
力偶矩:力偶中一个力的大小与力偶臂的乘积,并 取以正负号,称为该力偶的力偶矩。
表示为: m
m Fd 2S ABC
31
§2.3 平面力偶系
2.力偶的基本特性 不能合成一个合力,本身不能平衡,也不能被一个 力平衡,它只能由力偶来平衡。 对物体只能产生转动效应,不能产生移动效应,即 只能原地转动。 组成力偶的两个力对其作用面内任一点的矩的代数 和恒等于该力偶的力偶矩。
D
6cm
DE=6 cm点E在铅直线DA上
,又B ,C ,D都是光滑铰
(a)
链,机构的自重不计。
7
§2.1 平面汇交力系的合成与平衡的几何法
例 题 2-1
解: 几何法
AF
1.取制动蹬ABD作为研究对象, 并画出受力图。
BE
O
FD
FB
D
(b)
I
F
FD
J
FB
K
(c)
2.作出相应的力多边形。
3. 由图b几何关系得:
15
§2.2 平面汇交力系的合成与平衡的解析法 1.力在坐标轴上的投影与力沿轴的分解
✓力向坐标轴的投影是代数量 ✓力沿坐标轴方向的分量是矢量
16
§2.2 平面汇交力系的合成与平衡的解析法
2.合成的解析法 合力投影定理:
平面汇交力系的合力在某一轴上的投影等 于各分力在同一轴上投影的代数和。
y
F4 F1
FA=0, 得封闭力三角形abc。
a
FB G
F G tan 11.5 kN
FB
G
cos
23.09
kN

建筑力学第2章平面汇交力系和平面力偶系

建筑力学第2章平面汇交力系和平面力偶系

图 2.14
25
小结
本章主要研究了两种特殊力系———平面汇交 力系、平面力偶系的合成与平衡问题。 (1)平面汇交力系
1)平面汇交力系的合成 ①几何法:用力的多边形法则求合力。特点是形象 、直观,但不精确。主要用在定性分 析上。 ②代数法:用合力投影定理求合力。这是一种精确 方法,也是常用的方法。
26
7
图 2.2
8
(2)力在平面直角坐标系中的投影 如果把力 F 依次在其作用面内的两个正交轴 x 、y上投影(图 2.3),则有
9
(3)合力投影定理 合力在任一轴上的投影,等于各个分力在同一轴上 的投影的代数和。这就是合力投影定理。
10
图 2.3
图 2.4
11
(4)平面汇交力系合成的代数法假设有一平 面汇交力系作用在刚体上的 O 点,现要求其合力 。为此,首先建立一个合适的平面直角坐标系,为 了简化计算,应让尽量多的力位于坐标轴上。然后 再把每个力进行投影;并利用式(2.4)求出合力 FR在这两个轴上的投影。于是,合力的大小和方 向可由下式确定:
20
图 2.9
图 2.10
21
图 2.11
图 2.12
22
图 2.13
23
2.3.2 平面力偶系的平衡 与平面汇交力系的平衡条件类似,平面力偶系 的平衡条件是:平面力偶系平衡的充分必要 条件是组成力偶系的各力偶的力偶矩的代数和为零 。即
24
2.3.3 平面力偶系平衡方程的应用 求解物体在平面力偶系作用下的平衡问题时, 一定要注意:力偶只能由力偶去平衡。
2
2.1.1 平面汇交力系合成的几何法 我们知道,若平面汇交力系是由两个力组成, 则可用力的平行四边形法则去求它们的合力。若平 面汇交力系是由两个以上的力组成时,只要先求出 任意两个力的合力,再求出这个合力和另一个力的 合力,这样继续下去,最后得出的就是这许多力的 合力。

第二章 平面汇交力系与平面力偶系

第二章 平面汇交力系与平面力偶系
第二章 平面汇交力系和平面力偶系
1
引 言
力系 平面力系
空间力系
平面力系 ①平面汇交力系 ②平面平行力系 ③平面一般力系/平面任意力系
平面汇交力系:各力的作用线都在同一平面内且 汇交于一点的力系。 平面平行力系: 各力的作用线都在同一平面内且相互平行的力系。 平面力偶系是其中的一种特殊情况。 平面一般力系:各力的作用线都在同一平面内但既不 汇交于一点 也 不相互平行的力系。
2
§2-1 平面汇交力系合成与平衡的几何法
一、合成的几何法 1.两个力的合成
力的平行四边形法
力的三角形法
3
2. 多个力的合成 F1+F2 =R12; F1+F2 +F3 =R12 +F3 =R123;
F1
F2 F1 o F4 R12 R R123
F1+F2 +F3 +F4 =R123 +F4 =R

n
mi 0
i 1
26
[例] 在一钻床上水平放置工件,在工件上同时钻四个等直径
的孔,每个钻头的力偶矩为
m 1 m 2 m 3 m 4 15 N m
求工件的总切削力偶矩和A 、B端水平反力? 解: 各力偶的合力偶距为
M m1 m 2 m 3 m 4 4 ( 15 ) 60 N m
m 2 F2 d 2
合力矩
M R A d ( P1 P2' ) d P1 d P2' d m 1 m 2
25
结论:
M m1 m 2 m n m i
i 1
n
平面力偶系合成结果还是一个力偶,其力偶矩为各力偶矩 的代数和。 平面力偶系平衡的充要条件是:所有各力偶矩的代数和 等于零。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2
tanα 2h
19
已知:F=60N 求:A,C点的作用力
FB a C
a 600 D
A
20
[例2-4]
21
2.3 平面力对点之矩的概念及计算
2.3.1 力对点之矩(力矩)
矩心
F
力臂
力对点之矩是一个代数量
M O ( F ) F h 2 A O A B
正负规定:力使物体绕矩心逆时针转动时为正,反之为负。
平面汇交力系平衡的必要和充分条件是:各力在
作用面内两个任选的坐标轴上投影的代数和等于零。 上式称为平面汇交力系的平衡方程。
18
例2-4:图示压榨机,在A点作用水平力F、C块与光滑墙
接触,在F力作用使C块压紧物体D,求:物体D所受压力。
h
y
y
B
FAB
[C]
L
F
x
FCA x
L
F A
FAC [A]
FC
2.2.1 力在坐标轴上的投影
Fx Fcos
Fy Fcos
y
F
Fy
x O
Fx
力在坐标轴上的投影是代数量还是矢量?
11
2.2.2 力的正交分解与力的解析表达式
Fx Fxi
Fy Fy j
y
Fy j Oi
F Fx x
力的投影与力的分量有何不同?
12
2.2.2 合力的正交分解与力的解析表达式
y
FR FRy
FD
C 解:[点A] Fx=0; – FABcos – FACcos – F=0 (1)
D
Fy=0; FABsin–FACsin =0 (2)
从(2)可得:FAB=FAC,代(1)得:FAC=F/(2 cos)
[点C] Fy=0; FD+FCAsin =0;
(3)(有:FCA=FAC)
F
FL
FD
j Oi
FRx x
F R F R x F R y F x i F yj
FR Fx2 Fy2
cos(F,i ) Fx FR
cos(F, j) Fy
FR
13
2.2.3 合力投影定理
n
Fx Fxi i1
n
F y F yi i1
平面汇交力系的合力在某轴上的投影,等于力系
中各个分力在同一轴上投影的代数和。
14
2.2.4 平面汇交力系合成的解析法
FR Fx2 Fy2 (Fxi)2(Fyi)2
cos(FR,i)F FR x FF Rxi
cos(FR,
j)Fy FR
Fyi FR
15
???
❖ 例2-3如图2-11所示,作用
于吊环螺钉上的四个力F1, F2,F3,F4构成平面汇交
力系。已知各力的大小方
解: ①选碾子为研究对象 ②取分离体画受力图
∵当碾子刚离地面时NA=0,拉力F最大, 这时拉力F和自重及支反力NB构成一平衡力系。 由平衡的几何条件,力多边形封闭,故
8
③作力多边形或力三角形
FPtg
NBcoPs
又由几何关系:
tg
r2(rh)2 rh 0.577
所以
F=11.5kN , NB=23.1kN
2平面汇交力系与平面力偶系
精品jin
§2–1 平面汇交力系合成与平衡的几何法 §2–2 平面汇交力系合成与平衡的解析法 §2–3 平面力对点之矩的概念及计算 §2–4 平面力偶理论
目录
2
平面汇交力系:
❖ 力的作用线位于 同一平面内且汇
F2 F1
交于一点的力系。
A
F3 F4
3
2.1 平面汇交力系合成与平衡的几何法
a
求:A、B处约束反力。
解: (1)取刚架为研究对象
A
B
(2)画受力图
FA
FB
(3)按比例作图求解
由图中的几何关系得
FA
F BPtan 0.5P
FB
P
FA
P2 FB2
5P 2
7
[例2] 已知压路机碾子重P=20kN, r=60cm, 欲拉过h=8cm的障碍物。 求:在中心作用的水平力F的大小和碾子对障碍物的压力。
由作用力和反作用力的关系,碾子对障碍物的压力等于23.1kN。
此题也可用力多边形方法用比例尺去量。
9
2.2 平面汇交力系合成与平衡的解析法
力在轴上的投影:
B F A
F
A
B
n
n
a
b
b
a
Fx ab
Fx ab
正负号的规定:
若 a到b的指向与n轴正向一致,取正号;
若 a到b的指向与n轴正向相反,取负号。 10
2.1.1 平面汇交力系合成的几何法
F4
力的多边形:
F2 F1
F3
F3 F2 FR1
FR2 FR
F4
F2
F4
F3AF1aFR用力多边形求合力的作图规则称为力的多边形F法1则。 a
4
结论:平面汇交力系可简化为一合力,其合力的大小 与方向等于各分力的矢量和(几何和),合力的作用线 通过汇交点。 用矢量式表示为:
FR Fx2 Fy2 (1162)2 (160)2 1173N
tga Fy 160 0.133 Fx 1162
可得a 7054'
因为Fx为正,Fy为负,故合力R在第四象限,指向如图所示
17
2.2.5 平面汇交力系的平衡方程
FR (Fxi)2(Fyi)20
F x i 0
F yi
0
力矩的单位常用N·m或kN·m。
22
2.3.2 合力矩定理与力矩的解析表达式
(1) 合力矩定理
平面汇交力系的合力对于平面内任一点之矩等于
所有各分力对于该点之矩的代数和。
n
MO(FR) MO(Fi) i1
(2) 力矩的解析表达式
MO(F) MO(Fy)MO(Fx)
F R F 1 F 2 F n F

5
2.1.2 平面汇交力系平衡的几何条件
平面汇交力系平衡的必要与充分条件是: 该力系的合力等于零。用矢量式表示为:
Fi 0
平面汇交力系平衡的必要与充分条件是:该力系的 力多边形自行封闭,这是平衡的几何条件。
6
例 题 1 已知:P,a
PC
2a
D
16
Fx Fx1Fx2 Fx3 Fx4 F1cosa1F2cosa2 F3cosa3 F4cosa4 360cos600 550cos00 380cos300 300cos700 3600.55503800.8663000.342 1162N
Fy Fy1Fy2Fy3Fy4 F1sina1F2sina2F3sina3F4sina4 360sin600550sin00380sin300300sin700 160
向F1 =360N,1=60°; F2 =550N,2 =0°; F3 =380N,3 =30°;F4 =300N, 4=70°。试用
解析法求合力的大小和方
向。
各力的汇交点
解:
F1
F2
F3
F4
Fx F1cosα1 F2cosα2 F3cosα3 F4cosα4
Fy F1sinα1 F2sinα2 -F3sinα3 -F4sinα4
相关文档
最新文档