换热器介绍

合集下载

换热器培训课件完整版

换热器培训课件完整版

板式换热器 结构紧凑、传热效率高、压力损失小
管壳式换热器 结构简单、制造成本低、清洗方便
螺旋板式换热器
传热效率高、结构紧凑、自清洗能力 强
热管式换热器
传热效率高、温差适应性强、结构灵 活
CHAPTER 04
换热器设计方法与优化策略
设计流程概述
进行初步设计
选择合适的换热器类型
根据设计需求,选择适合的换热 器类型,如板式换热器、管壳式 换热器等。
建立完善的运行维护档案, 记录换热器运行状况、维 修记录等信息,便于追溯 和管理。
定期更换换热器密封件、 垫片等易损件,确保密封 性能良好。
CHAPTER 07
换热器故障排除与维修保养 技巧
常见故障类型及原因分析
换热效率下降
可能由于结垢、堵塞或内部泄漏导致,影响 换热效果。
泄漏
包括法兰泄漏、管板泄漏等,可能由密封件 老化、紧固螺栓松动等原因引起。
发现泄漏时,及时更换密封件和紧固螺栓, 确保密封性能。
检查控制系统和热媒流量
发现温度异常时,检查控制系统和热媒流量 是否正常,及时进行调整和修复。
维修保养周期建议及操作指南
01
02
03
04
05
定期清洗和除垢
定期检查密封件和 定期检查流体流动 定期检查控制系统 注意
紧固螺栓
状态
和热媒…
根据换热器使用情况和结垢 程度,建议每半年或一年进 行一次清洗和除垢。
选择高性能材料,提高换热器的耐腐蚀性、 耐高温性等。
制造工艺优化
控制策略优化
改进制造工艺,提高生产效率和产品质量。
优化控制策略,实现换热器的智能控制和节 能运行。
CHAPTER 05

换热器介绍

换热器介绍

换热器介绍换热器一,定义 : 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指标的热量交换设备,又称热交换器。

二,换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:(一)_ 换热器按传热原理分类1、表面式换热器:表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

表面式换热器有管壳式、套管式和其他型式的换热器。

2、蓄热式换热器:蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

3、流体连接间接式换热器:流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4、直接接触式换热器:直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。

(二)换热器按用途分类1、加热器:加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

2、预热器:预热器预先加热流体,为工序操作提供标准的工艺参数。

3、过热器:过热器用于把流体(工艺气或蒸汽)加热到过热状态。

4、蒸发器:蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

(三)按换热器的结构分类可分为:浮头式换热器、固定管板式换热器、U 形管板换热器、板式换热器等。

三,换热器类型换热器是化工,石油,动力,食品及其它许多工业部门的通用设备, 在生产中占有重要地位.在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热能的装置,它起到了加热、冷却、调节温度的作用。

换热器广泛应用于工业生产和日常生活中,如空调系统、锅炉、汽车发动机等。

下面将详细介绍换热器的工作原理。

1. 热交换换热器的主要工作原理是通过热交换实现热能的传递。

热交换是指在两个不同的流体之间,通过热传导、热辐射或者对流传热的方式,使热量从一个流体传递到另一个流体。

换热器内部通常分为两个流体通道,分别为热源流体和冷却介质,通过这两个通道的热交换,实现热能的传递。

2. 热源流体热源流体是指需要被加热或冷却的流体。

它可以是气体或液体,常见的有蒸汽、水、油等。

热源流体进入换热器后,通过换热器内的管路,与冷却介质进行热交换。

在这个过程中,热源流体的温度会发生相应的变化。

如果需要加热,则热源流体的温度会升高;如果需要冷却,则热源流体的温度会降低。

3. 冷却介质冷却介质用于吸收或排放热源流体传递出来的热量。

它可以是水、空气等,根据不同的应用场景选择不同的冷却介质。

通常,冷却介质在进入换热器之前,通过一系列的控制装置,如水泵、风机等,将其送入换热器内部进行热交换。

在与热源流体进行热交换的过程中,冷却介质的温度也会相应地升高或降低。

4. 热交换管热交换管是换热器内部用于传输热能的主要构件。

它通常由金属或合金材料制成,具有良好的导热性能。

热交换管的数量和排列方式会根据换热器的设计要求而有所不同。

通过热交换管,热源流体和冷却介质之间发生热交换。

其中,热源流体进入管道的一端,通过管壁与冷却介质进行热交换,最后从另一端出口离开。

5. 热损失和效率在热交换的过程中,由于热传导、对流和辐射等因素的存在,换热器会发生一定程度的热损失。

这些损失导致了换热器的热效率降低。

为了提高换热器的效率,可以采取一些措施,比如增加交换面积、改善流体的流动方式、选择合适的绝热材料等。

此外,定期对换热器进行清洗和维护也是保持其高效工作的重要措施。

总结起来,换热器通过热交换实现热能的传递。

换热器的种类及使用条件

换热器的种类及使用条件

换热器的种类及使用条件
换热器是一种广泛应用于化工、机械等领域的传热装置。

它可以将相互接触的两种流体之间的热量进行传递,从而达到加热、冷却、蒸发、浓缩等目的。

换热器选择的种类和使用条件与所需传热的流体、操作温度、压力、流量等有关。

本文将详细介绍换热器的种类及使用条件。

一、管壳式换热器
管壳式换热器是一种常见的传热装置,其主要由管壳体、进出口管口、传热管束等构成。

它的使用条件如下:
1.应用环境
适用于总热量需要大,对碳钢材质无特殊要求的场合。

2.操作温度和压力
管壳式换热器的操作温度和压力范围均较广,一般可以在-200℃~500℃、0.1MPa~10.0MPa的范围内使用。

3.流量条件
管壳式换热器的流量要求较高,适用于流量大、热负荷集中的场合。

板式换热器是一种以板片为传热介质的传热装置,由一系列波纹的金属板片组成。

其使用条件如下:
板式换热器适用于流量小、热负荷分散的场合。

在对材质无特殊要求的情况下,也可以应用于化学工业、制药工业等行业。

三、螺旋板式换热器
螺旋板式换热器适用于高粘度、易结垢、易沉淀的流体传热。

螺旋板式换热器的流量要求适中,基本可以满足大部分的场合。

适用于换热条件苛刻、对材质要求高的场合,如高压高温应用。

总的来说,选择换热器的种类和使用条件应根据所需传热的流体、操作温度、压力和流量等参数来决定,以达到最好的换热效果。

换热器基础知识

换热器基础知识

板式换热器的主要特点是: 1) 传热系数高
板式换热器具有较高的传热系数,一般约为管壳式换热 器的3~5倍。主要原因是板片的波纹能使流体在较小的流速 下产生湍流,湍流效果明显(雷诺数约为150时即为湍流), 故能获得较高的传热系数。
2)对数平均温差大
板式换热器两种流体可实现纯逆流,一般为顺流或逆流 方式。但在管壳式换热器中,两种流体分别在壳程和管程内 流动,总体上是错流的流动方式,降低了对数平均温差。板式 换热器能实现温度交叉,末端温差能达到1℃;管壳式换热 器末端温差只能达到5℃ 。
对于介质是否具有腐蚀性,是否含有纤维或颗粒等易堵 塞物,是否容易结垢等物性,也是换热器选型要考虑的关键 因素。如果介质具有腐蚀性,就要合理选择耐腐的换热材料。 如果介质含有纤维或颗粒等易堵塞物,由于板式换热器流道 较小,就更容易堵塞和磨损。如果介质容易结垢,就应选择 容易拆卸和清洗的换热器。
3.2、提高换热效率的途径——强化传热过程
3)NTU大
NTU表示相对于流体热容流量,换热器传热能力的大小。
例如对于已定的传热系数K和热容量 GCp值,NTU的大小就意 味着换热器尺寸的大小,即传热面积的大小。管壳式换热器 的NTU约为0.2~0.3(平均0.25)。板式换热器的NTU约为 1.0~3.0(平均2.0),因此板式换热器结构紧凑、体积小。
在列管换热器中,由于管内外流体温度不同,使管束和 壳体的受热程度不同,导致它们的热膨胀程度出现差别。若 两种流体温差较大,就可能由于热应力而引起设备变形,管 子弯曲甚至破裂,严重时从管板上脱落。因此,当两种流体 的温度超过50℃时,就应当从结构上考虑热膨胀的影响,采 取相应的热补偿措施。根据热补偿方式的不同,列管换热器 分为三种形式:

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种常见的热交换设备,广泛应用于工业生产、能源领域以及建造物的空调系统中。

它的主要作用是将热量从一个介质传递到另一个介质,实现热能的转移和利用。

下面将详细介绍换热器的工作原理。

一、换热器的基本结构换热器通常由两个流体流经的管道组成,分别为热介质管道和冷介质管道。

这两个管道之间通过金属板或者金属管束进行热传导,实现热量的交换。

换热器的外壳通常由金属材料制成,具有良好的导热性能和耐腐蚀性。

二、换热器的工作原理1. 热介质管道:热介质通过管道进入换热器,通常是高温高压的液体或者蒸汽。

热介质在管道内流动时,将热量传递给金属板或者金属管束,使其升温。

热介质的温度和流量是影响换热效果的重要因素。

2. 冷介质管道:冷介质通过管道进入换热器,通常是低温低压的液体或者气体。

冷介质在管道内流动时,从金属板或者金属管束中吸收热量,使其降温。

冷介质的温度和流量也会影响换热效果。

3. 热传导:热介质和冷介质之间通过金属板或者金属管束进行热传导。

热传导是通过份子之间的碰撞和振动来实现的。

金属材料具有良好的导热性能,能够有效地传导热量。

4. 热量交换:热介质的热量通过金属板或者金属管束传递给冷介质,实现热量的交换。

热量交换的过程中,热介质的温度降低,而冷介质的温度升高。

热量交换的效果取决于热介质和冷介质之间的温度差、流量以及金属板或者金属管束的传热面积等因素。

5. 流体流动:热介质和冷介质在换热器内部的流动方式有多种,常见的有并流和逆流两种。

并流是指热介质和冷介质在换热器内部沿着同一方向流动,而逆流则是指两者沿着相反的方向流动。

并流和逆流的选择会影响换热器的效率和温度差。

三、换热器的应用领域换热器广泛应用于各个领域,主要包括以下几个方面:1. 工业生产:在化工、石油、电力、冶金等行业中,换热器被用于加热、冷却和蒸发等工艺过程,实现能量的转移和利用。

2. 能源领域:换热器在发电厂的锅炉系统中起着重要作用,用于烟气余热回收、冷却水循环等,提高能源利用效率。

换热器类型介绍及设计案例

换热器类型介绍及设计案例

换热器类型介绍及设计案例换热器(Heat exchanger)是一种用于热的传递设备,用于将热量从一个介质传递到另一个介质,而不会将两者混合在一起。

换热器在工业、建筑和家庭中被广泛应用,用于加热、冷却和空调等领域。

本文将介绍一些常见的换热器类型,并提供一些设计案例。

一、直接换热器(Direct Heat Exchanger)直接换热器是最常见的一种换热器类型,也称为热交换管或管式热交换器。

它由一根或多根管道组成,其中一个介质通过管道,将热量传递给另一个介质。

直接换热器广泛应用于石化、化学、食品加工和供暖等领域。

设计案例:工业热水锅炉工业热水锅炉是一种直接换热器,用于生产和供应热水。

它由一个燃烧室和一个热水管道组成。

燃烧室中燃烧燃料产生的热量通过管道传递给流经其中的水,将水加热到所需温度。

二、间接换热器(Indirect Heat Exchanger)间接换热器是通过壁面传递热量的一种换热器类型。

在这种换热器中,两个介质分别通过不同的通道流动,通过壁面传递热量。

间接换热器广泛应用于电站、化工和冶金等领域。

设计案例:蒸汽凝结器蒸汽凝结器是一种间接换热器,用于电站中的蒸汽循环系统。

蒸汽在蒸汽轮机中通过传递热量产生功率,然后进入蒸汽凝结器,通过与冷却介质在壁面之间的传热,将蒸汽冷却成水,并回流到锅炉再次循环使用。

三、板式换热器(Plate Heat Exchanger)板式换热器是一种利用金属板堆叠组成的换热器,将热量传递给另一个介质。

板式换热器的设计紧凑、效率高,广泛应用于食品、制药、化工和制冷等领域。

设计案例:蒸气冷凝器蒸气冷凝器是一种板式换热器,被广泛应用于制冷和空调系统中。

蒸发器中的制冷剂通过板式换热器中的金属板与冷却剂传热,将制冷剂中的热量传递给冷却剂,使制冷剂冷却并凝结为液体。

四、空气换热器(Air Heat Exchanger)空气换热器主要用于传递空气中的热量。

它将热空气和冷空气通过不同的通道流动,并通过壁面传递热量。

换热器种类及介绍

换热器种类及介绍

换热器种类及介绍换热器是一种用于传递热量的设备,用于在工业生产及日常生活中实现热能的转换。

根据不同的使用场景和要求,换热器有多种不同的种类。

下面将介绍几种常见的换热器类型。

1. 管壳式换热器(Shell and Tube Heat Exchanger):管壳式换热器是一种常见的换热器类型,由一个外壳和一组管子组成。

热量在管子和外壳之间进行传递,一种流体通过管子流动,另一种流体通过外壳流动。

管子和外壳内大部分是平行或对流的,从而实现热能的传递。

管壳式换热器适用于高流量和高温差的应用,例如化工和空调系统。

2. 板式换热器(Plate Heat Exchanger):板式换热器是一种由多个平行金属板堆叠而成的换热器。

板与板之间形成一个狭窄的通道,两种流体分别通过不同的通道流动,热量通过板间的金属板传递。

板式换热器具有高传热效率和紧凑的设计,适用于低流量和低温差的应用,例如制冷和加热系统。

3. 螺旋板换热器(Spiral Plate Heat Exchanger):螺旋板换热器是一种由两个平行螺旋板组成的换热器。

两种流体分别在螺旋板间流动,热量通过螺旋板传递。

螺旋板换热器具有较高的传热效率,且容易清洗和维护,适用于高粘度和易结垢的流体。

4. 管束式换热器(Bundle Heat Exchanger):管束式换热器由大量细管束构成,一种流体通过管束内部流动,另一种流体在管束外部流动。

热量通过管壁传递。

管束式换热器具有较高的传热效率和较低的压降,适用于蒸汽发生器和燃气锅炉等设备。

5. 盘式换热器(Disc and Doughnut Heat Exchanger):盘式换热器是一种由许多平行圆盘组成的换热器。

热量通过圆盘间的空隙传递,一种流体通过圆盘内部流动,另一种流体通过圆盘外部流动。

盘式换热器具有紧凑的设计和高传热效率,适用于高温和高压的应用,例如化工和炼油。

这些换热器种类只是常见的几种,在实际应用中还有其他种类,如板式换热器的纹路型换热器、膜式换热器、液体-液体换热器等。

换热器的工作原理

换热器的工作原理

换热器的工作原理引言概述:换热器是一种用于传递热量的设备,广泛应用于工业生产和日常生活中。

它的工作原理基于热量传导和对流,通过将热量从一个物质传递到另一个物质,实现热能的有效利用。

本文将详细介绍换热器的工作原理及其五个主要部分。

一、传热介质1.1 热源介质:换热器的热源介质通常是高温的流体或气体。

当热源介质通过换热器时,其热量会传递给换热器的工作介质。

1.2 工作介质:工作介质是换热器中的传热介质,可以是液体或气体。

当工作介质经过换热器时,它会吸收热源介质传递过来的热量。

1.3 冷却介质:冷却介质是换热器中的另一个传热介质,用于吸收工作介质释放的热量。

冷却介质可以是水、空气或其他液体。

二、传热方式2.1 对流传热:对流传热是换热器中最常见的传热方式。

当热源介质与工作介质接触时,热量通过对流传递,即热源介质的热量通过流体的流动传递给工作介质。

2.2 导热传热:导热传热是指热量通过固体传递的过程。

在换热器中,导热传热主要发生在换热器的壁体上,热源介质的热量通过壁体传递给工作介质。

2.3 辐射传热:辐射传热是指热量通过电磁辐射传递的过程。

在换热器中,辐射传热主要发生在换热器的壁体和介质之间,热量以电磁波的形式传递。

三、换热器的结构3.1 管式换热器:管式换热器是最常见的一种换热器类型。

它由一组管子组成,热源介质和工作介质分别流过管内和管外,通过管壁的导热传热实现热量的传递。

3.2 板式换热器:板式换热器由一组平行排列的金属板组成,热源介质和工作介质分别流过板间和板面,通过对流传热和导热传热实现热量的传递。

3.3 壳管式换热器:壳管式换热器由一个外壳和一组管束组成,热源介质和工作介质分别流过壳侧和管侧,通过对流传热和导热传热实现热量的传递。

四、换热器的性能参数4.1 热效率:热效率是换热器传递热量的效率,一般用换热器输出的热量与输入的热量之比来表示。

4.2 压降:压降是指流体在换热器中流动时产生的压力损失。

换热器详细介绍

换热器详细介绍
∆t m = ∆t max − ∆t min ( 300 − 85 ) − (150 − 35 ) = = 159.8 ℃ ∆t 300 − 85 ln max ln ∆t ∆t min 150 − 35
顺流布置
∆t m = ∆t max − ∆t min ( 300 − 35) − (150 − 85) = 142.3 = ℃ ∆t max 300 − 35 ln ln ∆t min 150 − 85
蓄热式换热器:换热器由蓄热材料构成,并分成两半, 蓄热式换热器:换热器由蓄热材料构成,并分成两半,冷热流体轮 换热器 换通过它的一半通道,从而交替式地吸收和放出热量, 换通过它的一半通道,从而交替式地吸收和放出热量,即热流体流 过换热器时,蓄热材料吸收并储蓄热量,温度升高, 过换热器时,蓄热材料吸收并储蓄热量,温度升高,经过一段时间 后切换为冷流体,蓄热材料放出热量加热冷流体。一般用于气体, 后切换为冷流体,蓄热材料放出热量加热冷流体。一般用于气体, 如锅炉中间转式空气预热器,全热回收式空气调节器等。 如锅炉中间转式空气预热器,全热回收式空气调节器等。
Hot fluid
Hot fluid
Cold fluid
Cold fluid
T Th (Hot)
T
∆T1
Th Tc
∆T2
∆T1
Tc (cold) x
∆T2
x
顺流
逆流
21
复杂布置时换热器平均温差的计算
实际换热器一般都是处于顺流和逆流之间,或者有时是逆流, 有时又是顺流。由于逆流的平均温差最大,因此,人们想到对 纯逆流的对数平均温差进行修正以获得其他情况下的平均温差。
7
TB ,in (shell side)
TA,out

板式换热器介绍范文

板式换热器介绍范文

板式换热器介绍范文一、板式换热器的工作原理板式换热器是由一系列的金属板组成的,板上面有着特殊的腔道设计。

通过将冷、热流体分别导入板式换热器的两侧,流体在板的腔道中流动,实现了热量的传递。

冷、热流体在板的腔道中交错流动,从而实现了热量的交换。

板式换热器中流体的流动方式分为纵向流动和横向流动两种方式,可以根据实际需要进行选择。

二、板式换热器的结构特点1.金属板:板式换热器的主要组成部分是金属板,各种材质的金属板可以根据实际需要进行选择。

常见的金属材料有不锈钢、钛合金、镍合金等。

2.波纹板设计:为了增加板式换热器的换热效率,金属板上面常常会设计出波纹结构。

波纹结构可以增加板的刚度,从而提高板的耐压能力;波纹结构还能增加板的换热面积,提高传热效率。

3.接触面积大:板式换热器具有紧凑的结构,因此能充分利用空间,使得板的接触面积大,从而提高了热量的传递效率。

4.拆装方便:板式换热器的板件之间是可拆卸的,这使得当换热器出现故障时,可以更换单个板或维修整个换热器,便于维护。

5.安全可靠:由于板式换热器的结构简单,板与板之间的胶垫密封可靠,不易出现泄漏现象。

此外,板材表面的蚀刻和电子精加工能够保证板的表面光滑,减少阻力,提高热交换效率。

三、板式换热器的应用领域由于板式换热器的换热效率高,结构紧凑,适用范围广等特点,使得它在工业领域有着广泛的应用。

1.石油化工:板式换热器可以用于石油化工行业中的蒸发、冷凝、蒸馏、蒸汽和液体的热回收等工艺。

2.食品工业:板式换热器可以用于食品工业中的蒸汽蒸煮、冷却、奶制品加热等工艺。

3.电力行业:板式换热器可以用于电力行业中的发电机组冷却水和循环冷却水的加热、冷却等工艺。

4.制药工业:板式换热器可以用于制药行业中的含固体物料的粘稠液体的降温、加热工艺。

5.化学工业:板式换热器可以用于化学工业中的化工反应过程、蒸白水加热、冷凝等工艺。

以上所述只是板式换热器的简单介绍,随着科学技术的不断发展和市场需求的变化,板式换热器的技术和应用会不断地更新和改进,它在工业领域中的地位将越来越重要。

换热器的介绍及分类

换热器的介绍及分类

换热器的介绍及分类换热器(亦称为热交换器或热交换设备)是用来使热量从热流体传递到冷流体,以满足规定的工艺要求的装置,是对流传热及热传导的一种工业应用。

换热器可以按不同的方式分类。

按其操作过程可分为间壁式、直接接触式、蓄热式(或称回热式)三大类。

换热器分类:直接接触式换热器,也叫混合式换热器,是冷热流体进行直接接触并换热的设备。

通常情况下,直接接触的两种流体是气体和汽化压力较低的液体;蓄能式换热器的工作原理,是利用固体物质的导热特性,具体而言,热介质先将固体物质加热到一定温度,冷介质再从固体物质获得热量,通过此过程可实现热量的传递;间壁式换热器,也是利用了中介物的热传导,冷、热两种介质被固体间壁隔开,并通过间壁进行热量交换。

对于供热企业而言,间壁式换热器的应用最为广泛。

根据结构的不同,它还可划分为管式换热器、板式换热器和热管换热器。

一、管壳式换热器管壳式换热器又称列管式换热器。

是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。

这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。

▲管壳式换热器根据所采用的补偿措施,管壳式换热器可分为固定管板式换热器、浮头式换热器、U型管式换热器、填料函式换热器等四种类型。

二、固定管板式换热器固定管板式换热器是管壳式换热器的一种。

固定管板式换热器两端的管板采用焊接的方式与壳体连接,主要由外壳、管板、管束、顶盖(封头)等部件构成。

▲固定管板式换热器固定管板式换热器的优点是:◆结构简单;◆在相同的壳体直径内,排管数最多,旁路最少;◆每根换热管都可以进行更换,且管内清洗方便。

固定管板式换热器的缺点是:◆壳程不能进行机械清洗;◆当换热管与壳体的温差较大(大于50℃)时会产生温差应力,解决措施是在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高;◆只适用于流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的工作场合。

六种换热器的原理及介绍

六种换热器的原理及介绍

介绍
管式换热器在各种工业和民用领域中得到广泛应用,如石油化工、电力、供暖等。其优点 包括结构简单、易于制造、成本低、适应性强等。然而,管式换热器的流体阻力较大,需 要较高的泵送功率。此外,其热传导效率相对较低
3
原理
壳管式换热器是一种通过将热流体和冷流体分别流过相互平行的壳体和管束来实现热量交 换的设备。热量通过管壁传导给壳体中的冷流体,从而实现热量交换。壳管式换热器具有 较高的传热效率和较强的适应性
感谢观看
20XX年XX月
介绍
螺旋板式换热器在各种工业领域 中得到广泛应用,如石油化工、 电力等。其优点包括较高的紧凑 性、较低的流体阻力、能够处理 高温高压流体等。然而,螺旋板 式换热器的制造和维护较为复杂 ,成本相对较高。此外,其传热 效率相对较低
5
原理
翅片式换热器是一种通过在金属表面加工出翅片来增强传热效果的设备。它通过将冷热流 体分别流过翅片表面,通过翅片的扩展表面来增大传热面积,从而实现热量交换。翅片式 换热器具有较高的传热效率和较强的适应性
介绍
壳管式换热器在各种工业和民用 领域中得到广泛应用,如制冷、 化工等。其优点包括较高的传热 效率、较强的适应性、能够处理 各种类型的流体等。然而,壳管 式换热器的体积较大,需要较大 的安装空间。此外,其成本相对 较高
4
原理
螺旋板式换热器是一 种由两块螺旋形金属 板组成的热交换器。 它通过将冷热流体分 别流过金属板的内外 侧,通过金属板的热 传导和流体之间的对 流来实现热量交换。 螺旋板式换热器具有 较高的紧凑性和较低 的流体阻力
介绍
板式换热器在各种工业和民用领域中得到了 广泛应用,如供暖、制冷、工业制程中的加 热和冷却等。其优点包括高效能量转换、低 成本、易于维护和清洁等。然而,板式换热 器的流体阻力较大,对流体的清洁度要求较 高

化工原理换热器

化工原理换热器
强化方法:提高 K、A、 均可强化传热。
◎提高传热系数K
热阻主要集中于 较小的一侧,提高 小的一侧有效。 ◆ 降低污垢热阻 ◆ 提高表面传热系数 化工原理换热器
化工原理换热器
化工原理换热器
合式换热器
化工原理换热器
列管式冷凝器
化工原理换热器
提高对流传热系数的主要途径是减少层流内 层的厚度,可通过以下达到目的:
化工原理换热器
化工原理换热器
化工原理换热器
板式换热器 优点
缺点
结构紧凑、体积小、重量轻。 流体湍动程度大,强化 传热效果好。 便于清洗和维修。
密封周边长,易泄漏。 承压能力低(P<2MPa)。 流动阻力大,处理量小。
化工原理换热器
(2)螺旋板式换热器:换热表面由两块金属板卷制而成,
化工原理换热器
化工原理换热器
化工原理换热器
化工原理换热器
三 换热器的传热强化
如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的 设备上获得更大的生产能力和效益,成为现代工业发展的一个重要 问题。 所谓强化传热过程:就是力求用较少的传热面积或较少体积的传热 设备完成同样的传热任务以提高经济性,即提高冷、热流体间的传 热速率。
依总传热速率方程:
❖ 优点:结构简单、紧凑、能承受较高的 压力,造价低,管程清洗方便,管子损 坏时易于堵管或更换。
❖ 缺点:当管束与壳体的壁温或材料的线 膨胀系数相差较大时,壳体和管束中将 产生较大的热应力。
化工原理换热器
化工原理换热器
固定管板式换热器
❖ 应用: ❖ 这种换热器适用于壳侧介质清洁且不易
结垢并能进行清洗,管、壳程两侧温差 不大或温差较大但壳侧压力不高的场合。 为减少热应力,通常在固定管板式换热 器中设置柔性元件伯膨胀节、挠性管板 等人来吸收热膨胀差。

空气换热器

空气换热器

空气换热器概述:空气换热器是一种用于室内空气调节和热能传递的设备,广泛应用于住宅、商业和工业建筑中。

它通过将室内和室外的空气进行换热,实现新鲜空气的进入并排出废气,以提供舒适和健康的室内环境。

在本文中,我们将介绍空气换热器的工作原理、类型、优势以及应用领域。

一、工作原理:空气换热器的主要作用是通过传导、对流和辐射的方式,将暖空气和冷空气进行热能交换。

当室外温度较低时,空气换热器从室外吸入空气并传送到室内。

在传递过程中,热能从暖空气中传递到冷空气中,从而保持室内温度的稳定。

具体来说,空气换热器内部包含了一系列的热交换核心,通常由金属或塑料制成。

当室内和室外的空气流经热交换核心时,它们通过表面的薄壁与彼此接触,从而实现热能的传递。

在这个过程中,热能会从高温空气流向低温空气,从而使得室外的冷空气被加热,并将它传递到室内。

二、类型:根据其工作原理和结构特点,空气换热器可以分为以下几种类型:1. 热交换膜式空气换热器:此类空气换热器使用薄膜隔开室内与室外的空气流通路径,以防止热或冷温度的交叉污染。

它适用于需严格控制新风和回风之间的交叉污染的场所,如医院、实验室等。

2. 轮式空气换热器:该类型的空气换热器使用旋转的热交换轮来实现热能传递,它具有较高的换热效率和较低的能耗。

这款换热器特别适用于需要大量热交换的地方,如大型商业建筑和工业设备。

3. 双向流式空气换热器:这种换热器通过采用分流设计,实现了室内和室外空气的同时流动,从而提高了换热效率。

它对于需要持续换气的环境下,能够保持稳定的温度和湿度。

三、优势:空气换热器在室内空气调节中具有多个优势,包括:1. 节能:空气换热器能够最大限度地回收和利用室内的热能,减少了能源的消耗,降低了能源成本。

2. 提高室内空气质量:通过将新鲜空气引入室内,空气换热器有效地去除了污染物和有害气体,改善了室内空气的质量。

3. 提供舒适的室内环境:通过均衡室内和室外的温度,空气换热器能够提供舒适和稳定的室内环境,满足人们的需求。

换热器的工作原理

换热器的工作原理

换热器的工作原理换热器是一种用于传递热量的设备,广泛应用于工业生产、暖通空调、能源利用等领域。

它通过将热量从一个介质传递到另一个介质,实现能量的转移和利用。

本文将详细介绍换热器的工作原理,包括换热器的基本结构、热量传递方式、换热器的效率以及常见的换热器类型。

一、换热器的基本结构换热器通常由两个主要部分组成:热交换管束和壳体。

热交换管束是换热器的核心部分,由一系列平行排列的管子组成。

这些管子通常是圆形的,但也可以是其他形状,如方形或椭圆形。

壳体则是将热交换管束包裹起来的外壳,用于保护管束并提供流体的进出口。

二、热量传递方式换热器中的热量传递可以通过三种方式进行:传导、对流和辐射。

1. 传导:传导是指热量通过物质的直接接触而传递。

在换热器中,热交换管束内的热介质与管壁接触,通过管壁将热量传递给另一侧的介质。

2. 对流:对流是指热量通过流体的运动而传递。

在换热器中,热介质在管束内流动,通过与管壁接触,将热量传递给流过管外的介质。

3. 辐射:辐射是指热量通过电磁波辐射而传递。

在换热器中,热介质和管壁之间的温差会产生辐射热量,这部分热量通过辐射传递给另一侧的介质。

三、换热器的效率换热器的效率是衡量其热量传递能力的重要指标。

换热器的效率可以通过热传导率、热阻和热效率来描述。

1. 热传导率:热传导率是指单位时间内单位面积上的热量传递量。

热传导率越高,换热器的传热能力越强。

2. 热阻:热阻是指热量在传递过程中所遇到的阻力。

热阻越小,换热器的传热效率越高。

3. 热效率:热效率是指换热器实际传热量与理论传热量之比。

热效率越高,换热器的能量利用率越高。

四、常见的换热器类型根据换热器的结构和工作原理,可以将其分为多种类型,常见的有以下几种:1. 管壳式换热器:管壳式换热器是最常见的一种换热器类型。

它由一个管束和一个外壳组成,热介质从管束中流过,冷介质从外壳中流过,通过管壁的传导和对流,实现热量的传递。

2. 板式换热器:板式换热器由一系列平行排列的金属板组成。

换热器综述5篇

换热器综述5篇

换热器综述5篇第一篇:换热器综述换热器的综述前言随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。

换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。

换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体.相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题.并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。

本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。

一、换热器 1.1换热器的介绍换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

换热器被应用于超过 80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一.因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一.经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。

在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。

这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。

随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。

《换热器基础知识》课件

《换热器基础知识》课件

安装前的准备
调试与试运行
根据换热器的型号和规格,确定安装 位置和固定方式,准备安装所需的工 具和材料。
对换热器进行调试和试运行,检查其 工作性能和运行稳定性,确保满足使 用要求。
安装步骤与注意事项
按照安装说明书逐步完成换热器的安 装,注意确保安装的正确性和安全性 。
换热器的维护与保养
日常检查与保养
01
实验测定法
通过在换热器进出口设置温度、 压力等传感器,测量实际运行中 的换热器性能参数。
数值模拟法
02
03
理论分析法
利用计算机模拟软件,对换热器 内部流动和传热过程进行数值计 算,预测换热器的性能。
基于传热学和流体力学的基本原 理,对换热器进行理论分析和计 算。
换热器性能测试设备介绍
温度测量仪表
辐射传热
总结词
辐射传热是通过电磁波的形式传递热量,不需要介质传递。
详细描述
辐射传热的基本原理是黑体辐射定律,即物体以电磁波的形式发射和吸收能量。辐射传热的热量与物体的发射率 、温度和波长等因素有关。在换热器中,辐射传热主要发生在高温环境下,如燃烧过程和高温气体冷却等场合。
03 换热器的设计与优化
衡量换热器传热效果的重要指标,通 常用换热器入口和出口温度的差值与 热负荷的比值表示。
热效率
换热器实际传递的热量与理论热量之 比,反映换热器的能量利用效率。
流动阻力
换热器内部流体流动时所受阻力的大 小,通常以进出口压差表示。
紧凑性
换热器单位体积内的传热面积,反映 了换热器的紧凑程度和空间利用率。
换热器性能测试方法
换热器设计的基本原则
高效性原则
换热器应具备高效率,能够快 速实现热量的传递,以满足工
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 填函式换热器 填函式换热器的浮头与壳体间采用填料函进行密封和热补偿。
填函式换热器 优点:结构简单,造价较浮头式低。检修、清洗容易,填函处的泄漏能及时发现。 缺点:壳程受到填料密封的限制,不能承受过高的压力和温度。且壳程内介质有外漏的可能,壳 程内不宜处理易挥发、易燃、易爆、有毒的介质。 为减少管束与壳体之间的环隙,可采用滑动式管板结构。
胀接长度取(1)两倍换热管外径;(2)50mm;(3)管板厚度减3mm三者中的最小值。
胀管前后的示意图
管板孔内开环形槽
2、焊接(Welding)
管子与管板间采用焊接连接
优点:连接结构简单、适用范围广;管板的加工 要求低、生产过程简单、生产效率高;管子与管 板选材要求简化、管端不须退火;在压力不高的 场合可使用较薄的管板。
3.1 固定管板式换热器
固定管板式换热器分为刚性结构的固定管板式和带膨胀节的固定管板式两种。换热器壳体和管束 通过两端的管板刚性地连在一起。
固定管板式换热器
带膨胀节的固定管板式换热器
优点:换热器结构简单、造价低,每根管子都能单独更换,管内便于清洗 缺点:管外清洗困难,管壳间有温差应力存在。当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁、不易结垢、温差不大和壳程压力不高的场合。
3.2 浮头式换热器 浮头式换热器中只有一块管板与壳体刚性固定在一起,另一端的管板可在壳体内自由移动。管束 和壳体在不同温度下膨胀自由,互不牵连。
浮头式换热器 优点:这种换热器消除了温差应力的影响,可用于温差较大的两种介质的换热。管程和壳程均能 承受较高的介质压力。管束可从壳程一端抽出,壳程与管程的清洗均很方便。 缺点:由于换热器管束与壳程之间存在较大的环隙,设备的紧凑性差,传热效率较低。结构复杂, 浮头部分由活动管板、浮头盖和勾圈组成,浮头处发生内漏不便检查。金属消耗量大,造价也较 高。
径向翅片管
螺纹管
4.5 管子与管板的连接
管子与管板间的连接是管壳式换热器设计和制造中的主要问题之一。要求连接处有足够的结合力, 工作时气密性要好。常用的连接方法有胀接、焊接和胀焊结合。
1、胀接(Expansion)
胀接是利用胀管器挤压伸入管板孔中的管子端部,使管子发生塑性变形,管板孔同时产生弹性变 形。当取掉胀管器后,管板孔弹性收缩,管板与管子间就产生一定的挤紧压力而紧密地贴在一起, 达到密封、紧固、连接的目的。
3.4 U型管式换热器 换热器的管束弯成U型,U型管两端固定在同一块管板上,在管箱中加有一块隔板。
U型管式换热器 优点:换热器只有一块管板,结构简单,造价便宜。管束可以抽出清洗,管子可以自由膨胀。 缺点:管内不便清洗,管板上布管少,结构不紧凑。管外介质易短路,影响传热效果。内层管子 损坏后不易更换。 U型管式换热器主要用于管内清洁而不结垢的高温、高压介质。壳层介质适应性强,常用于高压、 高温、粘度较大的场合。
间壁式
蛇管式换热器
套管式
管壳式
板面式
沉浸式
喷淋式
板式
螺旋板式
板翅式
管壳式换热器
1 特点 具有处理能力大,适应性强,可靠性高,设计和制造工艺成熟,生产成本低,清
洗较为方便等优点,是目前生产中最为广泛使用的一种换热设备。 2 基本结构
见下图。
管壳式换热器的结构及主要零部件
换热器构件名称
3 分类
管壳式换热器种类很多,根据换热器所受温差应力以及是否采用温差补偿装置,分为刚性结构和 具有温差补偿的两类。常用的管壳式换热器有固定管板式,浮头式,填函式和U型管式。
换热器简介
概述 管壳式换热器
概述
1 概念 换热器是将热流体的部分热量传递给冷流体,使流体温度达到工艺流程规定的指
标的热量交换设备,又称热交换器。
2 分类 2.1 按照用途不同可分为:加热器、过热器、冷却器、蒸发器、冷凝器等。 2.2 根据冷、热流体热量交换的原理和方式可分为间壁式、混合式和蓄热式三类。其 中间壁式换热器应用最多。而板式换热器、管壳式换热器是最为常用的间壁式换热器。
4.4 管子型式的选择(Choose the type of pipe)
管子一般都用光管,因为其结构简单、制造方便,但它强化传热的性能不足。为了强化传热,可 选用特殊型式的管子:
几种异形管
a)扁平管 b)椭圆管 c)凹槽扁平管 d)波纹管
纵向翅片管
a)焊接外翅片管 b)整体式外翅片管 c)镶嵌式外翅片管 d)整体式内外翅片管
常用的碳钢和低合金钢无缝钢管的规格有Ø19×2、 Ø25×2.5、 Ø32×3、 Ø38×3、不锈钢常采用 Ø25×2、 Ø38×2.5。
4.2 管子材料的选择
管子材料应根据设计压力、温度、介质的腐蚀等条件来选择,在满足以上条件的前提下,尽量选 择导热性能好的材料,对于一般介质,可选用普通碳素钢,特别是10、20号无缝钢管。
4 管子的选用
4.1 管子直径的选择
换热管直径的确定要考虑管内介质的物性和管内流速、流量。为了提高传热效率,通常要求管内 流体呈湍流,故一般要求管径较小;而且采用小直径的管子,换热器单位体积的换热面积大些, 设备较紧凑。但制造较麻烦,容易结垢,不易清洗,适用于较清洁的流体。粘度大或污浊的流体, 宜选用大直径的管子。
4.3 管子长度的选择(Choice of pipe length)
管子长度主要根据工艺计算和整个换热器的几何尺寸的布局来确定,管子越长,换热器单位材料 消耗越低。但管子不能太长,否则对流体产生较大阻力,维修、清洗、运输、安装都不方便,管 子本身受力也不好。常用管长规格为1.5、2、2.5、3、4.5、5、6、7.5、9、12m等。
缺点:焊接接头处产生的热应力可能造成应力腐 蚀和破裂;管子与管板间存在着间隙,这些间隙 中的介质会形成死区,造成间隙腐蚀。
缺点:胀接结构随温度的升高,管子或管板材料会产生高温蠕变,使接头处应力松弛或逐渐消失, 使连接处发生泄漏,造成连接失效。因此胀接结构只适用于温度不超过300℃、压力不超过4MPa 的场合。
采用胀接型式接。同时为提高管子与管板的连接质量,也可在管板孔内开一个或二个环形槽。
相关文档
最新文档