模糊控制原理课件 PPT

合集下载

第2章模糊控制论理论基础精品PPT课件

第2章模糊控制论理论基础精品PPT课件

AB, AB
《智能控制基础》 清华大学出版社
求解
AB 0.60.5 0.50.6 10.3 0.40.4 0.30.7
u1
u2
u3
u4
u5
0.6 0.6 1 0.4 0.7 u1 u2 u3 u4 u5
AB 0.60.5 0.50.6 10.3 0.40.4 0.30.7
u1
《智能控制基础》 清华大学出版社
目录
2.1 引言 2.2 模糊集合论基础 2.3 模糊逻辑、模糊逻辑推理和合成 2.4 模糊控制系统的组成 2.5 模糊控制系统的设计 2.6 模糊PID控制器
2.7 模糊控制器的应用
《智能控制基础》 清华大学出版社
2.2 模糊集合论基础
2.2.1 模糊集概念 2.2.2 模糊集合运算 2.2.3 模糊集合运算的基本性质 2.2.4 隶属度函数的建立
补集
对于所有的u∈U ,均有 μB(u)=1-μA(u)
则称B为A的补集,记作BAAc
《智能控制基础》 清华大学出版社
举例
❖已知模糊子集 A 0.6 0.5 1 0.4 0.3 u1 u2 u3 u4 u5 B 0.5 0.6 0.3 0.4 0.7 u1 u2 u3 u4 u5
❖求
《智能控制基础》 清华大学出版社
模糊控制的特点
❖无需知道被控对象的数学模型 ❖与人类思维的特点一致
模糊性 经验性
❖构造容易 ❖鲁棒性好
《智能控制基础》 清华大学出版社
主要内容
❖模糊控制的理论基础
模糊集合论基础 模糊逻辑、模糊逻辑推理和合成
❖模糊控制系统
模糊控制系统的组成 模糊控制系统的设计 模糊PID控制器 模糊控制器的应用

计算机控制系统第5章模糊控制课件

计算机控制系统第5章模糊控制课件

与其隶属
度 A(xi ) 之间的对应关系;“+”也不表示“求和”,而是表示
模糊集合在论域上的整体。
2024/8/6
5
2.几种典型的隶属函数 (1)高斯型隶属函数
( xc)2
f (x; ,c) e 2 2
2024/8/6
6
(2)S形隶属函数
f
(x;
a,
c)
1
1 ea(xc)
2024/8/6
7
(3)梯形隶属函数
第一节 模糊控制系统
一、模糊控制系统的组成
模糊控制系统的结构与一般计算机控制系统基本相似, 通常由模糊控制器、输入输出接口、广义被控对象和测量装 置四个部分组成。
基本模糊控制器
给定值 +
e
-
输 入 量


糊 化
e~



糊 u~


反 模 糊 化 处

输 出 量

u
D/A
A/D
传感器
被控对象
执行机构
所谓论域就是被考虑客体所有元素的集合。在模糊控制系
统中,把模糊控制器的输入变量偏差 e 及其变化率 ec 的实际范
围称为这些变量的基本论域。基本论域内的量为精确量,需要 对它们进行量化处理。
在实际控制系统中,需要通过所谓量化因子进行量化处理, 实现论域变换。量化因子的定义为:
ke
2n be ae
kec
a,
b)
1 2( 2(b
x b
x
a a
)2 )2
ba
0
xa
a a
x b
a x
2
b

《模糊控制系统》PPT课件

《模糊控制系统》PPT课件

是所期望的。这促使我们研究模糊系统作为万能
函数逼近器并拥有最小系统构成的必要条件,从
而使这些必要条件能用于指导模糊系统开发者设
计更紧凑的模糊控制器和模糊模型
• 必要条件设置了需要的输入模糊集、输出模糊集 和模糊规则,表明了模糊系统需要的输入模糊集
和模糊规则的数目依赖于被逼近函数的极值点的
数目和位置
精选ppt
“Fuzzy Sets”一文,首次提出了模糊集合的概念
• 1974年英国教授Mamdani首次将模糊集合理论应
用于加热器的控制,他将基于规则系统的想法与
模糊参数相结合来构造控制器,模仿人类操作者
的操作经验
• 1985年Takagi和Sugeno提出了另一类具有线性规
则后项的模糊控制器,称之为Takagi-Sugeno
(1988, Japan)
• Postsurgical patients
(1989, USA)
• Auto focus video camera
(1990, Japan)
• Washing machines
(1990, Japan)
• Air conditioners
(1990, Japan)
• Anti-shaking video camera
控制规律
• 各种类型的Mamdani和TS模糊系统在过去几年中
都被证明是万能逼近器,它们能一致逼近定义在
闭定义域D上的任意连续函数到任意高的逼近精
度。这些模糊系统有:加法模糊规则系统、模糊
输入—输出控制器、Sugeno模糊控制器的变型、
非独点模糊逻辑系统、一般Mamdani型模糊系统、
采用线性规则后项的TS型模糊系统、广义模糊系

模糊控制算法PPT课件

模糊控制算法PPT课件
模糊控制理论在
-
1
一、概述
二、在汽车上的应用方面
三、举例说明在汽车空调当中的应用
四、简要介绍在其他方面的应用
-
2
一、概 述
1、什么叫模糊控制?
所谓模糊控制,就是对难以用已有规律描述的复 杂系统,采用自然语言(如大、中、小)加以叙 述,借助定性的、不精确的及模糊的条件语句来 表达,
模糊控制是一种基于语言的一种智能控制
正小PS(Positive Small)、
正中PM(Positive Medium),
正大PB(Positive Big),
则:
T(E)= {NB,NM,NS,- ZE,PS,PM,PB}
13
X
建立隶属函数:
各参数对相应子集的隶属函数分别由不同的函数族决定。参数的相应 子集指该参数被人为地划分成的等级所构成的一组模糊集合。相应子 集的多少,由控制精度决定。
-
8
3、模糊控制的特点
①适用于不易获得精确数学模型的被控 对象,
②是一种语言变量控制器 ③从属于智能控制的范畴。该系统尤其 适于非线性,时变,滞后系统的控制 ④抗干扰能力强,响应速度快,并对系 统参数的变化有较强的鲁棒性。
-
9
二、模糊控制在汽车的应用方面
1、ABS防抱死系统工况的多变及轮胎的非线性 2、汽车巡航系统外界负荷的扰动、汽车质量和传动系效率的不确
-
12
模糊控制是基于语言的控制 模糊语言集的组成: T(E)
T(E)={负大,负中,负小,零,正小,正中,正大}
用模糊语言变量E 来描述偏差,
或用符号表示
负大NB(Negative Big)、
负中NM(Negative Medium)、

模糊控制原理课件

模糊控制原理课件

模糊推理机:根 据模糊规则进行 推理,得出模糊 输出
去模糊化器:将 模糊输出转换为 精确输出
模糊控制的应用领域
工业控制:用 于控制复杂或 非线性系统的 过程,如化工、 冶金和电力等。
智能家居:用 于控制家庭设 备的自动化系 统,如智能空 调、智能照明 和智能安防等。
医疗保健:用 于医疗设备的 控制,如医疗 机器人、康复 设备和诊断设
模糊控制在其他领域的应用案例
工业控制:用 于控制复杂或 非线性的系统, 如化工、冶金
和电力等。
智能交通:用 于控制交通信 号灯,提高交 通流畅度和安
全性。
医疗护理:用 于智能诊断和 机器人手术, 提高医疗效率
和精度。
农业科技:用 于智能灌溉和 温室控制,提 高农业生产效
率和品质。
Part Seven
备等。
交通领域:用 于控制交通工 具,如自动驾 驶汽车、无人 机和船舶等。
Part Three
模糊集合与模糊逻 辑
模糊集合的定义与运算
模糊集合:模糊集合是由模糊元素组成的集合, 元素属于集合的程度不再是传统意义上的0或1, 而是一个介于0和1之间的实数。
模糊集合的运算:模糊集合可以进行类似于普通 集合的运算,如交、并、补等,但运算结果不再 是传统意义上的集合,而是模糊集合。
模糊规则库:根 据实际需求和经 验,制定模糊规 则,建立模糊规 则库
模糊推理:根据 输入的模糊集合 和模糊规则库, 进行模糊推理, 得到输出模糊集 合
反模糊化方法: 将输出模糊集合 反模糊化,得到 精确的控制量
反模糊化方法的选择与优化
反模糊化方法:根据输入变量的数量和类型选择合适的反模糊化方法,如最大值、最小值、平 均值等。

模糊控制ppt课件

模糊控制ppt课件

糊控制的维数。
可编辑课件PPT
10
(1)一维模糊控制器 如图所示,一维模糊控制器的 输入变量往往选择为受控量和输入给定的偏差量E。由 于仅仅采用偏差值,很难反映过程的动态特性品质, 因此,所能获得的系统动态性能是不能令人满意的。 这种一维模糊控制器往往被用于一阶被控对象。
可编辑课件PPT
11
(2)二维模糊控制器 如图所示,二维模糊控 制器的两个输入变量基本上都选用受控变量和 输入给定的偏差E和偏差变化EC,由于它们能 够较严格地反映受控过程中输出变量的动态特 性,因此,在控制效果上要比一维控制器好得 多,也是目前采用较广泛的一类模糊控制器。
可编辑课件PPT
8
综上所述, 推理结果的获得,表示模糊控制的规 则推理功能已经完成。但所获得的结果仍是一个模 糊矢量,不能直接用来作为控制量,还必须作一次 转换,求得清晰的控制量输出,即为解模糊。 至 此 , 模糊控制器实际上就是依靠微机(或单片机)来 构成的。它的绝大部分功能都是由计算机程序来完 成的。随着专用模糊芯片的研究和开发,也可以由 硬件逐步取代各组成单元的软件功能。
7
3. 推理与解模糊接口
推理是模糊控制器中,根据输入模糊量,由模 糊控制规则完成模糊推理来求解模糊关系方程,并 获得模糊控制量的功能部分。在模糊控制中,考虑 到推理时间,通常采用运算较简单的推理方法。最
基本的有Zadeh近似推理,它包含有正向推理和逆 向推理两类。正向推理常被用于模糊控制中,而逆 向推理一般用于知识工程学领域的专家系统中。
系统的指令信号为恒定值,通过模糊控制器消除外界 对系统的扰动作用,使系统的输出跟踪输入的恒定值。 也称为“自镇定模糊控制系统”,如温度模糊控制系统。 (2)随动模糊控制系统
系统的指令信号为时间函数,要求系统的输出高精度 、快速地跟踪系统输入。也称为“模糊控制跟踪系统”或“ 模糊控制伺服系统”。

《模糊控制基础》PPT课件

《模糊控制基础》PPT课件
第5章 模糊控制基础
➢ 5.1 模糊语言 ➢ 5.2 模糊控制的系统结构 ➢ 5.3 精确量的模糊化 ➢ 5.4 模糊量的精确化 ➢ 5.5 模糊控制规则和控制算法
2020/11/20
1
引言
模糊控制 把模糊数学理论用于自动控制领域而产生的控制方法。 两个阶段 1974 ~ 1979 简单模糊控制阶段 算法脱机工作 推理过程处理成推理表 自适应能力与鲁棒性有限 1979 ~ 现在 自完善模糊控制阶段 语言自组织模糊控制器 硬件化的模糊集成电路组成的模糊控制器 将来 模糊计算机结合模糊软件
不具有确定性,比较模糊,如身 高问题(亚洲和欧洲人的身高)。
6
5.1 模糊语言
模糊语言 语言定义:在有限字符集上的字符序列(字符串)的集合。 模糊语言FL定义为一个四元组:
其中:
1. U为语言主题的全体对象,即论域;
2.
3.
TE是为语构言成成语分言或成者分说的F“字L项符”集的中U模的,T糊字,集符E合所,;构N成的所有字符序列的集合;
,
微A (
y)
( 12 H A
y)
A( y)
5.1 模糊语言
语气算子举例
温度高
温度较高
温度很高 强化算子的作用示意图
温度高 淡化算子的作用示意图
2020/11/20
13
5.1 模糊语言
模糊化算子F
模糊化算子是用来使语言中某些具有清晰概念的单词或者词组的语义模 糊化,或者是将原来已经是模糊概念的词义更加模糊化。如“大概”、 “近似于”。
式中, 是U上的模糊相似关系,当U为实数集时,取:
F : F (U ) F (U )
A FA
FA
(
y)

模糊控制PPT课件

模糊控制PPT课件
应用。
其他领域
如农业、医疗、环保等 领域的智能化控制。
模糊控制基本原理
01
02
03
04
模糊化
将输入变量的精确值转换为模 糊语言变量的过程,通过隶属
度函数实现。
模糊推理
根据模糊控制规则和当前输入 变量的模糊值,推导出输出变
量的模糊值。
去模糊化
将输出变量的模糊值转换为精 确值的过程,通过去隶属度函
数实现。
基于仿真实验的分析方法
通过搭建模糊控制系统的仿真模型,模拟系统的运行过程并观察其输出响应。根据输出响应的变化情况 来判断系统的稳定性。这种方法可以直观地展示系统的动态特性,但需要消耗较多的计算资源。
提高模糊控制系统稳定性措施
要点一
优化模糊控制规则
通过调整模糊控制规则中的参数和隶 属度函数形状,可以改善系统的控制 性能并提高稳定性。例如,增加控制 规则的数量、调整隶属度函数的分布 等。
借鉴物理退火过程,避免陷入局部最优解。
05
模糊控制系统稳定性分析
稳定性概念及判定方法介绍
稳定性概念
指系统受到扰动后,能够恢复到原来平衡状态的能力。对于模糊控制系统而言,稳定性是评价其性能的重要指标 之一。
判定方法
包括时域法、频域法和李雅普诺夫法等。其中,时域法通过观察系统状态随时间的变化来判断稳定性;频域法通 过分析系统频率响应特性来评估稳定性;李雅普诺夫法则是基于能量函数的概念,通过构造合适的李雅普诺夫函 数来判断系统的稳定性。
化工生产过程控制
采用模糊控制方法对化工生产过程 中的反应温度、压力、流量等参数 进行精确控制,确保生产安全和产 品质量。
智能交通系统领域应用案例
城市交通信号控制
运用模糊控制理论对城市交通信 号灯的配时方案进行优化设计, 提高道路通行效率和交通安全水

模糊控制原理课件 PPT

模糊控制原理课件 PPT
根据学习算法获取控制规则。应用自适应学习算法(神经 网络等)对控制过程的样本数据进行分析和聚类,生成和在 线优化较完善的控制规则。
3.1 模糊控制的基本原理
规则库
规则库的基本要求
规则数量合理 控制规则的增加可以增加控制的精度,但是会影响系统的实时 性;控制规则数量的减少会提高系统的运行速度,但是控制的 精度又会下降。所以,需要在控制精度和实时性之间进行权衡
模糊控制规则的生成方法归纳起来主要有以下几种:
根据专家经验或过程控制知识生成控制规则。这种方法通 过对控制专家的经验进行总结描述来生成特定领域的控制规 则原型,经过反复的实验和修正形成最终的规则库。
根据过程的模糊模型生成控制规则。这种方法通过用模糊 语言描述被控过程的输入输出关系来得到过程的模糊模型, 进而根据这种关系来得到控制器的控制规则。
模糊控制原理
孙健
第三章 模糊控制原理
模糊控制的基本原理 模糊控制系统的分类 模糊控制器设计 模糊控制的应用
第三章 模糊控制原理
3.1 模糊控制的基本原理
3.1.1 模糊基本思想
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础 的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过 程的一种智能控制方法。
反模糊化 u D/A
电磁阀
热水器水温模糊控制系统结构
3.1 模糊控制的基本原理
模糊控制原理框图
3.1 模糊控制的基本原理
3.1.2 模糊控制器的基本结构
模糊化 知识库 模糊推理 反模糊化
过过过
+ -


确 值

糊 值


过过过过
模 糊

精 确
值过 值

计算机控制技术-第六章-模糊控制技术PPT课件

计算机控制技术-第六章-模糊控制技术PPT课件
第六章 模糊控制技术
在日常生活中,人们通常用“较少”、“较多”、“小一 些”、“很小”等等模糊语言来进行控制。
比如:当我们拧开水阀向水桶放水时: * 桶里没有水或水较少时,应开大水阀; * 桶里水较多时,水阀应拧小一些; * 水桶快满时,应把阀门拧很小; * 水桶里的水满时,应迅速关掉水阀。
2/19/2020
6.2、常见的模糊规则及控制器类型 6.3、模糊控制器结构及其设计 6.4、模糊控制的发展
2/19/2020
计算机控制技术
4
6、1 模糊控制发展概况
模糊是人类感知万物,获取知识,思维推理,决策实施的重 要特征。
模糊比清晰所拥有的信息量更大,内涵更丰富,更符合客观 世界。
1965年,美国著名学者加利福尼亚大学教授Zedeh首先提出了 模糊控制理论。《Fuzzy Set》、《Fuzzy Algorithm》、 《A Rational for Fuzzy Control》
计算机控制技术
1
经典控制理论:PID、DDC
1、一般控制、线性定常系统(线性时不变系统) 2、线性时不变系统的性质:DEMO
智能控制理论:具有模拟人类学习和自适应能力的控制系统(IEEE) 1、复杂被控对象(过程):难以建模、测试,传统控制理
论和现代控制理论难以奏效,但在人工操作下却往往能 正常工作并达到预期效果。 2、人的手动控制策略是通过操作者的学习、试验及长期经 验积累而成。
2/19/2020
计算机控制技术
2
· 思考: 锅炉工,初中毕业,无法给出数学模型,
但可以将锅炉控制得很好?
模糊控制
经验控制
模糊控制:不需要知道被控对象的精确模型。 基于人的经验的智能控制。
2/19/2020
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Kec选的较大时,系统的超调变小,系统的响应速度变慢。
Ku选的过小时,系统动态响应过程变长,选择过大会导致系 统振荡。 Ku影响着控制器的输出,能过调整Ku可以改变被控 对象输入的大小。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定语言变量的语言值 通常在语言变量的论域上,将其划分为有限的几档。 例如,可将E、EC和U的划分为 {“正大(PB)”,“正中(PM)”,“正小(PS)”, “零(ZO)”,“负小(NS)”,“负中(NM)”, “负大(NB)”}七档。
档级多,规则制定灵活,规则细致,但规则多、复杂, 编制程序困难,占用的内存较多; 档级少,规则少,规则实现方便,但过少的规则会使 控制作用变粗而达不到预期的效果。 因此在选择模糊状态时要兼顾简单性和控制效果。
3.1 模糊控制的基本原理
对输入量进行模糊化处理,包括确定语言变量和隶属函数
确定隶属函数(原则)
?
为了提高实时性,模糊控制器常常以控制查询表的形式出现。 该表反映了通过模糊控制算法求出的模糊控制器输入量和输 出量在给定离散点上的对应关系。为了能方便地产生控制查 询表,在模糊控制器的设计中,通常就把输入输出的论域定 义为有限整数的离散论域。
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
输入量和输出量论域的设计
同理,假如误差变化率的连续取值范围是ec=[ecL,ecH] ,控制量的连
续取值范围是u=[uL,uH] ,则量化因子kec和比例因子ku可分别确定如
下:
kec
2n ecH ecL
ku
uH uL 2l
在确定了量化因子和比例因子之后,误差e和误差变化率ec可通过 下式转换为模糊控制器的输入E和EC:
有关论域的选择问题,一般误差论域m≥6,误差变化 论域n≥6,控制量的论域l≥7。
这是因为语言变量的词集多半选为七个(或八个)这 样能满足模糊集论域中所含元素个数为模糊语言词集 总数的二倍以上,确保模糊集能较好地覆盖论域,避 免出现失控现象。
道理上讲,增加论域中的元素个数,即把等级细分, 可以提高控制精度,但受到计算机字长的限制,另外 要增加计算量。把等级分得过细,显得必要性不大。
人类的控制规则 如果水温比期望值高,就把燃气阀关小; 如果水温比期望值低,就把燃气阀开大。
描述了输入(水温与期望值的偏差 e)和输出(燃气阀开度的增 u) 之间的模糊关系R
3.1 模糊控制的基本原理
模糊值
规则库R
模糊值
模糊化
输入e
输出u
模糊推理
精确值
精确值
期望值 +
e A/D

温度 传感器
热水器
模糊化处理方法
模糊单点或单点模糊集合
如果输入值x0是准确的,那么通常将其模糊化为模糊单点,

A(x)10
xx0 xx0
离散化的输入论域 将确定的隶属函数曲线离散化,得到有限个点上的隶属度, 便构成了一个相应的模糊变量的模糊子集。
Eke(eeH2 eL) E Ck ec (e ceH c2 eL c)
式中,< >代表取整运算(四舍五入)。
3.1 模糊控制的基本原理
输入量和输出量论域的设计
模糊控制器的输出U可以通过下式转换为实际的输出值u:
ukuUuH2uL
Ke选的较大时,系统的超调变大,过渡过程变长。 Ke增大, 相当于缩小了误差的基本论域,增大误差变量的控制作用。
反模糊化 u D/A
电磁阀
热水器水温模糊控制系统结构
3.1 模糊控制的基本原理
模糊控制原理框图
3.1 模糊控制的基本原理
3.1.2 模糊控制器的基本结构
模糊化 知识库 模糊推理 反模糊化
过过过
+ -


确 值

糊 值


过过过过
模 糊

精 确
值过 值


过过
模糊控制器
模糊控制器的构成框图
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
Page 9
3.1 模糊控制的基本原理
模糊化
将输入的精确量转化成为模糊量的过程称为模糊化
模糊化步骤
确定符合模糊控制器要求的输入量和输出量 常用的输入量是系统输出的误差(e)和误差的改变量 (ec),而输出量就是控制量(u)。
3.1 模糊控制的基本原理
模糊控制原理
孙健
第三章 模糊控制原理
模糊控制的基本原理 模糊控制系统的分类 模糊控制器设计 模糊控制的应用
第三章 模糊控制原理
3.1 模糊控制的基本原理
3.1.1 模糊基本思想
模糊控制是以模糊集理论、模糊语言变量和模糊逻辑推理为基础 的一种智能控制方法,它是从行为上模仿人的模糊推理和决策过 程的一种智能控制方法。
操作人员或专家的控制经验是如何转化为数字控制器的 ?
控制思想: 如果水温偏高,就把燃气阀 关小;如果水温偏低,就把 燃气阀开大。
人类对热水器水温的调节
3.1 模糊控制的基本原理
模仿人类的调节经验,可以构造一个模糊控制系统来实现对热水器的控制。 用一个温度传感器来替代左手进行对水温的测量,传感器的测量值经 A/D变换后送往控制器。 电磁燃气阀代替右手和机械燃气阀作为执行机构,电磁燃气阀的开度 由控制器的输出经D/A变换后控制。 构造控制器,使其能够模拟人类的操作经验。
3.1 模糊控制的基本原理
输入量和输出量论域的设计
如何实现实际的连续域到有限整数离散域的转换?
通过引入量化因子ke、kec和比例因子ku来实现
期望值
+ - y
e
d/dt
E
ke
ec
kec
EC
模糊 U 控制器
u
ku
实际中误差的连续取值范围是e=[eL,eH],则:
ke
2m eH eL
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
基本论域
e ec u 的实际范围称为这些变量的基本论域
e的基本论域: [eL eH] ec的基本论域: [ecL ecH] u的基本论域: [uL uH]
精确量
3.1 模糊控制的基本原理
模糊化
输入量和输出量论域的设计
在模糊控制器的设计中,通常就把输入、输出量的论域定义 为有限整数的离散论域。例如,可以将E的论域定义为{-m, m+1, …, -1, 0, 1, …, m-1, m};将EC的论域定义为{-n, n+1, …, -1, 0, 1, …, n-1, n};将U的论域定义为{-l, -l+1, …, -1, 0, 1, …, l-1, l}。
相关文档
最新文档