变频调速三相异步电动机恒转矩及恒功率特性的控制(精)

合集下载

变频调速三相异步电动机恒转矩及恒功率特性的控制(精)

变频调速三相异步电动机恒转矩及恒功率特性的控制(精)
2002年第3期(总第112期) 2002年9月30日出版
(EXPLOSION-PROOFELECTRICMACHINE)防爆电机
变频调速三相异步电动机恒转矩及恒功率特性的控制
振宇
电机股份,(154002)
摘要阐述变频调速三相异步电动机在低频(f<50Hz)时的恒转矩特性及高频(f>50Hz)时的恒功率特性的控制。
年第3期(总第112期)
防爆电机(EXPLOSION-PROOFELECTRICMACHINE) 2002
2002年9月30日出版
由于X10+X20 =2 f(L10+L20 ,考虑f1较高时(接近额定时),(X10+X20 ) R1
则有:
Tmax=C(
U12
)f1
(3)
3恒功率特性的控制
电动机输出功率:
===TeU1e2U1e1Te max
()f1e
U1f1U1e=f1e
当恒转矩负载时,有
U1U1e
f1=f1e=K
由式1可知
U1
=4 44Kw1N1 m=C mf1
(5)
f eTe
由此可知,如果能保证U1 f1=K,K为常数,则可保持在调整过程中电动机的功率恒定。
值得注意的是:电动机在额定频率以下调速时,受磁路饱和的限制,实现恒功率调速是不可行的;另一方面电动机在高于额定频率以上调速时,要实现理想的恒功率调速也是困难的。因为要满足式(7)规定的条件,定子电压必将与1成正比升高,电动机的绝缘寿命、铁损、温升都将是恒功率调速的障碍。故变频调速系统大都作为恒转矩调速系统来使用。
Keywords Variable frequencyadjustable speed,Constanttorquecharacteristic,Con stantoutputcharacteristic,Control.

异步电动机变频调速的控制方式和机械特性

异步电动机变频调速的控制方式和机械特性

af<1
Te
图6-1 U1/f1=常数时的近似
恒转矩机械特性
3
2020/9/8
•保持常数的严格恒磁
通(转矩)控制方式
和机械特性
最大转矩 Temn 4f1n
3pU 12n R1 R12
Xl2n
机械特性曲线如下图所示
n af=1 f1n U1n af<1
Tem Te
图6-2 保持Eg/f1=常数的恒转 矩机械特性
磁通表达式
m4.4fE 4 1N g1KN14.4fU 4 1N 11KN1
2020/9/8
2
2020/9/8
保恒持磁U通1/(f1转常矩数)的控近制似
方式和机械特性
由于 m
Eg f1
U1 f1
故调节f1时,比例调节
U1的大小,可以近似实现磁通常数。
机械特性曲线如图所示。
n
af=1 f1n U1n
4
保控制持方pm=式常和数机的械恒特功性率
PmTe•w1常数
2020/9/8
5
小结Βιβλιοθήκη 2020/9/86
异步电动机变频调速的控制方 式和机械特性
保持u1/f1为常数的近似恒磁通(转矩)控制方式 和机械特性 保持Eg/f1为常数的严格恒磁通(转矩)控制方式 和机械特性 保持 pm为常数的恒功率控制方式和机械特性
2020/9/8
1
为什么在基频以下调 速要保持u1/f1为常数
异步电动机的转速表达
n6p0f11sno(1s)

三菱变频器对异步电动机调速控制-三相异步电动机调速控制系统设计

三菱变频器对异步电动机调速控制-三相异步电动机调速控制系统设计
编号
无锡太湖学院
毕业设计(论文)
题目:三菱变频器对异步电动机调速控制-三相异步电动机调速控制系统设计
信机系机械工程及自动化专业
学号:
学生姓名:
指导教师:(职称:副教授)
(职称:)
2013年5月25日
无锡太湖学院本科毕业设计(论文)
诚信承诺书
本人郑重声明:所呈交的毕业设计(论文)三菱变频器对异步电动机调速控制— 三相异步电动机调速控制系统设计是本人在导师的指导下独立进行研究所取得的成果,其内容除了在毕业设计(论文)中特别加以标注引用,表示致谢的内容外,本毕业设计(论文)不包含任何其他个人、集体已发表或撰写的成果作品。
三、本设计(论文或其他)应达到的要求:
①熟练地掌握电动机的原理和控制的方法。
②熟练掌握三菱变频器的安装及其原理。
③熟练掌握三菱变频器对异步电动机的调速。
④掌握电动机与变频器之间的连接和注意事项。
⑤能够熟练掌握CAD对电路图等等的绘制。四、接受任务学生:
机械93班姓名
五、开始及完成日期:
自2012年11月7日至2013年5月25日
关键词:三相异步电动机;三菱变频器;变频调速
A
With the increasing application of VVVF asynchronous motors in the domestic and foreign markets, since the middle of 90's, China's motor manufacturers design, development and production is suitable for various series of Variable-Frequency Adjustable-Speed Three-Phase Asynchronous Motor, different applications such as: General VVVF motor series, crane and metallurgical VVVF motor series, flameproof inverter motor series, VVVF elevator motor series, roller VVVF motor series, inverter-fed motor series. Judging from the current situation, these series motors can basically meet the needs of the domestic market is the principle when the stator winding through three symmetrical three-phase current, stator and rotor rotating magnetic field is generated, according to the right-hand rule, the rotor winding induced electromotive force, the winding is closed, so generate induction current, according to the left, the rotor winding is equivalent to space winding, and electromagnetic torque, starting motor magnetic torque is greater than the resistance of synthesis of torque,, the focus is variable frequency speed control of three-phase asynchronous motor, hand when F1 < fN, for constant torque speed, torque is not changed, the rated speed is reduced, increase the starting torque of Tst, on the other hand, when F1 > fN, for constant power speed, speed regulation and constant power, rated speed increased, reduce the starting torque Tst. VVVF can achieve smooth speed wide range, frequency conversion motor with simple structure, good performance of speed regulation, high speed adjustment, more and more extensive application. The main of this paper is to utilize Mitsubishi inverter frequency, speed control of three-phase asynchronous motor.

三相异步电动机的调速

三相异步电动机的调速

m1 p U1 2 1 ( ) 常数 ' 4 f1 2 ( L1 L2 ) Te max的降低是由定子绕组电阻 r 的影响所致。尤其是当 f1 低到使得 r 由上式可见, 1 1 ( x1 x2 ) 相比较时, Te max下降严重。 可以与 Te max
解决措施: 可以对 U1 / f1的线性关系加以修正,提高低频时的 U1 / f1 ,以补偿 低频时定子绕组电阻压降的影响(见下图)。
TY 9550PY 9550PYY ( ) /( ) 1 TYY n1 2n1
结论:Y/YY接变极调速属于恒转矩调速方式。
第12章 三相异步电动机的调速
b、△/YY接变极调速
假定变极调速前后电机的功率因数 cos1 、效率 均不变,并设每半相绕组中的电 流均为额定值 I 1N ,则 /YY变极前后电动机的输出功率和输出转矩分别满足下列关系:
改变极对数p都是成倍的变化,转速也是成倍的变化,故为有级调速。 改变定子绕组的联结法改变绕组极对数的原理。 见下页图12-1,12-2
第12章 三相异步电动机的调速
三相异步电动机的转子转速可由下式给出:
60 f1 n (1 s) p
由上式可见,三相异步电动机的调速方法大致分为如下几种: 变极调速; 变频调速; 改变转差率调速; 其中,改变转差率的调速方法涉及: 改变定子电压的调压调速; 绕线式异步电动机的转子串电阻调速; 电磁离合器调速; 绕线式异步电动机的双馈调速与串级调速。
由此绘出保持U1 / f1=常数时变频调速的典型机械特性如下图所示。为便于比较,图 中还同时绘出了 Te max 常数时的机械特性,如图中的虚线所示。
三相异步电动机变频调速时 的机械特性( U1 / f1 =常数)

三相异步电动机的调速

三相异步电动机的调速

三相异步电动机的调速
设:变极前后电源线电压UN及每个半相绕组的电流IN不变
Y/yy 变极后,极对数减半,转速增加一倍,输出功率增大一倍 ,输出转矩不变,属于恒转矩调速性质。适用于拖动起重机、 电梯、运输带等恒转矩负载的调速。
三相异步电动机的调速
2.Δ / yy变极调速
变极前顺串2p=4 Δ 型接线
Tyy 2 n 2 n 0.577 T 9550P / n 3 n yy 3 2n 9550P YY /n yy
用相电压相电流计算功率
Δ / yy变极调速后,极数减半,转速增加一倍,转矩近似减 小一半,功率近似保持不变。属于恒功率调速性质,适用于 车床切削加工。
三相异步电动机的调速
三相异步电动机的调速
一、变极调速
(一)变极原理
a) 顺串 p=2
b) 反串
p=1
c)反并 p=1
三相异步电动机的调速
三相异步电动机的调速
三相异步电动机的调速
变极原理: 只要将两个“半相绕组”中的任一个“半相绕
组”中的电流反向,就可以将极对数增加一倍(顺串)或减少一
倍(反串或反并)。若极对数减少一半,同步转速就提高一倍 ,电动机转速也几乎升高一倍。
为保证变极调速前后,电动机旋转方向不变,在改变绕
组接线的同时,必须将V、W两相出线端对调,使电动机接入
电源的相序改变。
原因:由于电机定子的圆周上,电角度是机械角度的p倍, 当即对数改变时,必然引起三相绕组的空间相序发生变化,为 保证变极调速前后,电机的旋转方向不变,在改变定子绕组接 线方式的同时,必须将V、W两相出线端对调。
U1≈E1=4.44f1N1K1Φ m
当f1下降,U1不变时,Φm增加,磁路进入饱和段,使I 0急 剧增大,电动机温升过高,使过载能力变小。因此调频时要求f 和U成正比例调节。 当f1上调,U1不能上升(U1不能大于额定电压),Φm下降, 导致电磁转矩和最大转矩下降,影响电动机的过载能力。

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与 应用(616G5)

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与            应用(616G5)

三相异步电动机(7.5KW电机)变频调速带PG闭环失量控制系统参数的设置与应用(616G5)学校:华北电力大学院系:专业:电气工程及其自动化指导教师:姓名:学号:引言由于电力电子技术的不断发展和进步,伴随着新的控制理论的提出与完善,使交流调速传动,尤其是性能优异的变频调速传动得到飞速的发展。

近年来,变频器的售价不断下降,而其使用功能却不断提升和扩大变频器的大量推广使用,在节能、省力化、自动化及提高生产率、提高质量、减少维修和提高舒适性等多方面都取得了令世人瞩目的应用效果。

1目录一、交流调速系统概述 (3)二、变频调速系统 (4)三、变频器的原理 (6)四、电机选择及参数 (9)五、旋转编码器选择及参数 (11)六、安川变频器(616g5)结构形式 (12)七、安川变频器(616g5)参数设定 (13)八、结束语 (20)参考文献: (21)一、交流调速系统概述调速系统的发展三相交流电机自十九世纪发明以来走过了100多年历史,电力拖动控制技术也随之日渐成熟,已从最初直接起动发展成目前的变频调速。

电机在恒压下直接起动时电流约为其额定值的4-7倍,电机转速要在很短时间内从零升至额定值将产生很大冲击,且在起动瞬间大电流作用下,会引起电网压降,甚至严重影响电网内其它设备正常运行。

为此,改善电机起动状态,使之处于低或无冲击及平滑柔和环境,各种限流起动的方法便应运而生。

变频调速技术是随交流电机无级调速的需要而诞生的。

20世纪60年代后半期开始,电力电子器件从SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物半导体场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MCT(MOS控制晶体管)、MCT(MOS控制晶闸管)发展到今天的IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管),器件更新促使电力变换技术的不断发展。

从20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视,到20世纪80年代作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。

三相异步电机的调速

三相异步电机的调速

一.基频以下变频调速 A),保持 为常数
上式对s求导,即 有最大转矩和临界转差率为
一.基频以下变频调速 B),保持 为常数 为防止磁路的饱和,当降低定子电源频率时,保持 为常数,使气 隙每极磁通 为常数,应使电压和频率按比例的配合调节。这时,电动 机的电磁转矩为 上式对s求导,即 有最大转矩和临界转差率为
当某一瞬间电势的极性 与 或同相时,有转子回路电流为
反相
式中“–”号表示 与 反相,“+”号表示 与 同相。异步电动机的电磁 转矩为
当电动机定子电压及负载转矩都保持不变时,转子电流可看成常数;同时考虑到电 动机正常运行时s很小,sx2《 r2 忽略sx2 则: 在负载转矩 一定的条件下,若 转子串入 与 反相,则
变频调速原理及其机械特性
改变异步电动机定子绕组供电电源的频率 ,可以改变同步 转速n 1 ,从而改变转速。如果频率 连续可调,则可平滑的调 节转速,此为变频调速原理。
三相异步电动机运行时,忽略定子阻抗压降时,定子每相电 压为 如果降低频率 ,且保持定子电源电压 不变,则气隙每 极磁通 将增大,会引起电动机铁芯磁路饱和,从而导致过大 的励磁电流,严重时会因绕组过热而损坏电机,这是不允许的。 因此,降低电源频率 时,必须同时降低电源电压 ,以达到控 制磁通 的目的。对此,需要考虑基频(额定频率)以下的调 速和基频以上调速两种情况
三相异步电动机的调速
根据三相异步电动机的转速公式为
通过上式可知,改变交流电机转速的方 法有三种 1.变转差率调速:改变s实现调速; 2.变极调速:改变p来实现调速 3.变频调速:改变f1实现调速
三相异步电动机的调速
改变转差率的方法很多,常用的方案有改变异步电动机的定子 电压调速,采用电磁转差(或滑差)离合器调速,转子回路串电 阻调速以及串极调速。前两种方法适用于鼠笼式异步电动机,后 者适合于绕线式异步电动机。这些方案都能使异步电动机实现平 滑调速,但共同的缺点是在调速过程中存在转差损耗,即在调节 过程中转子绕组均产生大量的钢损耗( )(又称转差功 率),使转子发热,系统效率降低;主要存在调速范围窄、效率低, 对电网污染较大,不能满足交流调速应用的广泛需求; 改变电机的极数的调速,无法实现连续调速,并且接线麻烦, 应用的场合少;但价格便宜; 改变频率进行调速是最理想的,但这个梦想经历了百年之久, 直至20世纪70年代,大功率晶体管(GTR)的开发成功,才实现 变频调速,随着电子技术和计算机技术的日益发展变频调速技术 日益成熟,应用得越来越广泛了

三相异步电动机的控制

三相异步电动机的控制

三相异步电动机的转速与电源频率成 正比,当电源频率增加时,转速增加; 反之,转速降低。
转矩的产生
转矩是由于旋转磁场与转子导体之间 的相对运动而产生的,转矩的大小取 决于旋转磁场的磁通密度和转子导体 的电流。
结构特点
01
02
03
定子
定子是电动机的固定部分, 由铁芯和绕组组成,绕组 通电后产生旋转磁场。
通过改变电源频率实现调速。
详细描述
通过改变电动机输入电源的频率,从而改变电动机的同步转速,实现调速。变频调速具 有调速范围广、平滑性好、效率高的优点,且能够实现精确控制,但需要使用专门的变
频器设备,成本较高。
04
三相异步电动机的保护与监测
过载保护
总结词
过载保护是防止电动机过载运行,导 致设备损坏或降低使用寿命的重要措 施。
总结词
平稳、减小机械冲击、延长使用寿命
详细描述
软启动控制是通过控制电动机的输入电压或电流,使电动机在启动过程中实现平稳加速或减速,减小 机械冲击和振动。常用的软启动方法有晶闸管软启动、电子式软启动和智能软启动等。这种控制方式 可以延长电动机的使用寿命,适用于需要平滑启动和停止的场合。
变频启动控制
总结词
详细描述
过载保护通常通过热继电器实现,当 电动机运行过程中出现电流过大时, 热继电器会根据电流产生的热量变化 ,自动切断电源以保护电动机。
短路保护
总结词
短路保护是防止电动机在发生短路故 障时受到损坏的重要措施。
详细描述
短路保护通常通过断路器或熔断器实 现,当电动机或电路中出现短路故障 时,断路器或熔断器会迅速切断电源, 以防止短路电流对电动机造成损坏。
城市轨道交通
在城市轨道交通系统中,三相异步电动机作为列车牵引电机,实 现列车的高速和稳定运行。

三相异步电动机的调速方法与特性

三相异步电动机的调速方法与特性

里仅就其原理做简要介绍。
变极调速的电动机往往
被称为多极电动机,其定子
绕组的接线方式很多,其中 常见的一种是角接/双星接, 即△/YY,如图所示。
图变极调速定子接线图
由定子绕组展开图知: 只要改变一相绕组中一半元 件的电流方向即可改变磁极 对数。当T1、T2、T3外接三 相交流电源,而T4、T5、T6 对外断开时,电动机的定子 绕组接法为△,极对数为2P, 当T4、T5、T6外接三相交流 电源,而T1、T2、T3连接在 一起时,电动机定子绕组的 接法为YY,极对数为P,从 而实现调速,其控制电路图 如所示。
1.定子调压调速
图为定子调压的机械特性曲线, 由图可知对恒转矩负载而言,其调 速范围很窄,实用价值不大,但对 于随转通速风的机变负化载而而变言化,,其如负图载中转虚矩线TL 所示。可见其调速范围很宽,所以 目前大多数的风扇采用此法。
但是这种调速方法在电动机转 速较低时,转子电阻上的损耗较大, 使电动机发热较严重,所以这种调 速方法一般不宜在低速下长时间运 图 行。
定子调压调速 机械特性曲线
2.转子串接电阻调速
该方法仅适用于绕线形异步
电动机,其机械特性如图所示。
图中曲线是一Βιβλιοθήκη 电源电压不变,而转子电路所串电阻值不同的机
械特性曲线。从图中不难看出,
当串入电阻越大时,稳定运行速 度越低,且稳定性也越差。
转子串电阻调速的优点是方
法简单,设备投资不高,工作可
靠。但调速范围不大,稳定较差,
em
L
实现降速的调速。
当附加电动势的相位与转子电动势相位相同时,

E
正值,使串电动势后的转子电流大于原来的电流,
f

>Tem , TL

机车三相异步电动机调速特性—变频调速的特性

机车三相异步电动机调速特性—变频调速的特性

变频调速的特性
在通常情况下,等值电路中的Xm>>X1和X‘2,Im很小,则I1≈I’2,
这样电流公式可以简化为:
I1 I '2
U1
( R1
R'2 S
)2
(X1
X '2
)2
上式代入:
T
mp
2f1
I '22
R'2
/
S
电磁转矩为:
T
m p (U1 )2
2 f1
( SR1
R'2
Sf1 R'2 ) S2(X1
I'2
SE 1 R'2
E1 f2 R'2 f1
且在恒功率范围内,U1已提高到一定数值,可认为U1≈E1,故得
T
mp
2R'2
(U1 f1
)2
f2
或:
Tf1 KU12
f2 f1
K (U12 f1
)
f2
KU12 S
变频调速的特性
(1)U1不变,S=f2/f1=常数的调节方式
由于f1较高,与电抗相比可忽略R1的影响,则最大转矩可
异步电机等效电路
变频调速的特性 一、异步电机的等值电路及转矩表达式
图中 U1 、I1 — 电源相电压和电机定子
电流; I1 — 归算到定子侧的转子电
流; Im — 电机激磁电流; E1 E2 — 分别为一相定子感应电势和归算到定子
侧的转子感应电势; S — 转差率,为
转差频率与定子频率的比值:S=f2/f1; R1、X1 — 定子绕组电阻及漏电抗; R2'、X2 —归算到定子侧的转子电阻及 漏电抗; Rm、Xm — 激磁电阻及电抗。

三相异步电动机的调速

三相异步电动机的调速
转差离合器从动部分的转速n′与励磁电流的 强弱有关。 ①在同一负载下,励磁电流越大,转速越高。 ②励磁电流越大,在同一转差率下产生的转矩 越大。 ⑵优缺点 ①优点 结构简单,速度调节平滑,启动转矩大,控 制功率小、方便,只要改变励磁电流就可以 实现平滑调速。
2023年8月26日 星期六
§4-7 三相异步电动机的调速
3、恒电流变频率调速
用于负载容量小且变化不大的场合。
四、异步电动机调速方法比较(表3—8) 五、电磁调速异步电动机
2023年8月26日 星期六
§4-7 三相异步电动机的调速
三相异步电动机虽然可以有三种调速,但方 法却不尽人意。因此人们又设计出一类使用三 相交流电能在一定范围内平滑、宽广调速的电 动机,称为电磁调速异步电动机,又称滑差电 动机。 1、滑差电动机的组成
②缺点
转差离合器是依靠涡流而工作的,涡流损耗使 电枢发热,n↓→ S↑→ 涡流↑,不宜长期低速运 行。机械特性是软特性。
⑶转向
如果要改变输出轴的转动方向,必须改变异步 电动机的转动方向。
返回首页
2023年8月26日 星期六
§4-7 三相异步电动机的调速
返回
2023年8月26日 星期六
§4-7 三相异步电动机的调速
PYY 1.15P
TYY 0.58T
可见,∆-YY联结方式时,电动机的转速增大一倍,容许 输出功率近似不变,而容许输出转矩近似减少一半,所以这种 变极调速属于恒功率调速,它适用于恒功率负载。
同理可以分析,正串Y-反串Y联结方式的变极调速属恒功率 调速。
变极调速时,转速几乎是成倍变化的,调速的平滑性较差,但 具有较硬的机械特性,稳定性好, 可用于恒功率和恒转矩负载。
2023年8月26日 星期六
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年第3期(总第112期)2002年9月30日出版
(EXPLOSION-PROOFELECTRICMACHINE) 防爆电机
变频调速三相异步电动机恒转矩及恒功率特性的控制
孙振宇
佳木斯电机股份有限公司,黑龙江佳木斯(154002)
摘要阐述变频调速三相异步电动机在低频(f<50Hz)时的恒转矩特性及高频(f>50Hz)时的恒功率特性的控制。

关键词变频调速恒转矩特性恒功率特性控制ControlCharacteristicsofConstantTorqueandConstantOutputinVariable FrequencyAdju stable SpeedThree PhaseInductionMotors
SunZhenyu
Abstract Thispapergivesadescriptionofcontrollingtheconstanttorquecharacteristicsatlo wfrequency(lessthan50Hz)andtheconstantoutputcharacteristicsathighfrequency(over50H z)invariable frequencyadjustable speedthree phaseinductionmotors.
Keywords Variable frequencyadjustable speed,Constanttorquecharacteristic,Con st antoutputcharacteristic,Control.
E1=444f1N1mKw1
在忽略定子阻抗压降的情况下,有
U1E1=444f1N1mKw1f1m
(1)
1引言
随着我国工业自动化程度的提高,对电动机的调速性能的要求大大提高,而变频调速电机具有效率高、调速范围广、精度高、调速平滑等优点,是异步电动机较理想的调速方法。

本文对交流三相异步电动机变频调速中的恒转矩及恒功率特性的控制进行了简明的阐述。

假设Te max和Te分别代表电源频率为额定频率f1e电动机的最大转矩和额定转矩,而Tf max和Tf e分别代表在某一小于额定频率f1e下电动机的最大转矩和额定转矩,若要保证电动机过载能力不变,则有:
Tf maxTe max
==m
Tf eTe
而Tmax=
3PU1
22f1R1+
2
2恒转矩特性的控制
众所周知,电动机的转速为
n=
60f1
nP(1-s)=n0-
(2)
定子电路电压平衡方程式为
U1=-E1+I1Z1
收稿日期:2002-07-16
R1+(X10+X20)
孙振宇男1967年生,毕业于哈尔滨理工大学电机专业,现从事低压电机设计工作
年第3期(总第112期)
防爆电机 (EXPLOSION-PROOFELECTRICMACHINE) 2002
2002年9月30日出版
由于X10+X20=2f(L10+L20,考虑f1较高时(接近额定时),(X10+X20)R1 则有:
Tmax=C(
U12
)f1
(3)
3恒功率特性的控制
电动机输出功率:
Tf enP=975=K
则有:Tf ef1=Tef1e
Tf ef1e
=Tef1
由式4可得即:
U1
=U1eU11
=
f1f1eU1e1e
=K
(7)(6)
额定频率和某一频率下的最大转矩为U12U1e2
Tf max=C()和Te max=C()
f1f1e由式2可得:
U12
22(Tf eTf maxf1)U1f1e
===TeU1e2U1e1Te max
()f1e
U1f1U1e=f1e
当恒转矩负载时,有
U1U1e
f1=f1e=K
由式1可知
U1
=444Kw1N1m=C mf1
(5)
f eTe
由此可知,如果能保证U1f1=K,K为常数,则可保持在调整过程中电动机的功率恒定。

值得注意的是:电动机在额定频率以下调速时,受磁路饱和的限制,实现恒功率调速是不可行的;另一方面电动机在高于额定频率以上调速时,要实现理想的恒功率调速也是困难的。

因为要满足式(7)规定的条件,定子电压必将与1成正比升高,电动机的绝缘寿命、铁损、温升都将是恒功率调速的障碍。

故变频调速系统大都作为恒转矩调速系统来使用。

总之,在异步电机调速过程中,为了得到宽的调速范围,可将恒转矩调速和恒功率调速结合应用。

在高于额定频率以上调速时,保持电压不变,随转速的升高,磁通减少,转矩减少
,从而得到近似恒功率调速,机械特性见图2。

或(4)
这即是恒转矩调速控制的原理。

即只要保证U1
比值恒定,调整时电动机的过载能力就不变,f1
但在较低的频率调速时,定子感抗变小,定子电阻引起的压降将不容忽略,故应提供补偿定子绕组电阻产生的压降
,U f曲线如图1。

图2异步电动机恒转矩恒功率结合的变频调速时的机
图1恒转矩输出时U f特性曲线
械特性。

相关文档
最新文档