2019最新【土力学系列】第7章 土压力计算物理

合集下载

土力学。。七+土压力2(含图解法(郑教材

土力学。。七+土压力2(含图解法(郑教材
工程上把出现第2破裂面的挡土墙称为坦墙。

产生第2破裂面的条件: 墙背倾角大于临界倾斜角 cr (与、、有关) 作用于墙背的土压力:
求出作用在第2破裂面上的土压力(按库仑土压力理论) (注意摩擦角 );
计算出三角形土体ABD2的重力;
作用于墙背的土压力为以上两个力的合力(向量和)
第6节
Fn
F1
F2
F3
粘性土中的应用

等值内摩擦角法 采用等值内摩擦角 D 来综合考虑粘性土的 的影响,即通过适当增加内摩擦角把粘聚力 也考虑进去,按无粘性土一样的方法处理。
图解法
第5节
几种特殊情况下的土压力计算
工程上有时会遇到荷载条件或边界条件较为复杂 的情况,可采用一些近似处理办法进行分析计算。




土压力的性质、大小与墙身的位移、墙体高度、墙后 填土性质等有关。 根据墙的位移方向和大小,土压力可分为主动土压力、 被动土压力、静止土压力。 1、静止土压力(E0)----挡土墙静止不动,墙后土体 处于弹性平衡状态,土对墙的压力。 2、主动土压力(Ea)----挡土墙受墙后填土作用离开 土体方向偏移至土体达到极限平衡状态时,作用在墙 背上的土压力。 3、被动土压力(Ep)----挡土墙受外力作用发生向土 体方向的偏移至土体达到极限平衡状态时,作用在墙 背上的土压力。


产生主、被动土压力所需的位移量
土的类别 挡土墙位移形式 所需位移量
土压力 状 态
砂性土
主 动 粘性土 砂性土
平移 绕墙趾转动 平移 绕墙趾转动
平移 绕墙趾转动
0.001H 0.001H 0.004H 0.004H
0.05H >0.1H

土力学全知识点

土力学全知识点

第一章:土的物理性质及工程分类第二节、粒度成分的表示方法土的粒度成分是指土中各种不同粒组的相对含量(以干土质量的百分比表示),它用以描述土中不同粒径土粒的分布特征。

常用的粒度成分的表示方法有表格法、累计曲线法和二角坐标法。

2)累计曲线法:是——种图示的方法,通常用半对数纸绘制,横坐标(核对数比例尺)表示某—粒径,纵坐标表示小于某一粒径的土粒的百分含量。

级配的指标:不均匀系数 C u=d60÷d10曲率系数C s=d302/﹙d60×d10﹚式中:d10、d20、d60—分别相当于累计百分含量为10%、30%和60%的粒径,d10称为有效粒径;d60称为限制粒径。

不均匀系数Cu反映大小不同粒织的分布情况,Cu<5的土称为匀粒土,级配不良;Cu越大,表示粒组分布范围比较广,Cu>=5,Cs=1~3的土级配良好。

但如cu过大,表示可能缺失中间粒径,属不连续级配,故需同时用曲率系数来评价。

曲率系数则是报述累计曲线整体形状的指标。

土粒的形状土粒形状对丁土的密实度和十的强度有显著的影响,棱角状的颗粒互相嵌挤咬合形成比较稳定的结构.强度较高;磨圆度好的颗粒之间容易滑动,土体的稳定性比较差用体积系数和形状系数描述土粒形状体积系数Vc=6V/﹙πd m3﹚式中:V———土粒体积(mm3);dm——土粒的最大粒径(mm)。

V愈小,土粒愈接近于圆形。

圆球状的Vc=1,立方体的Vc=o.37:棱角状的土粒Vc更小形状系数FF=AC/B2式中:A、B、C分别为土粒的最大、中间和最小粒径第三节土的三相比例指标一、试验指标1.土的密度是单位体积土的质量,ρ=m/V由土的质量产生的单位体积的重力称为重力密度γ,简称为重度γ=ρg=W/V2.土粒比重Gs 土粒质量m s同体积4℃时纯水的质量之比Gs=m s/﹙Vsρw1﹚=ρs/ρw13.土的含水量ω是土中水的质量m w与团体(土粒)质量m s之比,ω=m w/m s×100%二、换算指标1.干密度ρd是土的颗粒质量m s与土的总体积V之比,ρd=m s/V土的干密度越大,土越密实,强度就越高,水稳定性也好。

土力学第七章土压力计算

土力学第七章土压力计算

土力学第七章土压力计算土力学是研究土体在外力作用下的力学性质与变形规律的学科。

而土压力是指土体受到外界施加的压力作用时所产生的抗力。

在土力学中,土压力计算是一个非常重要的内容,它涉及到土体在各种条件下的力学行为与变形。

本文将介绍土压力计算的相关知识。

土压力的计算一般分为两种情况,分别是水平荷载下的土压力和垂直荷载下的土压力。

对于水平荷载下的土压力,可以根据库仑理论进行计算。

库仑理论认为,土体受到的水平荷载越大,土体的抗力越大。

根据库仑理论,可以计算出土体单位面积上的土体水平抗力Fh,公式如下:Fh=Ka*γ*H*H/2其中,Fh为土体单位面积上的土体水平抗力,Ka为估计参数,γ为土体的体积重力,H为土面到超载面的水平距离。

对于垂直荷载下的土压力,可以根据黑力塔法进行计算。

黑力塔法认为,土体受到的垂直荷载越大,土体的抗力越大。

根据黑力塔法,可以计算出土体单位面积上的土体垂直抗力Fv,公式如下:Fv=γ*H*Kp其中,Fv为土体单位面积上的土体垂直抗力,γ为土体的体积重力,H为土面到超载面的垂直距离,Kp为垂直荷载的系数。

在实际的土压力计算中,需要考虑到土体的压缩性、土体的内摩擦角、土体的孔隙水压力等因素。

通过考虑这些因素的影响,可以更准确地计算出土体的压力。

此外,还可以根据实际工程的情况,选择适当的数值方法进行土压力计算,如有限差分法、有限元法等。

总结起来,土压力计算是土力学中的一个重要内容,它涉及到土体在各种条件下的力学行为与变形。

通过库仑理论和黑力塔法等方法,可以计算出土体单位面积上的土体水平抗力和垂直抗力。

在实际的土压力计算中,需要考虑到土体的压缩性、内摩擦角、孔隙水压力等因素,选择适当的数值方法进行计算。

希望本文对土压力计算的理解有所帮助。

同济大学土力学第七章土压力计算-PPT精品文档

同济大学土力学第七章土压力计算-PPT精品文档
pa zK a
h
2 Ea ( 1 /2 ) h K a
hKa
1.无粘性土主动土压力强度与z成正比,沿墙高呈三角形分布 2.合力大小为分布图形的面积,即三角形面积 3.合力作用点在三角形形心,即作用在离墙底h/3处
h/3
论 ( 2 )
当c>0, 粘性土
2c√Ka z0
p zK 2 cK a a a
第二节 静止土压力计算
作用在挡土结构背面的静止土压力可视为天然土层自重应 力的水平分量 静止土压力强度 z
p K z o o
静止土压力系数 K0z 1 2 测定方法: Eo h Ko 2 1.通过侧限条 静止土压力 件下的试验测定 系数 2.采用经验公 式K0 = 1-sinφ’ K0h 计算 3.按相关表格 静止土压力分布 三角形分布 提供的经验值确 土压力作用点 作用点距墙底h/3 定 h
z
h/3
第三节 朗肯土压力理论
一、基本假定:
1.挡土墙背垂直、光滑
2.填土表面水平 3.墙体为刚性体
f=0 主动 伸展 被动 压缩
z
pp=Kpz
σx=K0z σ =z
增加 减小
pa=Kaz
大主应力方向
小主应力方向
f
伸展
pa K0z
45o-/2
45o+/2
压缩
z
pp
被动极限 平衡状态 被动朗 肯状态
h
朗肯被动土压 力系数
z
朗肯被动土压力强度
p zK 2 cK p p p

讨论:
朗肯被动土 p zK 2 cK p p p 压力强度 pp zK 当c=0,无粘性土 p
h
2 Ep ( 1 /2 ) h K p

土力学 第7-9章 土压力、土坡的稳定性

土力学 第7-9章 土压力、土坡的稳定性

一.填空题1.根据墙的位移情况和墙后土体所处的应力状态,土压力可分为、和被动土压力三种。

2.在相同条件下,产生主动土压力所需的墙身位移量△a与产生被动土压力所需的墙身位移量△p的大小关系是。

3.根据朗肯土压力理论,当墙后土体处于主动土压力状态时,表示墙后土体单元应力状态的应力圆与土体抗剪强度包线的几何关系是。

4. 挡土墙墙后土体处于朗肯主动土压力状态时,土体剪切破坏面与竖直面的夹角为;当墙后土体处于朗肯被动土压力状态时,土体剪切破坏面与水平面的夹角为。

5.当挡土墙墙后填土面有均布荷载q作用时,若填土的重度为γ,则将均布荷载换算成的当量土层厚度为。

6.当墙后填土有地下水时,作用在墙背上的侧压力有土压力和两部分。

7.当墙后无粘性填土中地下水位逐渐上升时,墙背上的侧压力产生的变化是。

8.当挡土墙承受静止土压力时,墙后土体处于应力状态。

9.挡土墙在满足的条件下,库仑土压力理论与朗肯土压力理论计算得到的土压力是一致的。

10.墙后填土面倾角增大时,挡土墙主动土压力产生的变化是。

11.库仑理论假定墙后土体中的滑裂面是通过的平面。

12.常用挡土墙型式包括挡土墙、挡土墙、挡土墙、锚杆式挡土墙、加筋土挡土墙等。

13.对于均质无粘性土坡,理论上土坡的稳定性只与坡角和内摩擦角有关,与坡高无关。

14.瑞典条分法稳定安全系数是指和之比。

15.无黏性土坡在自然稳定状态下的极限坡角,称为。

17.载荷试验的曲线形态上,从线性开始变成非线性关系时的界限荷载称为。

18.在变形容许和维系稳定的前提下,单位面积的地基所能承受荷载的能力称为。

19.地基中将要而未出现塑性变形时的地基压力称为,常用表示。

20.当地基土体中的塑性变形区充分发展并形成连续贯通的滑移面时,地基所能承受的最大荷载称为。

二.选择题1.按挡土墙结构特点,下列类型挡土墙属于重力式挡土墙的是( ) 。

A.石砌衡重式挡土墙B.钢筋混凝土悬臂式挡土墙C.柱板式挡土墙;D.锚定板式挡土墙2.在相同条件下,主动土压力E a与被动土压力E p的大小关系是( )。

土力学 第七章 土压力计算

土力学 第七章 土压力计算
基本假定
挡土墙墙后的填土
是均匀的砂性土。
墙后土体达到极限
平衡状态。
土体的滑动面是通
过墙脚的平面。
滑动土体是刚体。
库仑土压力理论
基本原理
取滑动土体为隔离体,根据滑动土体的静力
平衡条件来建立土压力的计算公式。
库仑主动土压力计算
αβ C
A
ε
H
E

G T1
N2
δ
Q=Ea
B
T2
α
D
ABC ε α N1 2 εα R 2 BAC BAC ACB β ε 2
Q sin( ) sin 2
G
Q
1 2 cos( ) cos( ) sin( ) Q H 2 2 cos sin( ) cos( )
墙后填土中有地下水时 的Rankine土压力计算
水土合算法
适用于墙后填土为粘性土的情况。 采用饱和重度计算总的水土压力。
pa sat zKa 2c Ka
K a tan 45 2
2
例题 7.1
q 10kPa
1 18kN/m3
B
2 17kN/m3
9kN/m3 3
D
应用Rankine理论计算如图所示挡土墙的主动土压力。
2m
C
3 26
2m
B
2 26
2m
A
1 30
问 题
挡土墙的墙背倾斜

挡土墙的墙背粗糙 挡土墙后的填土面非水平
如何计算挡土墙的 土压力

土压力计算ppt课件

土压力计算ppt课件

zta2n452cta4n5
2
2
2.土体在水平方向压缩
单元体在水平截面上的法向应力z不变而竖 直截面上的法向应力x却逐渐增大,直至满足极
限平衡条件(称为被动朗肯状态)。
被动朗肯状态 f ctg
时的莫尔圆
0 K0 z z
p
1
3ta2n4
52c
2
ta4n5
2
zta2n452cta4n5
2
2
• 若为无粘性土,上式中的第二项为零。
例题5-5 挡土墙高5m,墙背直立,光滑, 墙后填土水平,共分两层,各土层的物理 力学指标如图所示,试求主动土压力并绘 出土压力分布图。
例题5-5 挡土墙高5m,墙背直立,光滑,墙后填土
水平,共分两层,各土层的物理力学指标如图5-12所
示,试求主动土压力并绘出土压力分布图。
2c
Ka )
12H2Ka 2cH
Ka
2c2
பைடு நூலகம்
z0
2c Ka
粘性土的主动土压力强度分布图
de
z0
2c
H
a
z0 ka
Ea
b
c
HK a 2c Ka
H z0 3
Ea
1(H 2
z0)(HKa
2c
Ka )
12H2Ka 2cH
Ka
c2 2
例5-2 有一挡土墙高5m,墙背垂直光滑, 墙后填土面水平。填土的物理力学性能指标为: c=10.0kPa,φ =300, γ =18.0kN/m3。试计算 主动土压力大小及作用点位置,并绘出主动土 压力强度沿墙高的分布图。
用均布荷载q=18.0kPa。计算作用在挡土墙上的 主动土压力。

土力学_第7章(土压力)

土力学_第7章(土压力)

当表面水平,墙背光滑且铅垂时,两种理论的计算
结果相同
六、挡土墙设计
(一)挡土墙的主要类型
重力式挡土墙
悬臂式与扶壁式挡土墙
(1)重力式挡土墙
指的是依靠墙身自重抵抗土体侧压力的挡土墙。重力式挡土墙可用块石、 片石、混凝土预制块作为砌体,或采用片石混凝土、混凝土进行整体浇筑。半 重力式挡土墙可采用混凝土或少筋混凝土浇筑。重力式挡土墙可用石砌或混凝 土建成,一般都做成简单的梯形。
第七章 土压力与挡土墙设计
主要内容: (1)土压力计算 (2)挡土墙设计计算
钢筋混凝土挡土墙
挖孔桩支护
加筋土挡土墙
一、土压力产生的条件
土压力:
由于土体的自重或外荷载产生的作用在土工结构上的侧向力。
刚性结构和柔性结构 墙顶 墙 墙 前


墙 后 背
自重
土压力
墙趾
墙 底 (基底)
墙 跟 (踵)
• 根据土工物(挡墙)的位移关系确定土压力的类型

滑 面
Ea
H


Ea
G

Ra

G

Ra
sin( ) Ea G sin( )
90
θ角不同,可以得到不同的土压力,但要求出
产生最大的主动土压力的那个角。
由最大值原理确定滑面位置及主动土压力
dEa 0 d
土压力 (单位:KN)
2c Ka
土坡不支护 的最大极限 高度
q
(3)坡顶有均布荷载 q 的情况
q
H’
q
H
q 荷载作用时,将其换算成等重量的土高H’,即:
q Ka
Ka H

《土压力计算理论》课件

《土压力计算理论》课件

挡土结构物的刚度决定了其对土体的约束 程度,而其位置则影响土压力的分布。
地面超载
地下水
地面上的车辆、建筑物等产生的荷载会增 加和有 效应力,从而影响土压力。
土压力计算的重要性
03
工程设计
施工安全
既有结构物的安全监测
在土木工程设计中,如挡土墙设计、深基 坑支护等,需要准确计算土压力的大小和 分布,以确保结构的安全性和稳定性。
根据土压力的大小和分布,可 以设计出合理的支护结构,确 保深基坑施工的安全。
边坡稳定性分析
01
边坡稳定性分析是确保工程安全的重要环节,土压力计算是其 中的关键部分。
02
通过土压力计算,可以评估边坡的稳定性,预测可能出现的滑
坡或坍塌,并采取相应的工程措施。
边坡稳定性分析需要考虑多种因素,如土质条件、降雨、地震
《土压力计算理论》PPT课 件
目录
• 土压力计算理论概述 • 土压力计算的基本原理 • 土压力的经典计算方法 • 土压力计算的现代方法 • 土压力计算的工程应用 • 结论与展望
01
土压力计算理论概述
土压力的概念与分类
土压力
指作用在挡土结构物背面的压力,由土 体自重和外力引起。
主动土压力
当土体受外力作用产生位移,形成一定 位移趋势时,土体对挡土结构物产生的 作用力。
考虑土的各向异性
实际土体中存在各向异性,未来研究将进一步探索土的各 向异性对土压力的影响,以及如何更准确地描述和计算土 压力。
未来研究方向与展望
完善理论体系
目前土压力计算理论仍存在一些局限性,需要进一步完善理论体系 ,提高理论的适用性和准确性。
跨学科研究
将土压力计算理论与相关学科如流体力学、地质工程等相结合,开 展跨学科研究,以更全面地理解土压力的形成和变化机制。

土力学 第七章土压力

土力学 第七章土压力
2
h
1 2 Ea h 2
1 Ea h 2 K a 2
土对挡土墙背的摩擦 角,根据墙背光滑, 排水情况查表确定
库仑主动土压 力系数,查表 确定
C A

主动土压力
1 Ea h 2 K a 2
Ea

h
•主动土压力与墙高的平方 成正比

•主动土压力强度
h
h/3
B
hKa
pa
dEa d 1 2 z K a zK a dz dz 2
作用在墙背的总压力:土压力+水压力,作用点在 合力分布图形的形心处
3.填土表面有均布荷载
q A
填土表面深度z处竖向应 力为(q+z)
z
z+q
h
相应主动土压力强度
pa (q z) K a 2c K a
当z=0: paA qKa 2c K a If paA<0 ,临界深度. (q z0 ) K a 2c K a 0 求出z0 paB (q h) K a 2c K a 当 z=h:
2.墙后填土存在地下水 作用在墙背上的土侧压力有 土压力和水压力两部分,可 A 分两层计算,一般假设地下 水位上下土层的抗剪强度指 B 标相同,地下水位以下土层 用浮重度计算
C
(h1+ h2)Ka
h2
h
h1
B点下
w h
2
z)K a2 pa ( 1h1 2 2c2 K a 2
外摩擦角δ
• 取决于墙背的粗糙成都、填土类别以及墙背的排水条件。 还与超载及填土面的倾角有关。表7-1
• 粘性土
• 对于填土为的性土或者填土面不是平面,而是任意折线 或者曲线时,前述库仑公式就不能使用,可以用图解法 来求解土压力。

土力学土压力计算

土力学土压力计算

土力学土压力计算土力学是土木工程和地质科学中的一个重要分支,研究土壤的力学性质和土体的变形规律。

土压力计算是土力学中的基础问题之一,它是通过计算土壤对结构物或地下设施所产生的压力来确定结构物或地下设施的稳定性和安全性。

本文将介绍土压力计算的基本原理和一些常用的计算方法。

从力学的角度来看,土壤的压力是由土壤自身的重力和外部应力共同作用产生的。

土压力的计算涉及到土壤的物理和力学性质,通常需要考虑土壤的强度、压缩性、黏聚力等参数。

根据实际情况和需要的精确程度,土压力的计算可以使用简化计算方法或复杂的数值计算方法。

简化计算方法常用于土力学初步设计和工程实践中,其中最常用的方法是“活动土压力”和“静止土压力”计算。

活动土压力是指土壤在结构物或地下设施周围处于活动状态时产生的压力,通常采用楔形活动土压力图或Coulomb静态地压力图进行计算。

静止土压力是指土壤在受到结构物或地下设施作用后达到静止状态时产生的压力,通常采用K0公式或Rankine公式进行计算。

活动土压力计算需要确定土壤的内摩擦角和重度,公式如下:Pa = Ka * γ * H^2 * [(tan^2(φ) - tan^2(α))/(tan^2(φ) + tan^2(α))] / [(1 - sin(φ)) * (1 + sin(φ + α))]其中,Pa为活动土压力,Ka为活动土压力系数,γ为土壤的单位重量,H为土体高度,φ为土壤的内摩擦角,α为土壤背面与斜面间的夹角。

静止土压力计算需要确定土壤的内摩擦角和内聚力,公式如下:Ps = Ks * γ * H^2 * [1 - sin(φ)] / [1 + sin(φ)]其中,Ps为静止土压力,Ks为静止土压力系数,γ为土壤的单位重量,H为土体高度,φ为土壤的内摩擦角。

除了上述的简化计算方法外,还有一些复杂的数值计算方法,如有限元分析方法和数值模拟方法等。

这些方法通常需要借助计算机软件进行计算,可以考虑更多的土壤参数和结构物的几何形状,得到更精确的土压力结果。

土力学第七章 土压力

土力学第七章 土压力

第七章 土压力引 言在铁路、公路、水利、建筑等工程中,经常会遇到修建挡土结构物的问题,如图7.1所示。

挡土结构物背后的土因自重或外荷载作用对挡土结构物产生侧向压力。

研究该力大小、方向、分布规律是本章研究的主要问题。

图7.1 挡土结构物§ 7.1 概 述一、土压力的概念土压力(earth pressure )是指挡土墙后填土因自重或外荷载作用对墙背产生的侧向压力。

二、土压力的分类图7.2 挡土墙可能的位移形式备 注结合工程实践,引入本章需要研究的问题。

设问法启发学生挡土墙可能的位移形式。

挖孔桩支护钢筋混凝土挡土墙1、主动土压力(active earth pressure) (土推墙)当墙身受墙后填土的作用是墙绕墙背底部转动或平移,当位移达到某界限值ρ时,土体将出现滑动面,墙背后土体沿滑动面将滑动的瞬间作用在墙背的土压力成为主动土压力。

这时墙后土体所处得应力状态成为主动极限平衡状态。

2、静止土压力(earth pressure at rest)墙身静止,没有产生任何移动或转动,墙后土体处于弹性平衡状态,这时作用在墙上的土压称为静止土压力。

3、被动土压力(passive earth pressure) (墙推土)当墙身由于某种作用向着土体方向转动或平移时,当位移达到某界限值ρ时,土体将出现滑动面,墙背后土体沿滑动面将滑动的瞬间作用在墙背的土压力成为被动土压力。

这时墙后土体所处得应力状态成为被动极限平衡状态。

4、p 0、p p 、p a 的大小比较p a p p p ≤≤0,等号只适用于特殊情况下的流态土。

图7.3 土压力与墙的位移之间的关系5、土压力的计算理论库仑土压力理论和朗肯土压力理论。

三、墙体刚度与土压力墙体刚度影响土压力的分布:三角形分布和曲线分布。

四、界限位移墙后土体将要出现而未出现滑动面时挡土墙位移的临界值。

备 注结合工程实践,引入本章需要研究的问题。

比喻加深学生对主动土压力与被动土压力大小的理解: 在一个拥挤的公共汽车上,我们上车时要挤压人群,相当于施加被动土压力,是相当吃力而辛苦的;而上车后关上门,我们后退一步则压力大大减少,相当于主动土压力。

土力学第七章土压力与土坡稳定

土力学第七章土压力与土坡稳定

七、 挡土墙与土压力
(一)挡土墙的类型
1.重力式挡土墙(1)。
2.悬臂式挡土墙(2)。
3.扶壁式挡土墙(3)。
(1)
(2)
(3)
六、 挡土墙设计
立 柱 27m 锚杆
墙 面 板
扶 壁
锚定板
墙趾
墙踵 (a) (b) 3m 高强度砂浆锚固 (c)
(d)
挡土墙主要类型 (a)悬臂式挡土墙;(b)扶壁式挡土墙; (c)锚杆、锚定板式挡土墙;(d)板桩墙
三、朗肯土压力理论(Rankine,1857)
无粘性土:
粘性土:
2
K p tan 45 2
1 2 Ep H K p 2 1 2 Ep H K p 2c K p 2
三、朗肯土压力理论(Rankine,1857)
(四)几种常见情况下的土压 力计算
无粘性土 a
2
3 1 t an 45 2c t an 45 2 2
2
无粘性土: 1 3 t an 45 2
2
3 1 t an 45 2
2
三、朗肯土压力理论(Rankine,1857)
主动土压力作用点距墙底的距离为
(h z 0 ) 5 1.223 1.26m 3 3
四、 库仑土压力理论
(一)基本假设:根据墙后土体处于极限平衡状态并 形成一滑动楔体,从楔体的静力平衡条件得出的土压 力计算理论。(为平面问题) 基本假定:墙后填土是理想的散粒体(c=0);滑动 破坏面为通过墙踵的平面。 (二)主动土压力
二、 土压力的分类
(一)影响土压力的因素
1.填土性质:包括填土重度、含水 量、内摩擦角、内聚力的大小及填 土表面的形状(水平、向上倾斜、 向下倾斜)等。 2.挡土墙形状、墙背光滑程度、结 构形式。 3.挡土墙的位移方向和位移量。

土压力—常见情况下土压力的计算(土力学课件)

土压力—常见情况下土压力的计算(土力学课件)
库伦理论计算几种 常见情况的土压力
1.填土面有连续均布荷载
h' h cos cos cos( )
墙顶土压力 墙底土压力
ea γhKa ea γ(h H )Ka
作用位置在梯形面积形心处, 法线上侧与墙背法线成 δ角
2.成层填土
第一层土顶面处 ea γhKa
第一层底面处 ea γ(h H )Ka
Ea
1 2
4 24
1 2
2 (24
30.7)
10(3 kN/m)
朗肯土压力理论的应用-作业2
作用在墙背上的水压力呈三角形分布,合力为该 分布图的面积
Ew
1 2
20
2
2(0 kN/m)
作用在墙上的总侧压力为土压力与水压力之和
E Ea Ew 103 20 12(3 kN/m)
24
临界深度
z0
2c Ka
q
210 19 0.528
15 19
0.6(6 m)
在墙底处土压力强度
a
(
H
q) tan2
45
2
2c
tan
45
2
=56.(3 kPa)
朗肯土压力理论的应用-作业4
主动土压力为土压力分布图面积,即
Ea
1 2
(7
0.66) 56.3
17(8 kN/m)
合力作用点距墙底距离为

在墙顶处 σa=0
在墙顶下4m处
a
z tan2
45
2
18 4
tan
45
30 2
24
在墙顶下6m处
a
(
h1
' h2 ) tan2

【土力学系列】第7章 土压力计算

【土力学系列】第7章  土压力计算

p0b
h22 2
1 2
(
p0c
p0b )
h22 ] 3
3.79m
静水压力合力:
Pw
1
2
wh22
1 2
9.8 42
78.5kN
/
m
7.3 朗肯土压力理论
朗肯
(Rankine) (1820-1872)
英国工程师 英国皇家学会会员 朗肯理论的创立者(1857)
7.3.1 基本原理和假定
(1)静止状态: 应力圆O1,z和x为大、小 主应力。
公路挡土墙
码头挡土墙
地下室外墙
拱桥桥台
重力式挡土墙类型
L
T
重 力

悬 臂 式
扶 壁 式
给出几个柔性挡土结构物的例子:
内支撑基坑
板桩墙与土层锚杆
加筋挡土墙
加筋挡土墙(特殊)
几种加筋挡土墙
土压力的三种类型及形成条件:
(1)静止土压力。用E0(kN/m)表示,强度用p0(kPa)表示。 (2)主动土压力。用Ea(kN/m)和pa(kPa)表示。 (3)被动土压力。用Ep(kN/m)和pp(kPa)表示。
若值已知,则大小、方向及作用点位置均已知。
(b) 土体作用在滑动面BC上的反力R: 作用方向已知,大小未知。
(c) 挡土墙对土楔的作用力Q : 作用方向已知,大小未知。
外摩擦角
内摩擦角
T2和N2的合力
T1和N1的合力
根据滑动土楔ABC静力平衡,由正弦定律得
G
Q
sin[π ( )] sin( )
2
0.333
各点主动土压力:
a点: b点: c点:
pal=1zKa=0 pa2=1h1Ka=1860.333=36 kPa pa3=(1h1+ h2)Ka =(186+94) 0.333=48 kPa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)
)

当= 时,则Q=0 当在(/2+) 和之间变化,Q存在一个极大值。
“极大值Qmax即为所求的主动土压力Ea”
为求得Qmax值,对求导,令
dQ 0
d
解得值,并代入Q表达式得
Ea
Qmax

1 2

H
2
Ka
其中
Ka

cos2

cos(
其中:Ka1 tan2 (45
1 )
2
Ka2
tan2 (45
2 )
2
例题7-3 物理力学指标:1=18kN/m3, c1=0, 1=30, 2=20kN/m3, c2=0, 2=35,q=20kPa。
计算: (1)分布;(2)合力。
[解] Ka1=0.333,Ka2=0.271。 主动土压力值分别为: a点:pa1=qKa1=200.333=6.67kPa
静止土压力合力为 E0= ( poa+ pob)h1/2+ ( p0b+ p0c)h2 /2 = 0.5 (10+64) 6+ 0.5 (64+82.4)4=514.8kN/m
静止土压力作用点距墙底距离:
d

1 E0
[
p0
a
h1
(
h1 2
h2 )
1 2
( p0b

p0a )h1(h2
挡土墙后填土中有地下水存在:
水土分算: 对砂性土或粉土,按水土分算 先分别计算土压力和水压力,然后叠加
采用有效重度 计算土压力
水土合算: 对于粘性土,按水土分算或水土合算进行 地下水位以下用饱和重度sat。
例题7-4 挡土墙高度H=10m,填土为砂土,墙后有地下 水位。计算: 主动土压力及水压力的分布及其合力。
cos2 ( )

) 1

sin( cos(
) sin( ) cos(
) )

当=0时(简单情形),Ka值可由表7-2查得。
将Ea对z 求导数得:
pa

dEa dz

d dz

1 2

z
2
K
a



zK
a
土压力沿墙高为线性分布。
Ka )
合力Ea作用于距挡土墙底面 (H-h0) /3 处。
7.3.3 朗肯被动土压力计算
基本假定:挡土墙墙背竖直,填土面水平 基本原理:
竖向应力z = z是最小主应力3 水平应力x是最大主应力1,亦即pp
砂性土 粘性土
将1=pp,3=z代入极限平衡公式,得
粘性土 砂性土
pp
z tan2 (45
[解] 主动土压力系数
Ka
tan2 (45
) tan2 (45
2
30 2
) 0.333
各点主动土压力:
a点: b点: c点:
pal=1zKa=0 pa2=1h1Ka=1860.333=36 kPa pa3=(1h1+ h2)Ka =(186+94) 0.333=48 kPa
合力: Ea=0.5366+364+0.5(48-36)4=108+144+24=276kN/m
作用点距墙底距离:
d 1 (108 6 144 2 24 4) 3.5m
276
3
c点水压力: 水压力合力: 作用点:
pw=wh2=9.814= 39.2kPa
Pw=39.24/2=78.4kN/m h2/3=4/3 =1.33m处。
于是:
Q

ห้องสมุดไป่ตู้
1 2

H
2


cos( ) cos( ) sin( cos2 sin( ) cos(
)
)

可见:Q随变化而变化。
分析:
当=/2+时,G=0,故而Q=0
Q

1 2

H
2


cos( ) cos( ) sin( cos2 sin( ) cos(
(a)静止土压力 (b)主动压力 (c)被动土压力
图7-3 土压力与挡土墙位移关系
注 意:
挡土结构物要达到被动土 压力所需的位移远大于导 致主动土压力所需的位移。
三种土压力关系:
Ea E0Ep
7.2 静止土压力计算
假定挡土墙后填土处于弹性状态
相当于天然地基土的应力状态
计算公式:
p0=K0sz=K0z
Z
z
静止土压力沿挡土墙高度呈三角形分布。
静止土压力系数K0的确定:
(1)理论上
K0

μ 1 μ
(2)实际可由三轴仪等试验或原位试验测得
(3)可用经验公式估算:
砂性土:K0=1-sin; 粘性土:K0=0.95-sin。
超固结粘性土:
K0=(OCR)m (1-sin)
成层填土:
强度指标不同,土层分界面上土压力分布有突变。
a点:pa1 2c1 Ka1
b点上(在第1层土中):pa2 1h1Ka1 2c1 Ka1
b点下(第2层土中):pa2 1h1Ka2 2c2 Ka2 c点:pa3 (1h1 2h2 )Ka2 2c2 Ka2
7.4 库仑土压力理论
库仑
(C. A. Coulomb) (1736-1806)
法国军事工程师 在摩擦、电磁方面奠基性的贡献 1773年发表库仑土压力理论。
7.4.1基本原理和假定
挡土墙背离土体移动或推向土体,达到极限平衡状态 假定滑动土楔ABC是刚体 最早假定为砂性土 分析土楔ABC的静力平衡条件
(可取m=0.4-0.5)
(4)《公路桥涵设计通用规范》(JTJ21-89): • 砾石、卵石为0.20 • 砂土为0.25 • 粉土为0.35 • 粉质粘土为0.45 • 粘土为0.55
静止土压力合力:
E0

1 2
K0
H2
对于成层土或有超载情况:
p0 K0( ihi q)
例7-1 挡土墙后作用无限均布荷载q,土的物理力学指标为
b点上(在第1层土中):
pa2=(1h1+q) Ka1=(186+20)0.333=42.6kPa
b点下(在第2层土中):
pa2=(1h1+q) Ka2=(186+20)0.271=34.7kPa
c点:
p a3=( 1 h1+2 h2+q)Ka2 =(186+204+20)0.271=56.4kPa
7.3.1 基本原理和假定
(1)静止状态: 应力圆O1,z和x为大、小 主应力。
(2)朗肯主动状态: 应力圆O2,z和x为大、小 主应力; 滑动面夹角f=(45+/2) 。
(3)朗肯被动状态: 应力圆O3,z为小主应力, x为大主应力 滑动面夹角f = (45/2)
(a) 应力状态 (b)应力圆
合力为pa分布图形的面积
作用点位于形心处
对于砂性土有:
Ea

1
2
KaH 2
合力Ea作用在距挡土墙底面H/3处。
对于粘性土:
当z=0时,知 pa=-2c Ka
令pa=0,可得
h0


2c Ka
但,填土与墙背之间不可能承受拉应力,出现裂缝 。
合力:Ea

1 2
(H

h0 )(
HKa
2c
最危险滑动面上的抵抗力是其中的最小值(被动土压力)
为了求得Qmin,令
dQ 0
d
解得值,并代入Q表达式得
Ep

Qmin

1
2
H 2Kp
Kp
cos2 ( )
2
cos2


cos(


)
1


sin( ) sin( )
T1和N1的合力
根据滑动土楔ABC静力平衡,由正弦定律得
G
Q
sin[π ( )] sin( )
式中: π
2
而 G 1 AD BC
2
AD AB sin( ) H cos( )
2
cos
sin( )
主动状态
被动状态
7.4.2 库仑主动土压力计算
考虑滑动土楔ABC的静力平衡: (a) 土楔ABC的重力G:
若值已知,则大小、方向及作用点位置均已知。
(b) 土体作用在滑动面BC上的反力R: 作用方向已知,大小未知。
(c) 挡土墙对土楔的作用力Q : 作用方向已知,大小未知。
外摩擦角
内摩擦角
T2和N2的合力
=18kN/m3, sat=19kN/m3, c=0, =30。
计算:静止土压力分布值及合力E0
[解] 静止土压力系数为
K0=1-sin=1-sin30=0.5 各点静止土压力值: a点:p0a=K0q=0.5 20=10kPa
b点:p 0b= K0 (q+h1)=0.5 (20+186)=64kPa c点:p 0c= K0 (q+h1+h2)=0.5 [20+186+(19-9.8)4]=82.4kPa

h1 ) 3
p0b

h22 2

1 2
( p0c
相关文档
最新文档