热电厂经济性及供热系统

合集下载

火电厂热经济指标及分析

火电厂热经济指标及分析

提高初参数
降低终参数
采用回热
采用再热
采用热电联产
5.
4.
3.
2.
1.
提高电厂热经济性的途径
D
C
B
A
对循环热效率的影响
对汽轮机相对内效率的影响
对机组效率的影响
对全厂效率的影响
E
提高初参数的技术限制
蒸汽初参数对发电厂热经济性的影响
01
排汽压力对循环热效率的影响
03
排汽压力对机组热经济性的影响
05
排烟温度升高1T,影响锅炉效率降低0.041%(百分点)左右,影响煤耗升高0.14g/kW•h。
排烟温度影响分析
排烟损失计算公式如下: 排烟损失=系数×(排烟温度—送风机入口温度)
系数=
汽轮机效率:全称是汽轮发电机绝对电效率。专业上一般简称汽轮机效率。日常也常用汽轮机热耗率表示
汽轮机效率变化0.08%-0.14%(百分点)左右,影响发电煤变化1g/kW•h。影响值大、小与机组容量、参数、效率等有关(下同)。
01
高加投入率:是指汽轮机回热系统的高压加热器运行小时与计算期汽轮机运行小时的比例。单位:%。与检修工艺、检修质量、高压加热器启动方式、运行操作水平、运行中给水压力的稳定程度等有关
循环水入口温度:是指进入汽轮机凝汽器前的循环水温度 ,一般情况下循环水温度变化1t影响煤耗变化1g/kW•h左右,约等于8-10℃主蒸汽温度变化对煤耗的影响值;当循环水温度升高,并使排汽温度或凝汽器真空达到极限值而限制汽轮发电机组负荷时,这种情况下1 ℃循环水温度影响煤耗升高3.5g/kW•h以上。与循环水塔清洁程度、冷却效率、循环水塔水量分配、调整等有关。
汽轮机负荷变化1万kW•h影响汽机效率变化0.305%(百分点)左右,影响发电煤耗变化3g/kW•h左右。

热电厂供热原理

热电厂供热原理

热电厂供热原理
热电厂供热是指利用热电厂余热进行供热的一种方式。

热电厂是指以燃煤、燃气、燃油等为燃料,通过燃烧产生高温高压蒸汽,再通过汽轮机发电,最后利用发电过程中产生的余热进行供热。

热电厂供热原理主要包括余热回收、余热利用和供热系统三个方面。

首先,热电厂供热原理的核心是余热回收。

在热电厂的发电过程中,燃料燃烧
产生高温高压蒸汽驱动汽轮机发电,同时也会产生大量的余热。

这些余热如果不加以利用就会白白浪费。

因此,热电厂在设计之初就会考虑如何有效地回收这些余热,以提高能源利用效率。

其次,余热利用是热电厂供热原理的关键环节。

热电厂通过余热锅炉、余热汽
轮机等设备,将发电过程中产生的余热进行回收和利用,将余热转化为热水、蒸汽等形式,然后通过管道输送到供热区域,为居民、工业和商业提供热能。

这种方式既充分利用了余热资源,又实现了能源的多元化利用,具有显著的经济和环保效益。

最后,供热系统是热电厂供热原理的重要组成部分。

供热系统包括余热管道、
换热设备、热力站等,通过这些设备将热能从热电厂输送到用户端,实现供热目的。

供热系统的设计和运行直接关系到供热效果和能源利用效率,因此在热电厂供热原理中占据着重要地位。

总的来说,热电厂供热原理是一种高效、环保的供热方式,通过余热回收、余
热利用和供热系统的有机组合,实现了能源的高效利用和供热的可持续发展。

随着我国能源结构的不断优化和清洁能源的不断发展,热电厂供热原理将在未来得到更广泛的应用和推广,为人们的生活和生产提供更加清洁、便捷的热能供应。

热电厂供热系统节能措施

热电厂供热系统节能措施

1引言铁煤集团热电厂的供热系统,为典型热电联产集中供热系统。

装配2台抽汽供热机组和1台背压供热机组,4台130t/h锅炉。

调兵山城区二级网分为市政供暖系统、盛林供暖系统(南线、北线),其中盛林供暖系统北线在2015年采暖期由煤矸石发电厂供热,到2019年采暖期,调兵山城区已经形成铁煤热电厂、煤矸石发电厂联合供热的格局。

从供热现状分析,节热、节电还是有很大潜力的,对现有供热系统进行节能技术改造,优化运行方式,以提高热电厂的运行经济性,降低运行成本,实现节能降耗。

2热网首站供热系统热网首站外网采用三环制换热,第一环为汽机来的蒸汽;第二环为热网首站到外网各热力站的二级网水路;第三环为热力站到用户的三级网。

来自汽机的蒸汽对首站换热器二级网水加热,将二级网水加热成高温水,蒸汽凝结成凝结水经过卧式换热器再次对二级网水加热后回收。

二级网经过加热的高温水通过外网循环泵加压送到外网各热力站。

二级网水在各热力站对三级网水加热后封闭回到热网首站。

被加热的三级网水通过分站循环泵加压后输送到用户,给用户供暖。

厂区内设一座热网首站,两台冷凝抽汽机组对应两套汽水换热系统,一台背压机组对应一套汽水换热系统。

热网首站热力系统分为抽汽热源系统、二级网载热质管网系统、蒸汽凝结水回收系统、热力网补水系统、循环水水质净化系统等。

(1)抽汽热源系统。

汽轮机组经过做功后的低品质抽汽或背压蒸汽,通过管道进入首站换热器,完成热能的传递加热过程。

(2)蒸汽凝结水回收系统。

首站换热器换热后的凝结水,如果参数满足送回热电厂直接使用的要求,可以直接进入凝结水泵加压送回除氧器。

(3)二级网载热质管网系统。

二级网回水回到热网首站,首先经过除污器进行过滤后,进入二级网循环水泵升压,然后进入首站换热器再次加热,再送回二级网供水管道。

(4)热力网补水系统。

供热系统为保证管网运行压力稳定,通过补水泵进行补水,一般采用电动机变频调节补水流量,保证供热系统无论处于工作或静止状态都能够维持热力网压力在给定值。

热电厂的热经济性及其指标调节方法探讨

热电厂的热经济性及其指标调节方法探讨

热电厂的热经济性及其指标调节方法探讨摘要:由于节能工作的需要、环境保护的要求、工业用热需求量大、民用采暖和生活用热迅速增加,我国热电前景广阔。

关键词:热电厂热经济性调节前言:热电厂是指同时对热电用户供应电能和热能,而其生产的热能是取自汽轮机做过部分功的蒸汽,先发电后供热,普遍采用的锅炉加供热式汽轮机热电联产系统。

供热式汽轮机有一次调节抽汽式(C型)汽轮机、两次调节抽汽式(CC型)汽轮机、背压式(B型)汽轮机或剂汽背压式〔CB型)汽轮机等不同类型。

在此要特别指出的是对于抽汽式汽轮机,只有先发电后供热的供热汽流Db才属热电联产。

下图所示是热电厂的热力系统简图。

由于热电厂既发电又供热,为了确定其电能与热能的生产成本及分项的热经济指标,必须将热电厂总热耗量合理地分配给两种产品。

热电厂总热耗量Qtp:热电厂总热耗量Qtp分配的实质,是将Qtp在热、电两种产品间分配为Qtp.b、Qtp.e通常先确定分配到供热方面的热耗量Qtp.b,再应用下式求出发电方面的热耗量Qtp.e。

对热电厂总热耗量分配方法的要求是:既要反映电、热两种产品的品位不同,又要反映热电联产过程的技术完善程度,且计算简便。

目前,国内外学者在热耗量的分配方法上进行了许多研究。

在这里介绍一种典型的热电厂总热耗量分配方法,热电联产效益归电法(热量法),是目前我国法定的分配方法。

热量法将热电厂总热耗量按照生产热、电两种能量产品的数量比例来分配。

首先确定分配给供热方面的热量。

分配给供热方面的热耗量为:热量法把热化发电的冷源损失以热量的形式供给热用户,并认为热化发电部分不再有冷源损失,热电联产的节能效益全部由发电部分独占,供热方面仅获得了热电厂高效率大锅炉取代低效率小锅炉的好处,但以热网效率表示的集中供热管网的散热损失,使之打了折扣。

1.2 热电厂主要热经济指标热电厂的主要热经济指标表现在:热电联产汽流既发电又供热,热电两种产品的质量不同;若供热参数不同,热能的品位也有所不同。

热电厂背压机、抽凝机供热分配经济性分析

热电厂背压机、抽凝机供热分配经济性分析

图1 全厂生产数据实时计算系统该系统还可提供历史曲线调阅、均值计算、极值计算等功能。

3 煤耗、利润计算说明根据《火力发电厂技术经济指标计算方法》(DL/T 904—2015)中相关要求,本系统采集机组供热压力、温度、流量,计算出供热热值,再根据主蒸汽压力、温度、流量计算出锅炉总产热值,两者比值定义为供热比。

通过供热比,将机组总耗煤量、总厂用电量分摊为发电耗煤量、发电厂用电量以及供热耗煤量、供热厂用电量,以此计算出机组供电煤耗、供电成本、供热成本等参数,再通过上网电价、供热单价、制水成本等数据,计算出供热利润、供电利润,并在此基础上计算出各机组每吨供热蒸汽利润、每兆瓦发电利润、每吨原煤利润等参数。

以低压供热利润计算方法为例,计算过程如下:(1)低压供热收入为:低压供热量×低压供热价格。

(2)低压供热成本为:低压供热煤成本+低压供热电成本+低压供热水成本。

(3)低压供热煤成本为:低压供热总热量/机组中低压供图3 57 MW背压机组中压供热降低数据变化对于该热电厂背压机组,中压供热量下降后,机组负荷降低,背压排汽口压力温度也均升高,机组效率下降,发电煤耗增高,每兆瓦发电利润降低,以此次试验为例,每兆瓦发电利润降低70.61元。

6 机组发电、供热利润对比通过该实时煤耗、利润计算系统还可实时计算各台机组供热、发电单位利润,抽凝机组由于存在冷源损失,每吨低压供热利润仅为背压机组一半左右;抽凝机组每兆瓦发电利润较背压机组低约70元/MW;300 MW抽凝机组中压供热每吨利润与57 MW背压机组接近;中压供热由于销售价格较高,每吨利润为57 MW背压机组低压供热的3倍左右。

同时计算发现,发电利润率较高,背压机组发电利润率超过55%,抽凝机组在大流量供热工况下,发电利润率也可达到40%,中压供热利润率约为40%,但低压供热利润率较低,背压机组为20%,抽凝机组最高仅为6%。

(以上数据均为某一时期数据,随煤价、上网电价、中压汽价、低压汽价、机组热电负荷分配情况等因素存在变化)7 结语通过对以上数据进行分析,发电、中压供热利润在机组总利润中占绝对比例,对于抽凝机组,低压供热虽然产生利润较低,但可降低发电成本;对于背压机组,低压供热降低,仅损失小部分发电量,因此,结合机组特性,并结合实时煤耗、利润计算系统的数据分析,根据实际热网中、低压供热的需求,该热电厂目前按照中压供热全由4×57 MW燃煤背压母管制供图2 相同供热量,不同中低压分配。

燃气冷热电三联供系统节能性与经济性分析

燃气冷热电三联供系统节能性与经济性分析

燃气冷热电三联供系统节能性与经济性分析燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。

系统安装于最终用户端附近,首先利用一次能源驱动发电机发电,再通过各种余热利用设备对余热进行回收利用,从而向用户同时提供电力、制冷、采暖、生活热水等。

燃气冷热电联供系统以其节能、削峰填谷、环保、电力可靠性高等优点而受到广泛重视。

标签:冷热电三联供制冷系统发电效率节能1 燃气冷热电三联供技术产生背景中国经济建设高速发展的今天,能源短缺及环境污染问题日益突出,开发新能源,调整能源结构,以建设资源节约型和环境友好型社会一直是政府的发展目标。

新能源的开发利用需要全面的考虑其经济性、社会性以及生态性,在这种大的形势下,节能减排的分布式能源系统成为我国在能源方面发展的主要对象。

国际上应对气候变化和治理空气污染一直呼声不断,近年美国页岩气的开发利用极大的增加了国际市场天然气的供应,我国自俄罗斯进口来的天然气及自身天然气的发展,使整个能源机构发生了变化,中国计划到2030年非石化资源占一次能源的比重提高到20%左右,燃气热电冷联供技术恰逢其时。

天然气分布式能源,又称燃气热电冷联供系统,是一种建立在能源梯级利用概念基础上,将供热(采暖和供热水)、制冷及发电过程一体化的能源综合利用系统,其综合能源利用效率在70%以上,受到许多发达国家的重视并被称为“第二代能源系统”。

2 冷热电三联供的特点2.1 提高能源综合利用效率:运用能量梯级利用原理,先发电,再利用余热,体现了由能量的高品位到低品位的科学用能,且使一次能源综合利用效率和效益大幅度提高2.2 冷热电三联供CCHP可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而CCHP的能源利用率可达到80%~90%,且沒有输电损耗;2.3 降低碳和污染物排放方面具有很大的潜力:据专家估算,如果将现有建筑实施CCHP的比例从4%提高到8%,到2020年CO2的排放量将减少30%,有利于环境保护;2.4 缓解电力短缺,平衡电力峰谷差:三联产系统采用自发电,可以避开电网用电高峰,并且大大提高了建筑供电可靠性和安全性;2.5 布置在用户侧,燃气三联供系统解决了热电厂冬夏季负荷不均造成的热经济性低的问题,降低了发电煤耗率,提高了经济效益;2.6 该系统布置在建筑物内或就近布置,减少了大型热电项目大电网、大热网在输送环节的能量损失;2.7 该系统能够实现建筑用能自发自用,能源使用随用随转化、调节方便,避免了大型热电项目水利失调、冷热不均带来的能量损失;2.8 以溴化锂吸收式制冷机取代压缩式制冷机,避免了CFC类氟利昂制冷剂的大量使用和排泄,起到了环保的作用;3 热电冷三联供系统常见的几种配置模式按燃气原动机的类型不同来分,常用的冷热电联供系统有两类,即燃气轮机式联供系统和内燃机式联供系统,系统的具体组成包括:燃气机组、发电机组及供电系统、余热回收及供热系统、制冷机组及供冷系统,此外还有燃气机组的空气加压、预热、冷却水、烟气排放的辅助系统。

《热力发电厂》教案

《热力发电厂》教案

中原工学院《热力发电厂》教案能源与环境学院系别:热能与动力工程系任课教师:***绪论❖教学目的:掌握电能生产的特点及其要求,熟悉热力发电厂的类型,了解我国的电力发展概况及其发展政策。

❖内容提要:电能的特点以及对电力生产的要求,发电厂的分类,我国电力工业发展概况及发展政策,本课程的学习要求。

一、电力工业在国民经济中的地位和作用二、电力生产的特点及基本要求三、各种类型的热力发电厂四、我国电力工业的技术政策及国内外电力工业的发展概况五、本课程在电厂热能动力设备专业中的地位和作用❖授课时间:20分钟❖重点内容:各种类型的热力发电厂❖板书:以黑板粉笔书写为主第一章热力发电厂动力循环及其热经济性❖教学目的:掌握评价热力发电厂热经济性的主要方法。

❖内容提要:第一节热力发电厂热经济性的评价方法本单元主要讲述评价热力发电厂热经济性的主要方法:热量法、熵方法和火用方法。

❖授课时间:70分钟❖重点内容:评价热力发电厂热经济性的主要方法:热量法、熵方法。

❖板书:以黑板粉笔书写为主,并辐以幻灯片。

难点:评价热力发电厂热经济性的主要方法:热量法、熵方法。

思考题:发电厂在完成能量的转换过程中,存在哪些损失?其中哪一项热损失最大?为什么?❖教学目的:掌握凝汽式发电机组的主要热经济性指标以及朗肯循环、回热循环的热经济性,掌握蒸汽初参数对发电厂热经济性的影响规律。

❖内容提要:第二节热力发电厂热经济性的评价方法本单元主要讲述凝汽式发电厂的主要热经济性指标和发电厂的动力循环。

一、汽轮发电机组的汽耗量和汽耗率二、汽轮发电机组的热耗量和热耗率三、发电厂的热耗量和热耗率四、发电厂的煤耗量和煤耗率以及标准煤耗率五、全厂供电标准煤耗率第三节发电厂的动力循环一、朗肯循环及其热经济性二、回热循环及其热经济性:(一)给水回热加热的意义(二)给水回热加热的热经济性(三)影响回热过程热经济性的因素三、蒸汽初参数对发电厂热经济性的影响(一)提高初温对理想循环热效率的影响(二)提高初温对汽轮机的绝对内效率的影响(三)提高初压对理想循环热效率的影响(四)提高初压对汽轮机的绝对内效率的影响(五)提高蒸汽初参数对发电厂热经济性的影响(六)最有利蒸汽初压(七)提高蒸汽参数受到的限制(八)采用高参数大容量机组的意义❖授课时间:90分钟❖重点内容:凝汽式发电厂的主要热经济性指标,蒸汽初参数对发电厂热经济性的影响。

工业园区供热系统的经济与技术可行性分析

工业园区供热系统的经济与技术可行性分析

工业园区供热系统的经济与技术可行性分析在当今的工业发展中,工业园区的供热系统是一个至关重要的环节。

一个高效、稳定且经济合理的供热系统,不仅能够为企业的生产提供必要的保障,还能在一定程度上影响整个园区的可持续发展和竞争力。

因此,对工业园区供热系统进行经济与技术可行性分析显得尤为重要。

一、工业园区供热需求分析要评估供热系统的可行性,首先需要对工业园区的热需求进行详细的了解。

这包括园区内企业的类型、生产工艺、工作时间以及不同季节的热负荷变化等因素。

不同类型的企业,其热需求的特点也各不相同。

例如,化工企业可能需要高温高压的蒸汽用于化学反应,而纺织企业可能主要需要低温的热水进行印染和整理。

此外,企业的生产工艺也会对热的品质和供应量有特定的要求。

工作时间也是影响热需求的一个重要因素。

有些企业是连续生产,对供热的稳定性要求极高;而有些企业则是间歇性生产,热需求在不同时间段会有较大的波动。

季节的变化同样会导致热负荷的改变。

冬季通常是热需求的高峰期,因为需要供暖;而夏季的热需求相对较低,但某些生产过程可能仍需要一定的热量。

二、现有供热方式概述目前,常见的工业园区供热方式主要包括以下几种:1、集中供热集中供热是通过建设大型的热电厂或锅炉房,将产生的蒸汽或热水通过管道输送到各个用户。

这种方式具有规模效应,能够实现能源的高效利用和污染物的集中处理,但需要较大的投资和完善的管网建设。

2、分布式供热分布式供热是在园区内分散建设多个小型的供热设施,每个设施独立为附近的企业供热。

这种方式灵活性较高,但能源利用效率可能相对较低,且管理难度较大。

3、自备锅炉供热一些企业自行建设锅炉来满足自身的热需求。

这种方式虽然自主性强,但往往存在设备老化、效率低下、污染排放不达标等问题。

三、供热系统的技术可行性分析1、能源供应供热系统的能源选择直接关系到其技术可行性。

常见的能源包括煤炭、天然气、生物质能、太阳能等。

煤炭作为传统能源,供应相对稳定,但存在环境污染严重的问题。

热电厂供暖讲解

热电厂供暖讲解

热电厂供暖讲解热电厂供暖是一种常见的供暖方式,在许多城市中得到广泛应用。

它既能够提供可靠的供暖服务,又能够有效地利用资源,具有较高的能源利用率。

本文将对热电厂供暖进行详细的讲解,从其原理、流程、优势和应用等方面进行介绍。

一、热电厂供暖的原理和流程热电厂供暖是一种以电力发电为主要目的,同时产生余热用于供暖的方式。

其原理是将燃料燃烧产生的高温烟气通过锅炉加热水蒸汽,然后通过涡轮机将水蒸汽转化为机械能,再经过发电机将机械能转化为电能。

在这个过程中,热电厂还会产生大量的余热,通过余热回收系统将余热导入供热系统,供给用户进行取暖。

为了实现高效供暖,热电厂供暖一般会采用烟气余热锅炉和循环水供暖系统。

烟气余热锅炉可以充分利用燃料燃烧产生的烟气中的余热,提高能源利用效率。

循环水供暖系统则以供热设备为核心,通过管网将热水输送至用户的暖气片或者暖气设备,使建筑物内部保持温暖舒适。

二、热电厂供暖的优势1. 能源高效利用:热电厂供暖通过综合利用燃料燃烧产生的烟气余热,将其转化为供暖热源,实现能源的高效利用。

相比于传统的燃煤锅炉供暖方式,热电厂供暖的能源利用率更高,对环境的影响也更小。

2. 供暖稳定可靠:热电厂供暖具备稳定的供暖能力,能够满足大规模供暖的需求。

而且,热电厂通常会采用多重供暖系统的设计,确保供热的连续性和可靠性,有效避免了供暖中断的情况。

3. 提供冷热电三联供:热电厂供暖系统一般还会与冷却塔和空调系统相结合,实现冷热电三联供。

这不仅能够满足供暖的需求,还能够为冷却和空调提供所需的冷却水源,发挥多重功效,提高能源利用效率。

4. 减少空气污染:相比传统的燃煤锅炉供暖方式,热电厂供暖能够减少燃煤燃烧产生的大气污染物排放。

由于热电厂一般会采用先进的烟气处理技术,能够有效去除烟尘和排放的二氧化硫等有害物质,对环境的影响较小。

三、热电厂供暖的应用热电厂供暖已广泛应用于城市居民小区、学校、医院、商业综合体等建筑物,满足了大批用户的取暖需求。

《热力发电厂》课程教学大纲(本科)

《热力发电厂》课程教学大纲(本科)

热力发电厂Thermal power plant课程代码:02410070学分:2.5学时:40 (其中:课堂教学学时:40实验学时:0上机学时:0课程实践学时:0)先修课程:工程热力学,传热学,流体力学,汽轮机适用专业:热能工程教材:《热力发电厂》郑体宽中国电力出版社2001年3月第1版一、课程性质与课程目标(-)课程性质(需说明课程对人才培养方面的贡献)《热力发电厂》阐述动力循环的基本原理和热经济性分析的基本方法及其在发电厂中的应用,着重介绍国内600MW及以上大型机组以及热力系统。

《热力发电厂》是针对电厂热能及自动化专业的专业必修课程。

(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。

应包括知识目标和能力目标。

)课程目标1:发电厂的热经济性及分析方法课程目标2:提高电厂热经济性的途径课程目标3:新型动力循环课程目标4:发电厂原则性热力系统及全面性热力系统计算注:工程类专业通识课程的课程目标应覆盖相应的工程教育认证毕业要求通用标准;(三)课程目标与专业毕业要求指标点的对应关系(认证专业专业必修课程填写)本课程支撑专业培养计划中毕业要求指标点1-1……m-n1.毕业要求1-1:2.毕业要求……注:课程目标与毕业要求指标点对接的单元格中可输入“「',也可标注“H、M、L”。

第一章热力发电厂的评价(-)教学内容第一节热力发电厂的安全可靠性第二节火力发电厂的环保评价第三节热力发电厂热经济性评价第四节凝汽式发电厂的热经济性指标第五节发电厂的技术经济比较与经济效益的指标体系第六节我国能源和电力工业的可持续发展(二)教学要求讲解热力发电厂评价的相关技术指标。

(三)重点和难点各种专业术语的含义及计算公式。

第二章热力发电厂的蒸汽参数及其循环(一)教学内容第一节提高蒸汽初参数第二节降低蒸汽终参数第三节给水回热循环第四节蒸汽再热循环第五节热电联产循环(二)教学要求定性分析各种参数变化对热力发电厂热经济性影响。

热力发电厂习题答案全面要点

热力发电厂习题答案全面要点

热力发电厂习题答案全面要点(共9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一 名词解释热电厂的燃料利用系数:电、热两种产品的总能量与输入能量之比。

热化发电率:质量不等价的热电联产的热化发电量与热化供热量的比值。

发电热耗率:每发一度电所消耗的能(热)量。

端差:加热器汽侧压力下的饱和温度与出口水温之间的差值。

最佳真空:在汽轮机排汽量和循环水入口水温一定的条件下,增大循环水量使汽轮机输出功率增加c P ∆,同时输送循环水的循环水泵的耗功随之增加Ppu ∆,当输出净功率为最大时,即max max )(pu c P P P ∆-∆=∆,所对应的真空即凝汽器的最佳真空。

二 简答题1、混合式加热器的优点有哪些?答:混合式加热器的优点是:(1)传热效果好,能充分利用加热蒸汽的热量;(2)结构简单,造价低;(3)便于汇集不同温度和压力的疏水。

2、高压加热器的过热蒸汽冷却段的任务是什么?答:利用蒸汽的过热度,通过强制对流而使蒸汽在只降低过热度的情况下,放出过热热量加热给水,以减少传热端差,提高热经济性。

3、表面式加热器的疏水冷却段的任务是什么?答:利用刚进入加热器的低温给水来冷却加热器内的疏水,疏水温度的降低后进入下级加热器。

这样可使本级抽汽量增加,压力较低一级抽汽量减少,提高机组的经济性。

5、除氧器滑压运行的优点与存在的问题?答:滑压运行的优点是:避免除氧器用汽的节流损失,使汽机抽汽点分配合理,热经济性高,系统简单投资省。

缺点是:当汽机负荷突然增加时,使给水溶氧量增加;当汽机负荷减少时,尤其是汽机负荷下降很大时,给水泵入口发生汽蚀,引起给水泵工作失常。

6、提高蒸汽初参数、降低蒸汽终参数均可提高机组的热经济性,其受哪些主要条件限制? 答:提高蒸汽初温主要受金属材料的制约。

金属材料的强度极限,主要取决于其金相结构和承受的工作温度。

随着温度的升高,金属材料的强度极限、屈服点以及蠕变极限都要随之降低,高温下金属还要氧化,甚至金相结构也要变化,导致热力设备零部件强度大为降低,乃至毁坏。

热电厂供热系统的工作原理

热电厂供热系统的工作原理

热电厂供热系统的工作原理热电厂供热系统是指利用热电厂内部的余热,通过一系列的热交换设备和管道网络,将热能传递给用户,满足人们的供热需求。

这种供热方式不仅能够有效利用热能资源,还能减少环境污染,具有很高的经济和环境效益。

热电厂供热系统的工作原理主要分为余热回收、热能转换、热能输送和热能分配四个部分。

热电厂供热系统通过余热回收的方式,将燃烧发电过程中产生的大量余热进行收集和利用。

在热电厂的锅炉燃烧过程中,燃料燃烧产生的高温烟气通过烟气余热锅炉进行余热回收,将烟气中的热能转化为热水或蒸汽。

接下来,通过热能转换的过程,将余热转化为适合供热的热能形式。

热电厂内部设有换热器,将余热通过换热器与供热介质进行热交换,使介质的温度升高。

热电厂供热系统一般采用热水或蒸汽作为热能载体,通过换热器的热交换作用,将余热转化为热水或蒸汽。

然后,通过热能输送的方式,将转化后的热能从热电厂输送到用户的热交换站。

热电厂供热系统中的输送方式一般有两种,一种是采用热水循环输送的方式,另一种是采用蒸汽输送的方式。

不同的系统根据实际情况选择不同的输送方式,以确保热能能够有效地输送到用户终端。

通过热能分配的过程,将输送到用户的热能分配给各个用户。

热电厂供热系统中的热交换站起到了关键的作用,它将输送过来的热能通过热交换器与用户的供热系统进行热交换,将热能传递给用户。

热交换站还可以根据用户的不同需求,对热能进行进一步调节和分配,以满足不同用户的供热需求。

总的来说,热电厂供热系统通过余热回收、热能转换、热能输送和热能分配等一系列的工艺过程,将热电厂内部的余热转化为热水或蒸汽,并将其输送到用户的供热系统中,满足人们的供热需求。

这种供热方式不仅能够有效利用热能资源,还能减少环境污染,具有很高的经济和环境效益。

热电厂供热系统在实际应用中已经得到了广泛的推广和应用,为人们的生活带来了便利和舒适。

毕业设计(论文)-某火电厂热电联产的经济性分析

毕业设计(论文)-某火电厂热电联产的经济性分析

学校代码: 10128学号:************ 本科毕业论文题目:某火电厂热电联产的经济性分析学生姓名:学院:能源与动力工程学院系别:热能与动力工程系专业:热能与动力工程班级:热动08-3班指导教师:二〇一二年六月摘要能源的合理利用及提高其利用效率不仅关系到资源节约和经济发展,而且影响到生态破坏和人类前途,因此世界各国均把建立可靠、安全、稳定、高效的能源供应保障系统体系均为国民经济可持续发展的战略。

热电联产是实现能量梯级利用、提高一次能源利用率的重要技术规划和措施之一。

近年来,我国供热式机组占装机总量的比重逐年升高,采用大型凝汽式再热机组改造为供热机组的例子越来越多。

与小型热电联产机组相比,大型热电联产机组更能发挥节能、环保的作用,因为蒸汽初参数的提高可以提高热化发电率,增加的热化发电量与电网中的凝汽发电量相比避免了冷源损失。

同时,因为大型电站的锅炉运行效率高,供热的节能效果更明显,进一步地提高了供热机组的经济效益。

大型亚临界、超临界再热凝汽式机组的供热改造目前尚缺少系统的热经济性分析,此外,供热改造涉及锅炉高温受热面超温和汽轮机轴向推力变化等安全性方面的研究,在公开发表的文献中也少有记载。

本文重点对600MW纯凝汽式汽轮发电机组进行供热改造的可行性和必要性以及改造后对节能减排的影响进行了分析,从改造后的机组热经济性方面出发,分别采用热平衡法、做功能力法和等效焓降法三种方法来对亚临界进行热力计算、分析,并对结果进行比较。

计算结果表明热电联产可以使机组经济性得到提高,这是因为联产供热的这部分蒸汽先在汽轮机做了功,然后抽出供热,所以在机组循环中无冷源损失,机组经济性得到改善。

本文的研究可以为大型凝汽式再热机组的供热改造的实践提供热经济性方面的依据或参考。

关键字热电联产节能环保热力计算经济性分析AbstractRational use of energy and improve the utilization efficiency of not only related to resource conservation and economic development, and affect the ecological destruction and the future of mankind, countries around the world to establish a reliable, secure, stable, efficient energy supply security system are the national economy sustainable development strategy.Cogeneration is the energy cascade utilization, and improve the energy efficiency plans and measures. In recent years, of heating type unit accounted for the proportion of the total installed capacity is increased, year by year more and more examples of the heating unit for large condensing steam reheat unit retrofit. Condensing in small cogeneration units, large-scale cogeneration units can give full play to the role of energy-saving, environmental protection, because the parameters improved early steam heating power rate increase thermal generating capacity to the grid generating capacity, to avoid the loss of the cold source. Meanwhile, because of the large power plant boiler operating efficiency, the heating energy saving effect is more pronounced, further increase the economic efficiency of the heating unit.Large subcritical and supercritical heat and then the heat of condensing unit heating transformation is still lack of systematic economic analysis, In addition, the heating transformation involves the security aspects of the boiler temperature heating surface for moderate turbine axial thrust change rarely documented in the published literature. This article focuses on the feasibility and necessity of heating the transformation and the transformation of energy saving 600MW condensing steam turbine generator, After transformation, the Thermal Economy of Unit, respectively, using the heat balance method work capacity and equivalent enthalpy drop method are three ways to sub-critical thermal calculation, analysis, and results were compared. The results show that the cogeneration unit economy improved, this is because the first-generation heating part of the steam in the turbine power, and then out of the heating, so no loss of cold source in the unit cycle, the unit of economic has been improved.Of this study provide the hot economy in terms of the basis or reference for large condensing steam heating of the thermal unit transformation practice.第一章绪论 (5)1.1中国热电联产的现状 (5)1.2中国热电联产的市场潜力及前景 (6)1.3热电联产在中国体现的优越性 (8)1.4世界热电联产发展趋势 (9)1.5本文主要工作 (10)第二章热经济性的基本理论 (11)2.1热电联产的定义 (11)2.2热电联产机组的原理 (12)2.2.1热电联产循环的理论实质 (12)2.2.2热电联产的生产方式 (12)2.3热电联产的经济性分析 (13)2.3.1供热机组开始节煤的经济条件 (14)2.3.2供热机组成本开始降低的经济条件 (15)2.3.3供热机组增加投资在限定年限内得到回收的经济条件 (17)2.4热电联产对经济效益的影响 (18)2.4.1现行核算方法存在的主要问题 (18)2.4.2核定热电联产对电厂效益影响的新方法 (19)2.5热电联产对电厂经济效益的影响分析 (20)2.6本章总结 (22)第三章抽汽供热型机组的热经济性计算 (22)3.1背景介绍 (22)3.2设备简介 (23)3.2.1改造前主要参数 (23)3.2.2改造后供热工况汽轮机参数 (24)3.3关键参数的确定 (24)3.4计算过程 (25)3.4.1.热电厂总的经济指标 (25)3.4.2.发电、供热热经济指标的求解(分别按三种分配方法计算) (27)3.4.3数据汇总 (31)3.4.5煤耗的计算 (32)3.4.6采暖设计热负荷的计算 (34)3.4.7技术经济性的计算 (34)3.5本章总结 (35)第四章热电联与节能环保 (36)4.1热电联产与环境概述 (36)4.2热电联产是节能与环保的捷径 (37)4.3节约能源的需要 (38)4.3.1能源形势不容乐观 (38)4.3.2国家能源政策调整为热电联产发展提供了新机遇 (39)4.4环境保护的要求 (39)4.4.1我国环境污染现状 (39)4.4.2我国环境污染防治 (41)4.4.3热电联产集中供热是改善环境的有效措施 (42)4.5环境效益总结 (43)第五章总结 (44)5.1对我国现阶段热电联产发展的一些认识 (44)5.1.1影响热电联产近十年发展的相关因素分析 (44)5.1.2政策措施软化 (44)5.1.3有关建议及拟采取的措施 (45)5.2热电联产目前存在的问题 (46)5.3对促进热电联产发展的建议 (47)5.4今后发展方向探讨 (49)结论与展望 (51)第一章绪论1.1中国热电联产的现状1、目前热电联产发展的特点(1)最近几年热电厂的建设主要是在已有的工业区内搞热电联产,代替目前分散运行的小锅炉。

热力发电厂的热经济性

热力发电厂的热经济性
量,在采暖期供热,在非采暖期或暂无热负荷时以凝汽机组运行 ? 高压缸通流容积按凝汽流设计,供热以牺牲电功率为代价 ? 由于蝶阀压损影响,非采暖期凝汽运行热经济性会下降约 0.1%-0.5% ? 设计制造简单,成本低
低真空供热凝汽机组 :提高机组背压用循环水供热,减少电 功率
(三)热电联产的热量法(效率法)定性分析
电比Xh= (Wh/W)提高,提高经济性; 给水回热循环的回热抽汽流也属于热电联产的性质;
(3)对于抽汽凝汽式机组,其中的供热汽流完全没有冷源热损 失, 它的 η ih 仍为 1。它的凝汽汽流仍有冷源热损失,该凝汽流的 η ic小于1,比相同循环参数、同容量的凝汽式汽轮机(即代替 电厂的汽轮机)的绝对内效率η i还要低,即 ηic<ηi
理想朗肯循环热效率ηt和实际朗肯循环热效率η i为: 理想纯供热循环的热效率ηth及其实际循环热效率η ih为:
(1)朗肯循环的η t、η i值均较低,其排汽虽有较大热量, 但品位低,无法对外供热,冷源损失大,能源利用率低;
(2)纯供热循环的η th、η ih均为1 ,无冷源损失; 在满足用热参数的前提下,降低 ph值,可提高 wi 值,使热化 发
第三节 热电厂的热经济性指标
一、热电联产简介
(一)热能消费的特点 我国能源结构中
70% 能量以热 量形式消耗
60%是120℃ 以下的低温热能
热能耗费的数量很大,品价较低,又常以高品位的一次能源 来供应,故具有较大的节能潜力。
(二)热电分别能量生产与热电联合能量生产的特点
分产: 能量浪费严重,利用不合理,能量品位贬值严重 联产: 实现能量的有效梯级利用,能源利用率高,节能
分散供热、分产电
集中供热、分产电
(二)热电分别能量生产与热电联合能量生产的特点 供热式汽轮机类型:单抽(C型)凝汽式汽轮机、双抽(CC型)

空冷机组热电联产供热方式的热经济性分析

空冷机组热电联产供热方式的热经济性分析

空冷机组热电联产供热方式的热经济性分析发布时间:2022-06-14T09:17:27.670Z 来源:《新型城镇化》2022年12期作者:王文飞[导读] 目前主要使用的机组为抽汽式供热机组和高背压式供热机组,也有一些热泵供热机组以及其他供热机组进行试验运行或者特殊供热运行。

在这些供热机组中,目前抽汽供热机组、空冷高背压供热机组和湿冷高背压循环水供热机组相关的研究较多,在应用实践上有许多经验。

在运行方式上目前供热系统主要以单机组运行为主,对多机组联合供热运行的研究较少,抽汽供热机组和高背压机组的联合运行能在一定程度上联合两机组的优势,且对其热经济性的相关研究目前较少,有一定的研究价值。

王文飞北京国电电力有限公司大同第二发电厂山西大同 037400摘要:目前主要使用的机组为抽汽式供热机组和高背压式供热机组,也有一些热泵供热机组以及其他供热机组进行试验运行或者特殊供热运行。

在这些供热机组中,目前抽汽供热机组、空冷高背压供热机组和湿冷高背压循环水供热机组相关的研究较多,在应用实践上有许多经验。

在运行方式上目前供热系统主要以单机组运行为主,对多机组联合供热运行的研究较少,抽汽供热机组和高背压机组的联合运行能在一定程度上联合两机组的优势,且对其热经济性的相关研究目前较少,有一定的研究价值。

关键词:空冷机组;热电联产供热;热经济性1机组运行方式设计1.1抽汽式热电联产机组本文使用抽汽式热电联产机组由中压缸排汽抽汽进行供热。

供热回水进入除氧器。

1.2高背压式热电联产机组本文使用高背压式热电联产机组由低压缸高背压排汽部分进入高背压供热换热器进行供热。

如不能满足供热温度要求时从中压缸排汽抽汽进行额外尖峰加热。

对高背压式热电联产机组,考虑在不同热负荷和电负荷以及供热温度下的工作情况,设计如下运行方式:机组运行背压34kPa。

高背压排汽温度为72°C,考虑到供热凝汽器端差,由高背压供热凝汽器将供热回水加热至70°C,剩余所需热量由中压缸抽汽进行尖峰加热。

华能南京电厂供热经济性分析

华能南京电厂供热经济性分析

区供 汽 的补 充及 冷 备 用 。高 排 减压 装 置设 备
汽 参数 计 算 , 得 出不 同供 热 蒸 汽 的供 热燃 料 成本 ; 同时通过 作 功 能 力法 , 直观 地 表 明
了蒸汽 品质 与供 热 经济 性 的关 系。
【 关键 词 】 供 热 经 济性
分析
1 概 述
联 络管分 别 引出两个 汽源 点 。同时扩 大 舵 机
四段 抽 汽容 量 、增 加 四段抽 汽 量 以便兼 供 厂
路蒸汽 , 经减 压后 接 至供 热蒸 汽 分配 箱 , 作
为# 1 机 向高新 区供 汽 的补充及 热备 பைடு நூலகம் 。 # l 机 高压 缸排 汽 炉侧 低再 联 络 管上 抽 出一路 蒸 汽 与# 2机 高压 缸 排 汽 炉 侧 低 再 联 络 管 上抽 出 的一路 蒸 汽汇 合 ,经 减压 后 接至 供 热蒸 汽分
用汽 。
南 京 电厂 # l 、 2汽 轮 机 原 系 前 苏 联 哈 尔
科 夫 汽 轮 机 制 造 厂 生 产 的 K一 3 2 0 — 2 3 . 5 — 4
型超临界 、 一 次 中 间再 热 、 单轴 、 三缸 、 双 排 汽、 凝 汽 式汽 轮发 电机 组 , 于1 9 9 4年投产 。为
名 称 分 配 箱 容 积 长 度 直 径 工 作 压 力 MP a 单 位 m 3 参 数
表 2 高排 减 压 装 置 设 备 规 范
名 称
进 汽 压 力




8 . 5 4 7 7 8 2
MP a
4 . O 8
进 汽 温 度 1 2 o o 1 . 0 ~ 1 . 3
工 作 温 度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• Qtp=Qc+Qh,b+ Qh,t+ Qc
热电厂经济性及供热系统
~
Dc Dh
热 用 户
(2)总热耗量的分配的实质
Q t p B tq p l Q bQ 0 k J/h b bp
Q tp Q t( p h ) Q t( p e ) k J/h
B tp Q q tlp Q t( p h )q lQ t( p e ) B t( p h ) B t( p e )
– 发达国家:>60% – 中国:20%左右
我国政府发展热电联产的政策
– 发改委启动“十一五十大重点节能工程”之一 – 目标:2010年
• 城市集中供热普及率由2002年的27%提高到40% • 新增供暖热电联产机组4000万千瓦 • 年节能能力3500万吨标准煤
热电厂经济性及供热系统
我国热电联产发展
联产方式节煤:20,230吨/年(标煤) 节约资金:8,092,000元
热电厂经济性及供热系统
(二)热电厂总热耗能的分配
(1)总热耗量Qtp分析
新蒸汽量D0包括:
D0, h0
凝汽汽流Dc
分产供热汽流Dh,b
Qtp
Boiler
Dh,b
Dh,t
联产供热汽流Dh,t
回热抽汽汽流Dr
Dr
• D0=DC+ Dh,b+ Dh,t+ Dc
k g /h
思路:先求供热所分配的热耗Qtp(h)和煤耗Btp(h)
热电厂经济性及供热系统
(3)热电厂总热耗量的分配方法 1)热电联产效益归电法:热量法
2)热电联产效益归热法:实际焓降法
3)热电联产效益折中分配法:做功能力法 净效益法
热电厂经济性及供热系统
热量法——热电厂总热耗按产品数量比例进行分配
• 热电发展速度过快,供热负荷不落实,名为 热电,实为火电
• 配套热网建设滞后,集中供热无法同步实施 • 现有热电厂凝结水回收少,水资源浪费严重
(<10%) • 冬季环境效益明显,夏季环境影响增大
热电厂经济性及供热系统
一、热负荷及其载热质 1、热负荷分类
季节性热负荷——用热量主要与气候有关 • 采暖 • 通风 • 空调
发电的热耗量:
Dtp(e) DtpQtp(h)
分析:
冷源损失 Dh,t(hc 热h电c)厂经全济性部及供由热系发统 电承担
热电厂经济性及供热系统
实际焓降法
——按联产供热抽汽汽流在汽轮机少做的功(实际焓降不足) 与新蒸汽实际焓降的比例分配热耗量
分配给联产供热的热耗量:
Qt tp(h)
QtpD Dh0,t((hh0hhhcc))
减温减压器的供热量:
Qb tp(h)
Dh,b(hb hb)
bp
供热总的热耗量:
Dtp(h) Qttp(h)Qtbp(h)
热电厂总热耗:
Qtp
Btpqnet
Q0
bp
供热热耗:
Qtp ( h )
Qh
b p
分析(以背压式机组为例):
能量平衡式:
Q 0W iQ hQ (e)Q h
汽轮机内效率:
i
Wi Q(e)
Q(e) Q(e)
1
热电厂经济性及供热系统
热量法特点:
• 从热能数量利用分配热耗,不考虑热能质量差别; • 供热热耗量Qtp(h)是几种方法中最大的; • 好处归电(联产发电部分没有冷源热损失)
热电联产特点: – 同时对用户供应电能和热能; – 热能来自汽轮机中做过功的蒸汽; – 能量的梯级利用; – 节约能源,环保有利
热电厂经济性及供热系统
热电联产应用实例
某城市 • 电负荷:43,800 万度电/年 • 热负荷:8,032,920 GJ/年 两种生产方式:
–热电联产:500MW抽汽供热机组 –热电分产:300MW发电机组、20t/h供热锅炉
非季节性热负荷——用热量与室外气温无关 • 热水供应 • 生产工艺用热
热电厂经济性及供热系统
2 热负荷图
——反映热负荷随室外温度或时间的变化 (1)全日热负荷图
Qh(GJ/h)
Qt,max(GJ/h)
0 2 4 6 8 10 12 14 16 18 20 22 24 h 住宅区典型热热电厂水经济供性应及供全热系日统热负荷图
年份1Leabharlann 986MW 以上 供热机组台

6MW 以上 供热机组容 量(MW)
占火电装机 份额%
1313 24939 12.7
2001 1606 32240 13.37
2003 2004 2005
2121


43690 64170 91554 15.7 19.75 23.8
热电厂经济性及供热系统
热电联产存在问题
第三章 热电厂的经济性及其供热系统
• 热负荷及其载热质 • 热电联合生产及热电厂总热耗量的分配 • 热电厂主要热经济性指标与热电联产节约燃料条件 • 热电厂的热化系数与供热式机组的选型 • 热电厂的供热系统
热电厂经济性及供热系统
一、基本概念
凝汽式发电厂: 只发电
热电厂:
发电和供热
分散供热: 集中供热:
小锅炉供应 热电厂或区域性大锅炉房
热电厂经济性及供热系统
T
G
G
B
B
热用户
凝汽式发电厂
热电厂经济性及供热系统
热电厂
T B
T
G
热用户
背压式热电联产循环(与凝汽式汽轮机并列运行)
热电厂经济性及供热系统
T
T
G
B
热用户
C
调节抽汽式热电联产循环
热电厂经济性及供热系统
热电联产发展现状
联产机组占同容量火电机组的份额
二、载热质及其选择
热网 ——将热能由热源通过管网输送给热用户的系统
供热系统 ——热源、热网、用户引入口及局部用热系统
热网分类
载热质回收
封闭式系统
半封闭式系统 载热质类型
开放式系统 热电厂经济性及供热系统
水网 汽网
二、热电联合生产及热电厂总热耗量的分配
(一)热电联合生产 热电分产 —— 只生产电能或热能一种能量
热 用
~
热 用
~


分散供热、分产电 热电厂经济性及供热系统 集中供热、分产电
热电联产 ——热电厂中同一股蒸汽汽流先发电后供热
优点:无冷源损失
~
B
缺点:以热定电
热 用
适用:稳定工业热负荷

背压汽轮机热电联产热系电厂统经济性及供热系统
抽汽供热汽轮机热电联产系统
Boiler
~
热 用 户
优点:可在一定范围内调整热负荷与电负荷 缺点:有冷源损失 热电厂经济性及供热系统
热 负 荷
1 2 3 4 5 6 7 8 9 10 11 12 年生产热负荷曲线
热电厂经济性及供热系统
月份
(2)热负荷随室外温度变化图
总热负荷
Qh,GJ/h
供暖热负荷
冬季通风热负荷 热水供应热负荷
t,℃ +5 0 -5 -10 -15 -20 住宅区热负荷随室外温度的变化示意图
热电厂经济性及供热系统
相关文档
最新文档