中考数学 一元二次方程组 培优 易错 难题练习(含答案)及答案解析
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;所以容易求出图10、图n中黑点的个数分别是、.
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.
∴小圆圈的个数会等于271,它是第10个点阵.
点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.
【答案】当 时,活动区的面积达到
【解析】
【分析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.
【详解】
解:设绿化区宽为y,则由题意得
.
即
列方程:
解得 (舍), .
∴当 时,活动区的面积达到
【点睛】
本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.
9.已知关于x的方程mx2+(3﹣m)x﹣3=0(m为实数,m≠0).
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.
【解析】
分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
解得:m≥- ;
(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,
∵ 即 =-1,
∴ =-1,整理得m2﹣2m﹣3=0
解得:m1=﹣1,m1=3,
由(1)知m≥- ,
∴m1=﹣1应舍去,
∴m的值为3.
【点睛】
本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.
8.某社区决定把一块长 ,宽 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边 为何值时,活动区的面积达到 ?
详解:(1)证明:∵m≠0,
∴方程mx2+(m-3)x-3=0(m≠0)是关于x的一元二次方程,
∴△=(m-3)2-4m×(-3)
=(m+3)2,
∵(m+3)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:∵x= ,
∴x1=- ,x2=1,
∵m为正整数,且方程的两个根均为整数,
∴m=-1或-3.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.
(1)求k的取值范围;
(2)若图象与x轴交点的横坐标为 ,且它们的倒数之和是 ,求k的值.
【答案】(1)k<- ;(2)k=﹣1
【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b2-4ac的范围可求解出k的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k的值.
【详解】
(1)证明:
∵(x﹣3)(x﹣4)﹣m2=0,
∴x2﹣7x+12﹣m2=0,
∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,
∵m2≥0,
∴△>0,
∴对任意实数m,方程总有2个不相等的实数根;
(2)解 :∵方程的一个根是2,
∴4﹣14+12﹣m2=0,解得m=± ,
∴原方程为x2﹣7x+10=0,解得x=2或x=5,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,
…
第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,
∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<- ;
(2)当y=0时,x2-(2k-1)x+k2+1=0.
则x1+x2=2k-1,x1•x2=k2+1,
中考数学一元二次方程组培优易错难题练习(含答案)及答案解析
一、一元二次方程
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
【解析】
试题分析:根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式 求解即可.
试题解析:方程化为x2-4x-1=0.
∵b2-4ac=(-4)2-4×1×(-1)=20,
∴x= =2± ,
∴x1=2- ,x2Leabharlann Baidu2+ .
3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
(1)试说明:此方程总有两个实数根.
(2)如果此方程的两个实数根都为正整数,求整数m的值.
【答案】(1) ≥0;(2)m=-1,-3.
【解析】
分析:(1)先计算判别式得到△=(m-3)2-4m•(-3)=(m+3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;
(2)利用公式法可求出x1= ,x2=-1,然后利用整除性即可得到m的值.
即m的值为± ,方程的另一个根是5.
【点睛】
此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.
当△=b2-4ac>0时,方程有两个不相等的实数根;
当△=b2-4ac=0时,方程有两个相等的实数根;
当△=b2-4ac<0时,方程没有实数根.
4.已知关于x的二次函数 的图象与x轴有2个交点.
(2)当△ABC为等边三角形时,求m的值.
【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为 ;(2)当△ABC为等边三角形时,m的值为1.
【解析】
【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.
(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4( ﹣ )=m2﹣2m+1,可求得m.
(1)求证:对任意实数m,方程总有2个不相等的 实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.
【答案】(1)证明见解析;(2)m的值为± ,方程的另一个根是5.
【解析】
【分析】
(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;
(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.
7.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)若 ,则m的值为多少?
【答案】(1) ;(2)m的值为3.
【解析】
【分析】
(1)根据△≥0即可求解,
(2)化简 ,利用韦达定理求出α+β,αβ,代入解方程即可.
【详解】
解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.
错误原因:此时不能构成三角形.
(1)当m=2时,方程为x2﹣2x+ =0,
∴x1= ,x2= .
当 为腰时, + < ,
∴ 、 、 不能构成三角形;
当 为腰时,等腰三角形的三边为 、 、 ,
此时周长为 + + = .
答:当m=2时,△ABC的周长为 .
10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.解方程:x2-2x=2x+1.
【答案】x1=2- ,x2=2+ .
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x,根据题意得:
10(1+x)2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y万辆,根据题意得:
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x= (不合题意,舍去).
答:人行道的宽为2米.
11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
(2)若△ABC为等边三角形,则方程有两个相等的实数根,
∴△=(﹣m)2﹣4( ﹣ )=m2﹣2m+1=0,
∴m1=m2=1.
答:当△ABC为等边三角形时,m的值为1.
【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.
6.有一个人患了流感,经过两轮传染后共有36人患了流感.
∵b2﹣4ac=9>0
∴x= =
∴x1=5,x2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC的两边是关于x的方程x2﹣mx+ ﹣ =0的两个实数根.
(1)当m=2时,求△ABC的周长;
【详解】
(1)设每轮传染中平均一个人传染了x个人,根据题意得:
x+1+(x+1)x=36,
解得:x=5或x=﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
∵ = = = ,
解得:k=-1或k= (舍去),
∴k=﹣1
5.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
【答案】(1)2000;(2)2米
【解析】
【分析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得: ﹣ = 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;
请你参考以上“分块计数法”,先将下面的点阵进行分块(画在答题卡上),再完成以下问题:
(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.
∴小圆圈的个数会等于271,它是第10个点阵.
点睛:本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.
【答案】当 时,活动区的面积达到
【解析】
【分析】
根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答.
【详解】
解:设绿化区宽为y,则由题意得
.
即
列方程:
解得 (舍), .
∴当 时,活动区的面积达到
【点睛】
本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心.
9.已知关于x的方程mx2+(3﹣m)x﹣3=0(m为实数,m≠0).
(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.
【答案】60个,6n个;(1)61;3n2﹣3n+1,(2)小圆圈的个数会等于271,它是第10个点阵.
【解析】
分析:根据规律求得图10中黑点个数是6×10=60个;图n中黑点个数是6n个;
(1)第2个图中2为一块,分为3块,余1,
第2个图中3为一块,分为6块,余1;
解得:m≥- ;
(2)由根与系数的关系得:α+β=﹣(2m+3),αβ=m2,
∵ 即 =-1,
∴ =-1,整理得m2﹣2m﹣3=0
解得:m1=﹣1,m1=3,
由(1)知m≥- ,
∴m1=﹣1应舍去,
∴m的值为3.
【点睛】
本题考查了一元二次方程根的判别式以及韦达定理,对根进行判断是正确解题的关键.
8.某社区决定把一块长 ,宽 的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边 为何值时,活动区的面积达到 ?
详解:(1)证明:∵m≠0,
∴方程mx2+(m-3)x-3=0(m≠0)是关于x的一元二次方程,
∴△=(m-3)2-4m×(-3)
=(m+3)2,
∵(m+3)2≥0,即△≥0,
∴方程总有两个实数根;
(2)解:∵x= ,
∴x1=- ,x2=1,
∵m为正整数,且方程的两个根均为整数,
∴m=-1或-3.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.
(1)求k的取值范围;
(2)若图象与x轴交点的横坐标为 ,且它们的倒数之和是 ,求k的值.
【答案】(1)k<- ;(2)k=﹣1
【解析】
试题分析:(1)根据交点得个数,让y=0判断出两个不相等的实数根,然后根据判别式△= b2-4ac的范围可求解出k的值;
(2)利用y=0时的方程,根据一元二次方程的根与系数的关系,可直接列式求解可得到k的值.
【详解】
(1)证明:
∵(x﹣3)(x﹣4)﹣m2=0,
∴x2﹣7x+12﹣m2=0,
∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,
∵m2≥0,
∴△>0,
∴对任意实数m,方程总有2个不相等的实数根;
(2)解 :∵方程的一个根是2,
∴4﹣14+12﹣m2=0,解得m=± ,
∴原方程为x2﹣7x+10=0,解得x=2或x=5,
第3个点阵中有:3×6+1=17个,
第4个点阵中有:4×9+1=37个,
第5个点阵中有:5×12+1=60个,
…
第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
故答案为:60,3n2﹣3n+1;
(2)3n2﹣3n+1=271,
n2﹣n﹣90=0,
(n﹣10)(n+9)=0,
n1=10,n2=﹣9(舍),
试题解析:(1)∵二次函数y=x2-(2k-1)x+k2+1的图象与x轴有两交点,
∴当y=0时,x2-(2k-1)x+k2+1=0有两个不相等的实数根.
∴△=b2-4ac=[-(2k-1)]2-4×1×(k2+1)>0.
解得k<- ;
(2)当y=0时,x2-(2k-1)x+k2+1=0.
则x1+x2=2k-1,x1•x2=k2+1,
中考数学一元二次方程组培优易错难题练习(含答案)及答案解析
一、一元二次方程
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
【解析】
试题分析:根据方程,求出系数a、b、c,然后求一元二次方程的根的判别式,最后根据求根公式 求解即可.
试题解析:方程化为x2-4x-1=0.
∵b2-4ac=(-4)2-4×1×(-1)=20,
∴x= =2± ,
∴x1=2- ,x2Leabharlann Baidu2+ .
3.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
【答案】(1)5;(2)180
【解析】
【分析】
(1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可;
(2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可.
(1)试说明:此方程总有两个实数根.
(2)如果此方程的两个实数根都为正整数,求整数m的值.
【答案】(1) ≥0;(2)m=-1,-3.
【解析】
分析:(1)先计算判别式得到△=(m-3)2-4m•(-3)=(m+3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;
(2)利用公式法可求出x1= ,x2=-1,然后利用整除性即可得到m的值.
即m的值为± ,方程的另一个根是5.
【点睛】
此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.
当△=b2-4ac>0时,方程有两个不相等的实数根;
当△=b2-4ac=0时,方程有两个相等的实数根;
当△=b2-4ac<0时,方程没有实数根.
4.已知关于x的二次函数 的图象与x轴有2个交点.
(2)当△ABC为等边三角形时,求m的值.
【答案】错误之处及错误原因见解析;(1)当m=2时,△ABC的周长为 ;(2)当△ABC为等边三角形时,m的值为1.
【解析】
【分析】根据三角形三边关系可以得到等腰三角形的三条边不能为2、2、5.
(1)先解方程,再确定边,从而求周长;(2)是等边三角形,则两根相等,即△=(﹣m)2﹣4( ﹣ )=m2﹣2m+1,可求得m.
(1)求证:对任意实数m,方程总有2个不相等的 实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.
【答案】(1)证明见解析;(2)m的值为± ,方程的另一个根是5.
【解析】
【分析】
(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;
(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.
7.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两根α,β.
(1)求m的取值范围;
(2)若 ,则m的值为多少?
【答案】(1) ;(2)m的值为3.
【解析】
【分析】
(1)根据△≥0即可求解,
(2)化简 ,利用韦达定理求出α+β,αβ,代入解方程即可.
【详解】
解:(1)由题意知,(2m+3)2﹣4×1×m2≥0,
按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,
(2)代入271,列方程,方程有解则存在这样的点阵.
详解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,
故答案为:60个,6n个;
(1)如图所示:第1个点阵中有:1个,
第2个点阵中有:2×3+1=7个,
【详解】解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.
错误原因:此时不能构成三角形.
(1)当m=2时,方程为x2﹣2x+ =0,
∴x1= ,x2= .
当 为腰时, + < ,
∴ 、 、 不能构成三角形;
当 为腰时,等腰三角形的三边为 、 、 ,
此时周长为 + + = .
答:当m=2时,△ABC的周长为 .
10.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少米2?
(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.解方程:x2-2x=2x+1.
【答案】x1=2- ,x2=2+ .
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x,根据题意得:
10(1+x)2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y万辆,根据题意得:
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)设人行道的宽度为x米,根据题意得,
(20﹣3x)(8﹣2x)=56
解得:x=2或x= (不合题意,舍去).
答:人行道的宽为2米.
11.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.
例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?
(2)若△ABC为等边三角形,则方程有两个相等的实数根,
∴△=(﹣m)2﹣4( ﹣ )=m2﹣2m+1=0,
∴m1=m2=1.
答:当△ABC为等边三角形时,m的值为1.
【点睛】本题考核知识点:二元一次方程的运用.解题关键点:熟练掌握二元一次方程的解法和等腰三角形性质.
6.有一个人患了流感,经过两轮传染后共有36人患了流感.
∵b2﹣4ac=9>0
∴x= =
∴x1=5,x2=2
所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.
当腰为2,底为5时,等腰三角形的三条边为2,2,5.
探究应用:请解答以下问题:
已知等腰三角形ABC的两边是关于x的方程x2﹣mx+ ﹣ =0的两个实数根.
(1)当m=2时,求△ABC的周长;
【详解】
(1)设每轮传染中平均一个人传染了x个人,根据题意得:
x+1+(x+1)x=36,
解得:x=5或x=﹣7(舍去).
答:每轮传染中平均一个人传染了5个人;
(2)根据题意得:5×36=180(个),
答:第三轮将又有180人被传染.
【点睛】
本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程.
∵ = = = ,
解得:k=-1或k= (舍去),
∴k=﹣1
5.发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.
涵涵的作业
解:x2﹣7x+10=0
a=1 b=﹣7 c=10
【答案】(1)2000;(2)2米
【解析】
【分析】
(1)设未知数,根据题目中的的量关系列出方程;
(2)可以通过平移,也可以通过面积法,列出方程
【详解】
解:(1)设该项绿化工程原计划每天完成x米2,
根据题意得: ﹣ = 4
解得:x=2000,
经检验,x=2000是原方程的解;
答:该绿化项目原计划每天完成2000平方米;