电感式位移传感器的设计
LVDT线性位移传感器数据检测技术

LVDT线性位移传感器数据检测技术及测控电路课程设计姓名:***学号:**********班级:测控09-3班学校:哈尔滨理工大学第一章一、设计目的1、根据LVDT线性位移传感器的工作原理,设计差动变压器电感式位移传感器(包括传感器参数设计和架构设计)。
2、学习集成芯片AD698工作原理以及与LVDT的连接的应用。
3、学习分析设计电路、Altium Designer绘制原理图及PCB图。
4、学习焊接电路板并完成电路板的调试。
5、了解传感器标定方法,并计算传感器的相关参数。
6、运用所学习的理论知识解决实际问题。
第二章一、 原始数据及技术要求1、 最大输入位移为1cm ;2、 灵敏度不小于1v/mm ;3、 非线性误差不大于10%;4、 电源为直流30v; 二、 传感器原理设计2-1.差动变压器的工作原理因为差动输出电动势为)()(1211M f M I j M M I j E S ∆=∆=-=••ωω 所以差动变压器输出电动势为两副边线圈互感之差M ∆的函数。
2-2.螺管型差动变压器的结构设计螺管型差动变压器结构复杂,常用二段式、三段式、一节式的灵敏度高,但三节式的零点较好,如图一所示为三种形式的示意图。
二节式一节式三节式图一 差动变压器的结构形式2-3.螺管型差动变压器的参数计算 1. 激磁绕组长度的确定通常是在给定非线性误差γ及最大动态范围max l ∆的条件下来确定值b ,即⎪⎪⎩⎪⎪⎨⎧∆=∆=∆-=max 222221ll b k l k r 联立以上各式解得γ2max l b ∆=取max l ∆=1cm ,则缘边线圈长度b=2.24 cm, 2k =997 2. 衔铁的长度c l 的确定由结构图二的几何尺寸关系可知,铁芯的长度为212l b d l l c +++=式中1l 、2l --衔铁在两个副边绕组m 中的长度;d --初次线圈间骨架厚度; b --原边线圈的长度;m --两副边绕组长度;初始状态时有021l l l ==,则衔铁的长度由图二的几何尺寸有b d l l b d l lc ++=+++=)(22000设计时,一般取b l =0,故有d b l c 23+=,通常取b d <<,则b lc 3=由一中式求得为b=2.24cm ,求得为c l =6.72cm 。
倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器

倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器倍加福接近传感器NCB4-12GM40-N0-V1电感式传感器电感式传感器简介:电感式传感器是利用线圈自感或互感系数的变化来实现非电量电测的一种装置。
利用电感式传感器,能对位移、压力、振动、应变、流量等参数进行测量。
它具有结构简单、灵敏度高、输出功率大、输出阻抗小、抗干扰能力强及测量精度高等一系列优点,因此在机电控制系统中得到广泛的应用。
它的主要缺点是响应较慢,不宜于快速动态测量,而且传感器的分辨率与测量范围有关,测量范围大,分辨率低,反之则高。
技术参数节选 NCB4-12GM40-N0-V1通用规格开关功能常闭 (NC)输出类型 NAMUR额定工作距离 4 mm安装齐平确保操作距离 0 ... 3,24 mm实际工作距离 3,6 ... 4,4 mm 类型衰减系数 rAl 0,41衰减系数 rCu 0,39衰减系数 r304 0,78输出类型 2 线额定值额定电压 8,2 V (Ri 约 1 kΩ)开关频率 0 ... 1500 Hz迟滞 1 ... 15 类型 5 %反极性保护反极性保护短路保护是适用于 2:1 技术是,无需反极性保护二极管电流消耗未检测到测量板 min. 2,2 mA检测到测量板≤ 1 mA开关状态指示灯黄色多孔 LED功能性安全相关参数安全完整性级别 (SIL) SIL 2MTTFd 3010 a任务时间 (TM) 20 a诊断覆盖率 (DC) 0 %装置应用传感器作为采集和获取信息的工具,对系统的自动化检测和质量监测起着重要作用。
电感式传感器是一种互感式电感传感器,它可将微小的机械量,如位移、振动、压力造成的长度、内径、外径、不平行度、不垂直度、偏心、椭圆度等非电量物理量的几何变化转换为电信号的微小变化,转化为电参数进行测量,是一种灵敏度较高的传感器,具有结构简单可靠、输出功率大、抗阻抗能力强、对工作环境要求不高、稳定性好等一系列优点,因而被广泛应用于各种工程物理量检测与自动控制系统中 [3] 。
电感式位移传感器输出特性仿真分析

21 0 2年 7月
机
电
工
程
Vo . 9 No 7 12 .
Jun lo c a ia & Ee t c l gn e n o r a f Me h nc l lcr a ie r g i En i
J1 01 u.2 2
电感 式 位 移 传 感 器 输 出特 性 仿 真 分 ; 学模 型 ; tb仿真 ; 数 Maa l 线性误差
中图分类号 :P 1 T 7 T 22;H 3 文献标 志码 : A 文章编号 :O I一 5 1 2 1 ) 7— 7 5— 4 I D 4 5 (0 2 0 0 9 0
S mu a i n a l ss o u p t c a a t rsi f i l to na y i f o t u h r c e it o c
析 ; 了输入/ 出参数之 间的变化规律 。研究结果表明 : 探讨 输 电感式位移传感器存在一个近似线性工作 区域 ± , 6 其线性度误差受
线圈匝数与半径的影响 ; 在其他参数一定的情况下 , 圈半径与线 圈匝数 分别为定 值 、 次改变线 圈匝数 与线圈半 径时 , 在铁芯 线 依 存
位移 , 当 且 ≤ I I , 6 时 传感器输 出特性近似成线性关系 , 度好 ; 线性 当 ≥ l l , 6 时 传感器输 出特 性为非线 性关 系, 线性度
Ab ta t sr c :Ai n ts u t r n lcr ma n t n u t n c a a tr t s o d cie d s lc me tt n d c r ,i i n vt be t p e mig a t cu e a d ee t r o g ei i d ci h r ce i i fi u t ipa e n a s u e s t si e i l o a p a c o sc n v r a r t e p o l m ew e o ln a t u p t n mp rt r r t y w ih i s n c u a y i afce ,o h a i f n l s fs cu a h r b e b t e n n ni e r y o t u d t i a e ea u e d f ,b h c st t g a c rc s f t d n t e b sso ay i o t tr l i t e i e a s u r c aa tr t sa d w r i g p i cp e o e i d cie d s lc me ts n o ,mah ma ia d lo h e ain h p b t e n ip ta d o t u h r ce si n o k n rn i l f h n u t ipa e n e s r i c t v te t l mo e ft e r lto s i ew e n u n u p t c wa o sr ce sc n tu td,a d t emo e ssmu ae n n lz d b t b s f r .T ec a g e u a in o p t n up t aa tr s i — n dl h wa i lt d a d a a y e y Mal ot e h h e r g lt f n u d o t u r me e s a wa n o i a p wa n
位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位置或位移变化的设备。
它广泛应用于工业自动化、机械工程、航空航天等领域。
本文将详细介绍位移传感器的工作原理及其应用。
二、工作原理位移传感器的工作原理基于不同的物理效应,常见的工作原理包括电容式、电感式、光电式、压阻式等。
1. 电容式位移传感器电容式位移传感器利用电容量的变化来测量位移。
它由两个电极组成,当物体接近或远离电极时,电容量会发生变化。
通过测量电容量的变化,可以确定物体的位移。
2. 电感式位移传感器电感式位移传感器利用电感量的变化来测量位移。
它由一个线圈和一个铁芯组成,当物体接近或远离线圈时,线圈的电感量会发生变化。
通过测量电感量的变化,可以确定物体的位移。
3. 光电式位移传感器光电式位移传感器利用光的传输和接收来测量位移。
它由一个发光器和一个接收器组成,当物体接近或远离发光器和接收器时,光的强度会发生变化。
通过测量光的强度的变化,可以确定物体的位移。
4. 压阻式位移传感器压阻式位移传感器利用电阻值的变化来测量位移。
它由一个弹性材料和一个电阻片组成,当物体施加压力或力量时,弹性材料会发生形变,从而改变电阻片的电阻值。
通过测量电阻值的变化,可以确定物体的位移。
三、应用领域位移传感器在许多领域中都有广泛的应用。
1. 工业自动化位移传感器在工业自动化领域中用于测量机器人的位置和姿态,控制机器人的运动轨迹,实现精确的操作和加工。
2. 机械工程位移传感器在机械工程领域中用于测量机械设备的位移、振动和变形,监测设备的状态,提高设备的运行效率和可靠性。
3. 航空航天位移传感器在航空航天领域中用于测量飞机和航天器的结构变形、翼尖位移等参数,确保飞行安全和结构的完整性。
4. 汽车工程位移传感器在汽车工程领域中用于测量汽车零部件的位移、变形和振动,监测车辆的状态,提高驾驶安全性和乘坐舒适度。
5. 医疗设备位移传感器在医疗设备领域中用于测量患者的身体位移和运动,监测病情变化,辅助医生进行诊断和治疗。
位移传感器的原理及应用

2021/2/4
3366
涂层厚度仪
测量线路板的铜膜厚度
2021/2/4
3377
转速测量
在一个旋转体上开一条或数条槽如图3.2.15(a)所示,或者做
成齿,如图3.2.15(b)所示,旁边安装一个涡流传感器。当旋
转体转动时,涡流传感器将周期性地改变输出信号,此电压
经过放大、整形,可用频率计指示出频率数值。此值与槽数
2021/2/4
19
微小位移的测量
1-测端 2-防尘罩 3-轴套 4-圆片簧 5-测杆 6-磁筒 7-磁芯 8-线圈 9-弹簧 10-导线
2021/2/4
20
电感式滚柱直径分选装置
3.2.8 滚柱直径分选装置
1—气缸 2—活塞 3—推杆 4—被测滚柱 5—落料管
6—电感测微器 7—钨钢测头 102—021/容2/4 器(料斗)
8—限位挡板
9—电磁21翻板 21
电感式滚柱直径分选装置(外形)
(参考中原量仪股份有限公司资料) 滑道
轴承滚子外形
分选仓位
2021/2/4
22 20222
电感式滚柱直 径分选装置外 形(参考无锡市通达滚
子有限公司资料)
滑道
11个分选仓位 废料仓
2021/2/4
落料振动 台
23 20223
粗糙度仪外形
参数的变化即可达到探伤的目的。
2021/2/4
3399
在探伤时,重要的是缺陷信号和干扰信号比。为了获得需要 的频率而采用滤波器,如图3.3.16(a)所示,需要进一步抑 制干扰信号,可采用幅值甄别电路。把这一电路调整到裂缝 信号正好能通过的状态,凡是低于裂缝信号都不能通过这一 电路,这样干扰信号都抑制掉了。如图3.2.16(b)所示。
传感器与检测技术3电感式位移传感器

4
29
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 差动变压器工作在理想情况下(忽略涡流损耗、
磁滞损耗和分布电容等影响)时的等效电路:
30
(二)互感式传感器—差动变压器
❖ 1.互感式传感器的结构与工作原理 ❖ 当衔铁移向次级绕组N1一边,互感M1增大,M2减
小,因而次级绕组N1内的感应电动势大于次级绕 组N2内的感应电动势,这时差动变压器输出电动 势不为零。在传感器的量程内,衔铁位移越大, 差动输出电动势就越大。
0
2 0
0
0
1
线圈 铁芯
δ Δδ
8
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
L 1
SN 2 0 2 0
0
0
1
L
0 0
衔铁
L 1
/ 0
L 1 /
0
0
0
线圈 铁芯
δ Δδ
9
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 变气隙式自感传感器的输出特性
❖ 2. 原理消除零点残余电压方法: ❖ (1)从设计和工艺上保证结构对称性 ❖ 为保证线圈和磁路的对称性,首先,要求提高加
工精度,线圈选配成对,采用磁路可调节结构。 其次,应选高磁导率、低矫顽力、低剩磁感应的 导磁材料。并应经过热处理,消除残余应力,以 提高磁性能的均匀性和稳定性。由高次谐波产生 的因素可知,磁路工作点应选在磁化曲线的线性 段。
20
(一)自感式传感器
❖1.自感式传感器的工作原理
❖ 三种类型比较: ❖ 气隙型自感传感器灵敏度高,它的主要缺点是非
普通物理II实验-实验八 电感位移传感器特性研究

实验八电感位移传感器特性研究【实验目的】1.了解电感位移传感器工作原理;2.测量自感式传感器特性;3.测量差动变压器式传感器特性。
【实验原理】1.自感式位移传感器当磁棒插入线圈中并发生位移时,回路自感的大小与这回路所围面积的磁链数有关,由于磁棒在外部的磁感线是发散的、密度较稀,在内部的磁感线密度很大,所以自感L随磁棒位移x而发生变化。
而自感式传感器是把被待测位移变化转换成自感L变化的一种传感器。
自感式传感器的自变量为L,电感测量常见方法有以下两种。
(1)RL分压法测电感图9.1(a)所示的RL分压法测量电感接线图,因为电感的电流落后电压90°,而串联电路流过的电流是相同的,所以电感的电流与电阻的电压同相位。
我们把电阻电压VR放在X轴上,则电感电压VL在Y轴正向。
因为串联电路流过的电流相同,所以我们可以把电流因子约去。
由图9.1(b)可知V R V i =√VR2+VL2=√1+(ωL/R)(1)L=Rω√(Vi/VR)2−1(2)所以,只要已知R、ω、Vi ,测量VR即可求出L。
(2)LC谐振电流法测量电感如图9.2所示,我们再在RL回路中串入一个电容C。
串联电路流过各元件的电流相同,但电容上的电压落后电流90°。
我们仍把电阻上的电压作为参考量放在x轴,那么,电容电压将位于y轴的负方向。
这样电容上的电压和电感上的电压都位于y轴且方向相反。
一种特殊情况下,无论电感和电容的值是多少,总能找到一个频率使得VC=VL,由图9.2(b)看出,在y方向上的合成量为零。
这种情况称之为谐振,此时回路电流为谐振电流,用取样电阻R就得到了取样电压,此时取样信号与信号源信号同相位且为最大值,利用这个特点,我们可以测量精确电感。
由VC=VL,约去电流因子我们有XC=XL,即ωL=1(3)ωC(4)L=1ω2C可以看出,只要信号源频率、电容C已知,L就可以计算。
这种测量方式避免了测量仪表直接加在被测元件上,对于小容量电容测量很有好处,由于是比较相位,所以特别灵敏。
电感式位移传感器的设计(9页)

电感式位移传感器的设计(第1页)一、设计背景位移传感器在现代工业生产中扮演着重要角色,广泛应用于机械制造、自动化控制、航空航天等领域。
电感式位移传感器作为一种常见的位移检测装置,具有精度高、稳定性好、抗干扰能力强等优点。
本文将详细介绍电感式位移传感器的设计过程。
二、工作原理电感式位移传感器是基于电磁感应原理设计的。
当传感器中的激励线圈通以交流电流时,会在周围产生交变磁场。
当被测物体(通常是金属目标物)进入该磁场并发生位移时,会导致磁路的磁阻发生变化,进而引起线圈感应电动势的变化。
通过检测感应电动势的变化,即可实现对位移量的精确测量。
三、设计目标1. 确保传感器具有较高的测量精度和分辨率;2. 提高传感器的线性度和稳定性;3. 优化传感器结构,使其便于安装和维护;4. 降低成本,提高传感器的性价比。
四、传感器结构设计1. 激励线圈设计(1)线圈的匝数:匝数越多,产生的磁场强度越大,但线圈电阻也会增加,导致功耗增大。
因此,需在磁场强度和功耗之间寻找平衡。
(2)线圈的材料:选择具有较高磁导率和电阻率的材料,以提高线圈的性能。
(3)线圈的形状:根据实际应用场景,设计合适的线圈形状,使其在有限的空间内产生较强的磁场。
2. 检测线圈设计(1)线圈与激励线圈的相对位置:确保检测线圈能充分感应到激励线圈的磁场变化。
(2)线圈的匝数:匝数越多,感应电动势越大,但线圈电阻也会增加。
需在灵敏度与功耗之间进行权衡。
(3)线圈的材料:选择具有较高磁导率和电阻率的材料。
电感式位移传感器的设计(第2页)五、信号处理电路设计1. 激励信号源(1)频率选择:激励信号的频率应适中,频率太低会导致灵敏度下降,频率太高则可能引起电磁干扰。
(2)幅值稳定:确保激励信号幅值稳定,以减少测量误差。
2. 感应电动势检测感应电动势的检测是位移测量的关键步骤。
检测电路设计如下:(1)放大电路:由于感应电动势信号较弱,需通过放大电路对其进行放大,以便后续处理。
位移传感器原理及应用领域

位移传感器原理及应用领域位移传感器是一种用来测量物体或系统位移改变的装置。
它通过将物体的位移转化为信号输出,以实现对位移进行准确测量和监测。
位移传感器在许多领域都有广泛的应用,包括工业自动化、航空航天、建筑工程、医疗设备等。
位移传感器的工作原理有多种,下面列举了几种常见的工作原理:1. 电阻式位移传感器:该传感器利用电阻元件的电阻随物体位移变化而发生变化的原理,将位移转化为电阻值的变化。
2. 容积式位移传感器:该传感器利用物体位移改变容积的原理,通过测量容器内介质的体积变化来获得位移信息。
3. 电感式位移传感器:该传感器利用线圈的电感随物体位移变化而发生变化的原理,将位移转化为电感值的变化。
4. 光电式位移传感器:该传感器利用光电元件的光强随物体位移变化而发生变化的原理,将位移转化为光强值的变化。
5. 压电式位移传感器:该传感器利用压电材料的晶体结构随物体位移变化而发生变化的原理,将位移转化为电荷或电压信号的变化。
位移传感器在工业自动化中的应用非常广泛。
在机械加工、车床、数控机床等设备中,位移传感器可以用来监测加工过程中各个部件的位移和位置,确保加工精度和质量。
在机器人技术中,位移传感器被用来测量和控制机器人各个部件的位移变化,实现协调运动和精准抓取。
在工厂自动化生产线中,位移传感器可以用来监测和控制物料的位移和位置,提高生产效率和质量。
位移传感器在航空航天领域也有重要的应用。
在航空器设计和测试中,位移传感器可以用来测量各个关键部件的位移和变形,确保航空器的结构稳定性和安全性。
在飞行器导航和自动驾驶系统中,位移传感器可以用来测量飞行器的位移和姿态,实现精准的飞行控制。
在建筑工程中,位移传感器可以用来监测和记录建筑物的变形和位移,包括地基的变形、桥梁的位移等。
这对于建筑物的结构安全和稳定性具有重要意义。
在医疗设备领域,位移传感器可以用来测量人体的运动和位移,包括手术机器人的运动、矫形器的调整等。
它们为医生提供了精确而可靠的数据来指导手术和治疗。
直线位移传感器的工作原理

直线位移传感器的工作原理直线位移传感器(Linear displacement sensor)是一种用于测量物体直线移动距离的传感器。
它广泛应用于机器人、仪器仪表、自动化生产线等领域,用于实时监测和控制物体的位置。
其工作原理可以分为电感式、电容式、光电式和磁电式等。
一、电感式直线位移传感器:电感式直线位移传感器利用感应线圈的电感变化来测量位移。
其基本构造包括一对感应线圈以及一根可移动的金属臂,金属臂和感应线圈构成一个简单的变压器。
当金属臂移动时,感应线圈的电感会发生变化,进而导致输出信号的变化。
通过测量感应线圈回路的电感值,就可以确定物体的位移。
二、电容式直线位移传感器:电容式直线位移传感器采用了变电容的原理来测量位移。
其构造包括两块感应板和一块可移动的介电板。
在两块感应板之间,形成一个变动的电容结构。
当介电板移动时,感应板之间的电容值会发生变化,进而使得输出信号的电容值变化。
通过测量电容值的变化,就可以确定物体的位移。
三、光电式直线位移传感器:光电式直线位移传感器是通过光电原理来测量位移的。
其构造包括一个光源和一个光敏接收器。
光源发出的光射线被光敏接收器接收。
当物体位移时,光线被挡住或发生折射,光敏接收器接收到的光信号的强度就会变化。
通过测量光信号的变化,就可以确定物体的位移。
四、磁电式直线位移传感器:磁电式直线位移传感器利用磁感应原理来测量位移。
其构造包括一个磁电传感器和一个磁铁。
磁电传感器产生的磁场被磁铁吸引,当磁铁位移时,磁场的位置和强度会发生变化,磁电传感器测量到的电压信号也随之变化。
通过测量电压信号的变化,就可以确定物体的位移。
需要注意的是,不同类型的直线位移传感器在测量范围、精度、灵敏度等方面会存在差异。
同时,传感器的选用还需要根据具体应用场景来确定。
在使用直线位移传感器时,还需要考虑温度、湿度、耐久性等因素。
综上所述,直线位移传感器的工作原理涉及电感、电容、光电和磁电四种原理。
通过测量变化的电感、电容、光信号和电压等参数,就可以准确测量物体的直线位移。
位移传感器的工作原理

位移传感器的工作原理位移传感器是一种用于测量物体位移或者位置的设备,广泛应用于工业自动化、机械创造、航空航天等领域。
它能够将物体的位移转化为电信号输出,提供准确的位移测量数据,为工程师和研究人员提供重要的参考信息。
一、工作原理位移传感器的工作原理基于不同的技术原理,常见的包括电阻式、电容式、电感式、光电式和霍尔效应式等。
以下将分别介绍这些工作原理。
1. 电阻式位移传感器电阻式位移传感器利用电阻值的变化来测量位移。
它通常由一个电阻元件和一个滑动触点组成。
当物体发生位移时,滑动触点会相应地改变与电阻元件之间的接触面积,从而改变电阻值。
通过测量电阻值的变化,可以确定物体的位移。
2. 电容式位移传感器电容式位移传感器利用电容值的变化来测量位移。
它由两个电极之间的电介质组成,当物体发生位移时,电介质的相对位置会发生改变,从而改变电容值。
通过测量电容值的变化,可以确定物体的位移。
3. 电感式位移传感器电感式位移传感器利用电感值的变化来测量位移。
它由一个线圈和一个磁铁组成,当物体发生位移时,磁铁的位置相对于线圈会发生改变,从而改变电感值。
通过测量电感值的变化,可以确定物体的位移。
4. 光电式位移传感器光电式位移传感器利用光的传输和接收来测量位移。
它由一个光源和一个光敏元件组成,当物体发生位移时,光线的传输路径会发生改变,从而改变光敏元件接收到的光强度。
通过测量光强度的变化,可以确定物体的位移。
5. 霍尔效应式位移传感器霍尔效应式位移传感器利用霍尔元件的特性来测量位移。
霍尔元件是一种基于霍尔效应的半导体器件,当物体发生位移时,磁场的强度和方向会发生改变,从而改变霍尔元件的输出电压。
通过测量输出电压的变化,可以确定物体的位移。
二、应用领域位移传感器广泛应用于各个领域,以下列举几个常见的应用领域。
1. 工业自动化在工业自动化领域,位移传感器被用于监测机器人的位置和姿态,实现精确的定位和运动控制。
它还可以用于测量生产线上的物体位置,确保生产过程的准确性和稳定性。
差动电感式位移传感器调理电路设计

Design of Conditioning Circuit
for Differential Inductive Displacement Transducer
ZHANG HaifeiꎬLEI Xiaojuan
(Xi’ an Aerospace Corporation of Metrology & MeasurementꎬXi’ an 710100ꎬChina)
作可靠、寿命长等优点ꎮ 其作为一种精密的位移检测
部件ꎬ在航空、航天、兵器、精密测量等领域有着广泛的
应用
[2]
ꎮ
变差动变压器分为两种ꎬ一种是测量直线位移的
线 性 可 变 差 动 变 压 器 ( linear variable differential
收稿日期:2018 ̄12 ̄28
调理电路的解决方案ꎮ LINEAR 公司采用信号发生器
AD698 芯片的单芯片解决方案的调理电路ꎮ 该电路采用比例输出ꎬ可有效提高调理电路的准确度和抗干扰能力ꎮ 其输出采用电压隔
离芯片 ISO124ꎬ可实现隔离度达 1 500 V 有效值电压的隔离ꎬ减少了不同系统间的传输干扰ꎮ 设计了变送器输出模块ꎬ可通过选择电
流输出方式提高长距离传输的可靠性ꎮ 通过对电路的测试和分析ꎬ证明其满足使用单通道 LVDT 高精度测量的需求ꎮ 该电路设计方
circuit based on AD698 chip was designed. The adoption of proportional output could effectively improve the accuracy and anti ̄
interference ability of the conditioning circuit. By using voltage isolation chip ISO124 for its outputꎬthe isolation up to 1 500 V
电感式传感器

齐平安装:传感器埋入金属性基座内,其有效感应工作表面与基座面齐平。 非齐平安装:传感器不可埋入从属性基座内,其有效感应工作表面必须与其座保持一定的尺寸。最大的可 能动作距离(与直径有关)是用非齐平式传感器来获得的。 齐平式安装的电感传感器和电容传感器有这些优点:它们有更好的机械保护性能,与非齐平式安装的传感 器相比较,对于错误的电影响的灵敏度更低。这些都是通过一个专门的内部屏蔽环来获得的。 齐平式安装的传感器与非齐平式安装的传感器相比较,其作用距离大约是后者的 69%。 传感器常常被一个先靠着一个地进行安装。 为了避免相互之间的干扰, 应该保持由表中给出的最小间隙 C。 步骤 3 按电气数据和输出型式 直流二线制 负载必须串接在传感器内进行工作。 有短路保护和极性变换保护。 直流三线制 这些传感器的电源和负载分开连接。它们有过载保护、短路保护和极性保护,它们的剩余电流可以忽略不 计。 直流四线制 这些传感器与三线制相同,只是同时提供一个常闭和一个常开输出。 交流二线制 负载必须串接在传感器内工作。根据其功能,在开关断开的情况下,会有一个小的剩余电流过。接通时会 有一个电压降。 NAMUR 型二型二线制 NAMUR 传感器是一种仅仅包含一振荡器的二线制传感器。该传感器的内阻随着感应目标的远近,而发生 变化,相应的电流也随之变化。 并联和串联连接 接近开关可以采用并联或串联的连接,以实现简单的逻辑功能(与、或、与非、或非)。 与机械开关组合在一起也是可能的。根据防暴规定,NAMUR 传感器不能采用并联或串联的连接。 三线直流与四线直流传感器的串联 当串联时,电压降相加,单个传感器的接通延时间相加
当用标准测试板轴向接近开关感应面,使开关输出信号发生变化时测量的开关感应面和测试板之间的距 离。 标准测试板尺寸: 其边长或为传感器的直径,或为 3Sn(3 倍额定动作距离)取二者中较大者,厚度为 1mm 材料:为 ST37 或碳钢 例如:传感器直径为 D=18mm Sn=5mm 则 D(18mm)>3Sn(3X5mm=15mm) 取 18X18X1 为标准测试板 如直径为 D=18mm Sn=8mm 则 D(18mm)<3Sn(3X8=24mm) 则 D(18mm)<3Sn(3X8=24mm) 取 24X24X1 为标准测试板 额定动作距离 Sn 开关设计时理想的动作距离,即不考虑制造及外部条件所引起的偏差。 有效动作距离 Sr 开关在额定工作电压及室温下(23±50℃)测得的动作距离 0.9Sn£ Sr £ 1.1Sn 可用动作距离 Su 开关在允许的环境温度-25℃--+70℃下,输入电压在额定电压的 85%到 110%范围内,测得的动作距 离 0. 9Sr£ Su £ 1.1Sr 可靠动作距离 Sa 在这个动作距离内,开关的动作是可靠的 0£ Sa £ 0.81Sn 重复精度 是指在外壳温度为(23±5)℃,相对湿度为随机的,供电电压为 Ue±5%,在 8 个小时的范围内进行测 量所产生的有效作用距离的变化量: R£ 0.1Sr 回环宽度 H 当测试板靠近接近开关和当测试板离开接近开关时所获得的两个开关点之间的距离差。 这个距离差是相对 于有效作用距离的百分数来表示,测量的环境温度为(23±5)℃,和在额定的工作电压范围内: H£ 0.2Sr 测量动作距离时,标准测试板必须轴向接近开关,然而,如果测试板在有效传感区内横向移动,则会获得 不同的动作距离,并且与离开轴线的距离有关。 对于槽型传感器,响应只和目标插入槽口中的深度有关。 衰减系数 影响动作距离的因素 衰减(或阻尼)材料的性质起了重要的作用,这可以用衰减系数来描述。 衰减系数是指某一种材料的动作距离相对于 ST37 号钢减少了多少。 衰减系数越小, 则对于某种特定材料 的动作距离就越小。 对于电容传感器特征参数是相对介电常数 齐平/非齐平安装
位移传感器的工作原理

位移传感器的工作原理一、引言位移传感器是一种用于测量物体位置或移动的设备,广泛应用于工业自动化、机器人技术、汽车工程等领域。
本文将详细介绍位移传感器的工作原理。
二、工作原理位移传感器的工作原理基于不同的物理原理,常见的工作原理包括电阻式、电感式、电容式和光电式等。
1. 电阻式位移传感器电阻式位移传感器利用电阻值随位移变化的特性来测量位移。
一种常见的电阻式位移传感器是电位器。
电位器由一个可转动的电阻器和一个滑动电极组成。
当滑动电极沿电阻器移动时,电阻值会发生变化。
通过测量电阻值的变化,可以确定位移的大小。
2. 电感式位移传感器电感式位移传感器利用电感值随位移变化的特性来测量位移。
一种常见的电感式位移传感器是线性变压器。
线性变压器由一个主线圈和一个副线圈组成,主线圈上通以交流电源,副线圈测量输出电压。
当物体位移时,副线圈中的感应电动势会发生变化,通过测量输出电压的变化,可以确定位移的大小。
3. 电容式位移传感器电容式位移传感器利用电容值随位移变化的特性来测量位移。
一种常见的电容式位移传感器是平行板电容器。
平行板电容器由两个平行的金属板和一个绝缘材料组成。
当物体位移时,两个金属板之间的距离会发生变化,从而导致电容值的变化。
通过测量电容值的变化,可以确定位移的大小。
4. 光电式位移传感器光电式位移传感器利用光电效应来测量位移。
一种常见的光电式位移传感器是光电编码器。
光电编码器由一个光源和一个光敏元件组成。
光源发出光线,光线照射到光敏元件上,当物体位移时,光敏元件接收到的光线强度会发生变化。
通过测量光线强度的变化,可以确定位移的大小。
三、应用领域位移传感器在工业自动化、机器人技术、汽车工程等领域有着广泛的应用。
1. 工业自动化位移传感器可用于测量机械设备的位置和移动,实现自动化控制。
例如,在生产线上,位移传感器可以用来控制机械臂的位置,实现精确的操作。
2. 机器人技术位移传感器在机器人技术中起着关键作用。
第3章 电感式传感器

应用示例
图3.11为测气体压力的传感器原理图。
附图1
图3.12为压差传感器的原理结构示意图。
3 4
附图1为位移传感器的外形图。
2 6 7 p
5
附图2为压力传感器的原理图。
1
附图2
1-弹簧管 2-螺钉 3、7-铁芯 4、6-线圈 5-衔铁
第3 章 电感式传感器
电感式传感器是利用被测量的变化引起线圈自感或互
感系数的变化,从而导致线圈电感量改变这一物理现象来
实现测量的。因此根据转换原理,电感式传感器可以分为 自感式和互感式两大类。
电感式传感器
自感型
闭磁路型 开磁路型 差动变压器
互感型
涡流式
本章内容:
3.1 自感式传感 器互感式传感器 3.2
IW Rm
I----线圈中流过的电流;
φ----穿过线圈的磁通,其值为:
(3.2)
其中磁路磁阻Rm按下式计算:
li 2l0 Rm 0 S0 i 1 i S i
n
(3.3)
式中:
l i、S i 、 µ i ----分别为铁芯和衔铁磁路上第 i 段的长度、截面积
及磁导率;
l 0、S 0 、 µ 0 ----分别为磁路上空气隙的长度、等效截面积及空气
2 4 3
骨架;4是匝数为W1 的初级绕组;5是
匝数为W2a的次级绕组;6是匝数为W2b 的次级绕组。
6
图 3.13 螺线管式互感传感器结构图
工作原理:
互感传感器中两个次级线圈反向串接,其等效电路如图所示。 当初级绕组加以激励电压时,在 两个次级绕组中便会产生感应电动势 E2a和E2b。当活动衔铁处于中心位置 时,两互感系数M1=M2。因两个次级
电感式位移测量系统设计开题报告

电感式位移测量系统设计开题报告一、选题背景随着工业生产的发展,对于物理环境参数的测量需求也越来越大,位移测量系统作为其中重要的一种需要得到更进一步的优化和改进,以更好地适应工业生产需求。
目前,电感式位移测量系统已经成为一种主流方案,由于其在非接触式测量、高分辨率、高精度、快速响应和适用于不同介质的优势,电感传感器在位移测量中被广泛应用。
二、选题目的本次设计的目的在于,通过电感式位移测量系统的设计,进一步掌握电磁感应原理、信号处理、传感器设计及现代工业测量技术,同时实现一个高精度、高灵敏度、适用于不同介质的位移测量系统,以满足工业对于物理环境参数的需求。
三、选题意义电感式位移测量系统被广泛应用于汽车、火车、机床、航天航空等领域,其在测量准确度,测量范围和精度等方面具有明显优势,在现代工业制造领域有着重要作用。
因此,实现一个可靠的电感式位移测量系统对于推动工业生产的发展和提高生产效率具有重要的意义。
四、预期成果本次设计的成果为一个高精度的电感式位移测量系统,该系统具有以下特点:1. 高灵敏度和高精度:通过选用高品质的传感器和信号处理器,实现高灵敏度和高精度的位移测量。
2. 非接触式测量:该系统不需要与物体有直接接触,可以在不破坏物体表面的情况下进行测量。
3. 宽测量范围:该系统适用于不同介质,可以适应不同类型的位移测量。
五、设计方案1. 主要原理电感传感器采用电磁感应测量位移,将测量物理量转换为电信号输出,然后通过信号处理器进行信号放大、滤波、A/D转换等处理,最终输出数字量。
系统主要由电感传感器、语音放大器、信号处理器、微控制器等部分组成。
2. 设计流程设计的主要流程包括以下几个步骤:(1)选用合适的电感传感器并进行电路设计。
(2)配置合适的语音放大器并进行信号处理。
(3)设计微控制器系统以控制电路。
(4)进行系统测试和性能优化。
3. 设计难点本次设计的主要难点在于:(1)传感器的选择和电路设计,通过选用合适的传感器和电路设计实现高灵敏度和高精度的位移测量。
任务5-电位器式位移传感器

(2)线绕电位器式角位移传感器。线绕电位器的 电阻体由电阻丝缠绕在绝缘物上构成,电阻丝的种类 很多,电阻丝的材料是根据电位器的结构、容纳电阻 丝的空间、电阻值和温度系数来选择的。电阻丝越细, 在给定空间内越获得较大的电阻值和分辨率。但电阻 丝太细,在使用过程中容易断开,影响传感器的寿命。
科学出版社
(6)光电电位器式传感器。光电电位器是一种非接 触式电位器,它用光束代替电刷,图16是这种电位器的 结构原理图。光电电位器主要是由电阻体、光电导层和 导电电极组成。光电电位器的制作过程是先在基体上沉 积一层硫化镉或硒化镉的光电导层,然后在光电导层上 再沉积一条电阻体和一条导电电极。在电阻体和导电电 极之间留有一个窄的间隙。平时无光照时,电阻体和导 电电极之间由于光电导层电阻很大而呈现绝缘状态。当 光束照射在电阻体和导电电极的间隙上时,由于光电导 层被照射部位的亮电阻很小,使电阻体被照射部位和导 电电极导通,于是光电电位器的输出端就有电压输出, 输出电压的大小与光束位移照射到的位置有关,从而实 现了将光束位移转换为电压信号输出。
(4)金属膜电位器。金属膜电位器由合金、金属或 金属氧化物等材料通过真空溅射或电镀方法,沉积在陶 瓷基体上一层薄膜制成。金属膜电位器具有无限的分辨 率,接触电阻很小,耐热性好,它的满负荷温度可达70 ℃。与线绕电位器相比,它的分布电容和分布电感很小, 所以特别适合在高频条件下使用。它的噪声信号仅高于 线绕电位器。金属膜电位器的缺点是耐磨性较差,阻值 范围窄,一般在10-100 kΩ之间。由于这些缺点限制了它 的使用。
角位移传感器的性能指标主要有灵敏度、线性度、 稳定性等,下面分别进行讨论:
科学出版社
max
(1)传感器输出线性度
它是指传感器输出量与输入量之间的实际关系曲线
三、恒流源向线圈双向充电的电感式位移传感器

恒流源向线圈双向充电的电感式位移传感器1 测量原理采用开关电路以恒流源电路向电感充电,只经过二极管放电的测量电感值的原理如图1所示,图中S 和D 构成互补开关,S 闭合时电流源I s 向被测电感充电,时间足够长使电感中的电流达到稳定值s i I =,而且有磁通链x s L I ψ=,L s u DCR I =⨯。
由于被测电感的性质,充电初期I s 是变的,I s 是恒流源电路,充电后期达到的平稳状态是恒流源性质,这样u L 是自由可变的。
S 断开时,电感中储存的磁通链对应的电动势经二极管D 放电,这时的电感电压是二极管D 的正向压降L DP u U =-,如果不考虑电压的符号,对应的电感电流从I 1下降到I 2所释放的磁通链为12()x DP D L I I U t ψ∆=-=⋅,所以有如下关系式12DPD U Lx t I I =- (1) 其中t D 是二极管稳定正向导通的时间,当I s 一定时,I 1是确定的;当D 一定时,I 2也是确定的,并且要求放电电流线性下降,这用示波器可以看到。
DP U 、I 1和I 2为常数,则测量出t D 就可用电桥标定出电感值L x 。
过了这段时间,磁场能量不足以击穿D 的PN 结,而与结电容构成LC 阻尼振荡,直至磁场能量释放完毕。
适当的设置S 的开关周期和占空比保证充电时间足够长,以致充电达到稳定状态,只要放电时间大于t D 就可以用检测电路及单片机测量出t D ,再用式(1)计算出电感值L x 。
式(1)与电容充放电的电路存在对偶性质。
式(2)图1 测量电感值的原理图是电容值的计算公式[1],其中t ∆是电容电压从U 1下降到U r 的时间。
式(2)的恒流源电路I o 越小,可以测量的电容值就越小,对偶地对应式(1)是U D 越小,可以测量的电感值越小。
1orI C t U U =∆- (2) 2 恒流源双向充电测量电感器的电感值,只在几秒钟便完成,但要做成电感式传感器,其电感长期工作在VCCu Li L xI s DS一个方向的励磁,将会出现剩磁并影响传感器的性能,而且正行程与反行程的变差大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感式传感器测量电路设计学院:信自学院姓名:xxxxx学号:13专业:自动化班级:103班2012年12月26日目录摘要 (3)1.绪论 (5)1.1 引言 (5)1.2 传感器介绍 (5)1.3 研究的基本内容,拟解决的主要问题 (7)2.整体的方框图与工作原理 (8)3.各个单元电路设计 (8)3.1 8051单片机简介 (8)3.2 电感式位移传感器的基本原理 (13)3.3 电感测头的结构 (15)3.4 正弦波电路的设计 (16)3.5 零点残余电压的调整 (18)3.6 交流放大电路 (20)3.7 相敏检波电路 (22)3.8 A/D转换及显示电路 (28)4.软件部分的设计 (30)4.1本系统设计的程序流程图 (30)4.2单片机8051的C语言程序清单 (31)5、参考文献 (33)摘要随着现代制造业的规模逐渐扩大,自动化程度愈来愈高。
要保证产品质量,对产品的检测和质量管理都提出了更高的要求。
我们为此要设计一种精度的检测位移的仪器。
电感测微仪是一种分辨率极高、工作可靠、使用寿命很长的测量仪,应用于微位移测量已有比较长的历史.国外生产的电感测微仪产品比较成熟,精度高、性能稳定,但价格昂贵.国内生产的电感测微仪存在漂移大、工作可靠性不高、高精度量程范围小等问题,一直与国外的传感器水平保持一定的差距.在超精密加工技术迅猛发展的今天,这种测量精度越来越显得不适应加工技术发展的需求.该文针对这些问题,对电感传感器测量电路进行了一定的设计和改进.对电感测微仪的正弦波生成电路、交流放大电路、带通滤波电路、相敏检波电路等进行了分析和相应的设计。
关键词:正弦波发生器,相敏检波,零点残余电压。
电感式位移传感器实例电感式位移传感器实例绪论引言测量技术是实现超精加工的前提和基础。
精密加工和超精密加工过程中不仅要对工件和表面质量进行检验,而且要检验加工设备和基础元部件的精度,如果没有权威性的测控技术和仪器,就不能证实所达到的加工质量。
加工和检测是不可分的,测量是对加工的支持,无论多么精密的加工,都必须用更为精密的测量技术作保障。
因此,位移测量的精密和超精密测量已经成为整个超精密加工体系中一项至为关键的技术。
检测技术和装置是自动化系统中不可缺少的组成部分。
任何生产过程都可以看作是“物流”和“信息流”组合而成,反映物流的数量、状和趋向的信息流则是人们管理和控制物流的依据。
人们为了有目的地进行控制,首先必须通过检测获取有关信息,然后才能进行分析判断以便实现自动控制。
所谓自动化,就是用各种技术工具与方法代替人来完成检测、分析、判断和控制工作。
一个自动化系统通常由多个环节组成,分别完成信息获取、信息转换、信息处理、信息传送及信息执行等功能。
在实现自动化的过程中,信息的获取与转换是极其重要的组成环节,只有精确及时地将被控对象的各项参数检测出来并转换成易于传送和处理的信号,整个系统才能正常地工作。
因此,自动检测与转换是自动化技术中不可缺少的组成部分。
检测系统或检测装置目前正迅速地由模拟式、数字式向智能化方向发展。
带有微处理机的各种智能化仪表已经出现,这类仪表选用微处理机做控制单元,利用计算机可编程的特点,使仪表内的各个环节自动地协调工作,并且具有数据处理和故障诊断功能,成为一代崭新仪表,把检测技术自动化推进到一个新水平。
传感器介绍传感器是获取被测量信息的元件,其质量和性能的好坏直接影响到测量结果的可靠性和准确度,衡量其质量的特性有许多,主要包括静态和动态两个方面。
当被测量不随时间变化或变化很慢时,可以认为输入量和输出量都和时间无关。
表示它们之间关系的是一个不含时间变量的代数方程,在这种关系的基础上确定的性能参数为静态特性;当被测量随时间变化很快时,就必须考虑输人量和输出量之间的动态关系。
这时,表示它们之间关系的是一个含有时间变量的微分方程,与被测量相对应的输出响应特性称为动态特性。
位移传感器主要有以下几种:电容式位移传达室感器、差动式电感受式位移传感器和电阻应变式位移传感器一般用于小位移的测量(几微米至毫米);差动变压器用于中等位移的测量,这种传感在工业测量中应用得最多;电阻电位器式传感器适用于较大范围位移的测量,但精度高;感应同步器、光栅、磁栅、激光位移传感器等用于精密检测系统的位移的测量,测量精度高(可达1pm )量程也可大到几米。
电容式位移传感器根据被测物体的位移变化转换为电容变化的一种传感器,一般用于高频振动微小位移的测量,与电位式、电感式等多种位移传感器相比,它的优点是:结构简单;能实现非接触测量,只要极小的输入力就能使支极板移动,并且在移动过程中没有摩擦和反作用力;灵敏度高、分辨力强,能敏感±甚至更小的位移;动态响应好;能在恶劣环境中(高、低温,各种形式的辐射等)工作。
但它也存在着一些缺点,主要是输出特性的非线性和对绝缘电阻要求比较高,为了克服寄生电容的影响,降低电容的内阻,要求对传感器及输出导线采取屏蔽措施和采用较高的电源频率等。
光栅是一种新型的位移检测元件,是把位移变为数字量的位移-数字转换装置。
它主要用于高精度直线位移和角位移的数字检测系统。
其测量精确度高(可达1um)光栅传感器具有抗电磁干扰、耐久性好、准分布式传感、绝对测量、尺寸小、灵敏度高、精度高、频带宽、信噪比高等优点,是结构局部健康监测最理想的智能传感元件之一,可以直接或间接(通过某种封装或灵巧装置)监测应变、温度、裂缝、位移、振动、腐蚀、应力等物理量,部分取代传统的测试手段,广泛用于土木工程、航空航天工业、船舶工业、电力工业、石油化工、核工业、医学等领域。
电感式位移传感器是把被测移量转换为线圈的自感或互感的变化,从而实现位移的测量的一类传感器。
它具有灵敏度高、分辨力大,能测出±甚至更小的线性位移变化和度的角位移,输出信号比较大,电压灵敏度一般每毫米可达几百毫伏,因此有利于信号的传输.测量范围为±25um-50mm,测量精度与电容式位移传达室感器差不多,但是它的频率响应较低,不宜于高频动态测量。
研究的基本内容,拟解决的主要问题:该智能电感测微仪的硬件电路主要包括电感式传感器、正弦波振荡器、放大器、相敏检波器及单片机系统。
正弦波振荡器为电感式传感器和相敏检波器提供了频率和幅值稳定的激励电压,正弦波振荡器输出的信号加到测量头中。
工件的微小位移经电感式传感器的测头带动两线圈内衔铁移动,使两线圈内的电感量发生相对的变化。
当衔铁处于两线圈的中间位置时,两线圈的电感量相等,电桥平衡。
当测头带动衔铁上下移动时,若上线圈的电感量增加,下线圈的电感量则减少;若上线圈的电感量减少,下线圈的电感量则增加。
交流阻抗相应地变化,电桥失去平衡从而输出了一个幅值与位移成正比,频率与振荡器频率相同,相位与位移方向相对应的调制信号。
此信号经放大,由相敏检波器鉴出极性,得到一个与衔铁位移相对应的直流电压信号,经A/D 转换器输入到单片机,经过数据处理进行显示。
电感式传感器测位移时,由于线圈中的电流不为零,因而衔铁始终承受电磁吸力,会引起附加误差,而且非线性误差较大;另外,外界的干扰(如电源电压频率的变化,温度的变化)也会使输出产生误差。
所以在实际工作中常采用差动形式,这样既可以提高传感器的灵敏度,又可以减小测量误差。
两个完全相同的单个线圈的电感式传感器共用一个活动衔铁就构成了差动式电感传感器。
采用差动式结构除了可以改善线性、提高灵敏度外,对外界影响,如温度的变化、电源频率的变化等也基本上可以相互抵消,衔铁承受的电磁吸力也较小,从而减小了测量误差。
零点残余电压也是反映差动变压器式传感器性能的重要指标。
理想情况是在零点时,两个次级线圈感应电压大小相等方向相反,差动输出电压为零实际情况是两组次级线圈的不对称铁心的B-H曲线的非线性,以及激励电源存在的高次谐波等因素引起零点处U≠0知。
其数值约为零点几毫伏,有时甚至可达几十毫伏,并且无论怎样调节衔铁的位置均无法消除。
零点残余电压的存在,使传感器的灵敏度降低,分辨率变差和测量误差增大。
克服办法主要是提高次级两绕组的对称性(包括结构和匝数等),另外输出端用相敏检测和采用电路补偿方法,可以减小零点残余电压影响。
2.整体的方框图与工作原理电感式位移传感器元件由静止的螺管线圈和可在线圈上移动的衔铁测头组成,它依据电磁感应原理工作.当线圈由高频电源驱动时,其两路引出端将输出两个感应电势,这些信号经信号检出电路综合后,形成在幅值及相位上随测头位置而变的电压信号,代表了位移量的大小和方向.此信号再经放大、滤波及整形等初步调理后,由A/D转换器转换为对应的数字量送入微控制器。
微控制器对它进行信号处理、存储以及显示,获得较高精度的测量结果,然后按系统组成态设定的输出方式,以要求的信号形式将测量结果输出。
系统的整体方框图如图1所示。
图1系统的整体方框图3.各个单元电路的设计3.1 8051单片机简介目前,8051单片机在工业检测领域中得到了广泛的应用,因此我们可以在许多单片机应用领域中,配接各种类型的语音接口,构成具有合成语音输出能力的综合应用系统,以增强人机对话的功能。
89C51是Intel公司生产的一种单片机,在一小块芯片上集成了一个微型计算机的各个组成部分。
每一个单片机包括:一个8位的微型处理器CPU;一个256K的片内数据存储器RAM;片内程序存储器ROM;四个8位并行的I/O接口P0-P3,每个接口既可以输入,也可以输出;两个定时器/记数器;五个中断源的中断控制系统;一个全双工UART的串行I/O口;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接。
最高允许振荡频率是12MHZ。
以上各个部分通过内部总线相连接。
下面简单介绍下其各个部分的功能。
中央处理器CPU是单片微型计算机的指挥、执行中心,由它读人用户程序,并逐条执行指令,它是由8位算术/逻辑运算部件(简称ALu)、定时/控制部件,若干寄存器A、B、B5w、5P以及16位程序计数器(Pc)和数据指针寄存器(DM)等主要部件组成。
算术逻辑单元的硬件结构与典型微型机相似。
它具有对8位信息进行+、-、x、/ 四则运算和逻辑与、或、异或、取反、清“0”等运算,并具有判跳、转移、数据传送等功能,此外还提供存放中间结果及常用数据寄存器。
控制器部件是由指令寄存器、程序计数器Pc、定时与控制电路等组成的。
指令寄存器中存放指令代码。
枷执行指令时,从程序存储器中取来经译码器译码后,根据不同指令由定时与控制电路发出相应的控制信号,送到存储器、运算器或I/o接口电路,完成指令功能。
程序计数器Pc 程序计数器Pc用来存放下一条将要执行的指令,共16位.可对以K字节的程序存储器直接寻址c指令执行结束后,Pc计数器自动增加,指向下一条要执行的指令地址。