膜法在海水淡化中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
膜法在海水淡化中的应用研究
马俊(天津工业大学)
摘要:二十世纪是个资源短缺的时代,尤其是水资源,面对淡水资源严重不足的情况下,人类把目光投向了丰富的海水资源,经过几十年的发展,海水淡化技术取得实质性的进展。本文介绍了海水淡化的发展历程,重点介绍膜法以及其中的反渗透法,海水淡化所面临的问题。
关键词:海水淡化膜法反渗透
1.背景介绍
1.1水资源状况
储存于地球的总储水量约1386×10亿立方米,其中海洋水为1338×10亿立方米,约占全球总水量的96.5%。在余下的水量中地表水占1.78%,地下水占1.69%。人类主要利用的淡水约35×10亿立方米,在全球总储水量中只占2.53%。它们少部分分布在湖泊、河流、土壤和地表以下浅层地下水中,大部分则以冰川、永久积雪和多年冻土的形式储存。但是随着人口的增长和环境污染的严重化,能被人了直接利用的淡水资源已经很少了。在这种大背景下,海水由于其丰富的储备备受人们关注。
1.2 海水淡化的发展历程
联合国关于非常规水源的研究报告指出, 从1950-1985 的35 年间, 海水淡化的发展经历了三个阶段, 即发现阶段、开发阶段和商业化阶段. 在这期间研究开发的精力主要集中在蒸馏、冷冻、电渗析和反渗透. 在此后的10 多年中蒸馏法和反渗透法则发挥了突出的作用, 形成了当代海水淡化与苦咸水淡化技术市场的主体. 到1998 年, 全世界淡化水生产能力达到日产2 300 万m3, 2000 年则达到日产2 700 万m3, 平均以7% -8% 的增长率攀升. 在这些年里全世界海水淡化装置的生产能力都是蒸馏法特别是多级闪蒸法占优势; 然而到2001-2002 年,反渗透装置总的生产能力已超过了任何一种蒸馏装置的生产能力, 而且反渗透和膜法的发展速度远比蒸馏法的速度快. 因此可以这样认为, 从50 年代开始至今, 海水淡化技术的应用势头又可分为两个阶段, 即2000 年前是蒸馏法特别是多级闪蒸法为主的时代, 而2000 年以后则是膜法特别是反渗透法为主的时代[1]. 经历的主要方法有以下三种:
(1)多效蒸馏(MED)是最古老的淡化方法之一,就是让加热后的海水经过多个串联运行的蒸发器,将前一个蒸发器产生的二次蒸汽引入到下一个蒸发器作为加热蒸汽,并在下一级蒸发器中冷凝成淡水的过程。
(2)多级闪蒸(MSF),其工作原理是将海水加热到一定温度后引入闪蒸室,由于闪蒸室中的压力低于海水在该温度下所对应的饱和蒸汽压,故热盐水进入闪蒸室后成为过热溶液而急速的部分气化,热盐水自身的温度降低,所产生的蒸汽冷凝。多级闪蒸应用广泛,具有可靠性高、防垢性能好等优点;但同时也具有动力消耗大、传热效率低等缺点。3)
(3)反渗透(RO),它是一种膜分离技术,就是用一种分离膜,在一定的压力差下,使海水中的淡水河溶质达到分离的方法。由于该技术无相变、组件化、流程简单、占地面积小、耗电低,发展十分迅速[2]。
2.膜法在海水中的应用
正如上面提到的在海水淡化的技术中膜法占的比重越来越大,受到各国政府和研究人员的青睐。膜分离技术是以选择性多孔薄膜为分离介质, 使分离的溶液借助某种推动力( 如: 压力差、浓度差、电位差等) 通过膜, 低分子溶质透过膜, 大分子溶质被截留, 以此来分离溶液中不同分子量的物质, 从而达到分离、浓缩、纯化目的。
2.1膜法的分类
二百多年前, No11et 发现膜的渗透现象以来, 膜分离技术已有巨大的成功. 如30 年代的微孔过滤、40 年代的渗析、5 0 年代的电渗析、60 年代的反渗透、70 年代的超滤、80 年代的气体分离、90 年代的渗透蒸发相继问世. 膜分离技术日趋成熟, 应用十分广泛. 从环境、化工、生物到食品各行业都采用了膜分离技术,目前, 膜技术主要有以下几种:
( 1) 反渗透( RO) 膜技术. 反渗透( 又称高滤) 过程是渗透过程的逆过程, 推动力为压力差, 即通过在待分离液一侧加上比渗透压高的压力, 使原液中的溶剂被压到半透膜的另一侧. 反渗透技术的特点是无相变, 能耗低、膜选择性高、装置结构紧凑, 操作简便, 易维修和不污染环境等.
( 2) 纳滤( N F) 膜技术. 纳滤技术是超低压具有纳米级孔径的反渗透技术. 纳滤膜技术对单价离子或相对分子质量低于200 的有机物截留较差, 而对二价或多价离子及相对分子质量介于200- 1000 的有机物有较高脱除率. 纳滤膜具有荷电, 对不同的荷电溶质有选择性截留作用, 同时它又是多孔膜, 在低压下透水性高.
( 3) 微滤( MF) 膜技术. 微滤膜是以静压差为推动力, 利用筛网状过滤介质膜的筛分作用进行分离.微滤膜是均匀的多孔薄膜, 其技术特点是膜孔径均一、过滤精度高、滤速快、吸附量少且无介质脱落等.主要用于细菌、微粒的去除, 广泛应用在食品和制药行业中饮料和制药产品的除菌和净化, 半导体工业超纯水支配过程中颗粒的去除, 生物技术领域发酵液中生物制品的浓缩与分离.
( 4) 超滤( U F) 膜技术. 超滤是以压差为驱动力, 利用超滤膜的高精度截留性能进行固液分离或使不同相对分子质量物质分级的膜分离技术. 其技术特点是: 能同时进行浓缩和分离大分子或胶体物质. 与反渗透相比, 其操作压力低, 设备投资费用和运行费用低, 无相变, 能耗低且膜选择性高. 在食品、医药、工业废水处理、超纯水制备及生物技术工业领域应用较广泛.
( 5) 电渗析( ED) 膜技术. 电渗析是一个电化学分离过程, 是在直流电场作用下以电位差为驱动力,通过荷电膜将溶液中带电离子与不带电组分分离的过程. 该分离过程是在离子交换膜中完成的. 主要应用于海水淡化, 苦咸水脱盐, 海水浓缩制盐, 乳精、糖、酒、饮料等的脱盐净化, 锅炉给水、冷却循环水软化, 废水中高价值物质回收与水的回用, 废酸、废碱液净化与回收等.
( 6) 双极膜( BPM) 技术. 双极膜是由阴离子交换膜和阳离子交换膜叠压在一起形成的新型分离膜.阴阳膜的复合可以将不同电荷密度、厚度和性能的膜材料在不同的复合条件下制成不同性能和用途的双极膜. 主要应用于酸碱生产、烟道气脱硫、食盐电解等.
( 7) 渗透蒸发( PV) 膜技术. 渗透蒸发是一个压力驱动膜分离过程, 它是利用液体中两种组分在膜中溶解度与扩散系数的差别, 通过渗透与蒸发, 达到分离目的的一个过程, 其设备投资和运行费用较低. 近年来, 对渗透蒸发技术的研究虽然进展很快, 但它单独使用的经济性并不好[3].
2.2反渗透技术的应用