韦达定理讲解
认识韦达定理:什么是韦达定理?如何应用?
**韦达定理的认识与应用**一、韦达定理的定义与来源韦达定理,也称为韦达公式,是一元二次方程的重要定理之一,由法国数学家弗朗索瓦·韦达在1615年提出。
韦达定理指出,对于一元二次方程ax²+bx+c=0(a≠0),其两个根x₁和x₂满足以下关系:1. x₁ + x₂ = -b/a2. x₁ × x₂ = c/a韦达定理不仅是一元二次方程根与系数之间关系的体现,更是代数学中的基本定理之一,具有广泛的应用价值。
二、韦达定理的详细阐述1. 根与系数的关系韦达定理最核心的内容是一元二次方程的根与系数之间的关系。
对于一个标准形式的一元二次方程ax²+bx+c=0,其两个根x₁和x₂与系数a、b、c之间存在确定的数学关系。
具体来说,就是x₁和x₂的和等于-b除以a,x₁和x₂的乘积等于c除以a。
2. 定理的证明韦达定理的证明主要依赖于一元二次方程的求根公式。
对于一元二次方程ax²+bx+c=0,其求根公式为x=(−b±√(b²-4ac))/(2a)。
通过这个求根公式,我们可以直接计算出x₁和x₂的值,然后验证它们与系数a、b、c之间的关系是否满足韦达定理。
三、韦达定理的应用场景1. 解一元二次方程韦达定理最直接的应用就是解一元二次方程。
通过韦达定理,我们可以根据一元二次方程的系数直接得出其根的和与积,这在某些情况下比使用求根公式更加简便。
2. 判断根的情况通过韦达定理,我们还可以判断一元二次方程根的情况。
例如,如果系数b²-4ac大于0,则一元二次方程有两个不相等的实数根;如果b²-4ac等于0,则一元二次方程有两个相等的实数根;如果b²-4ac小于0,则一元二次方程没有实数根。
3. 解决其他问题除了解决一元二次方程本身的问题外,韦达定理还可以应用于其他数学问题和实际问题中。
例如,在代数式求值、方程组的求解、几何问题的计算等方面都可以看到韦达定理的应用。
韦达定理详细讲解初中
韦达定理详细讲解初中1. 韦达定理的基本概念嘿,大家好!今天咱们聊聊一个有趣的数学小知识,那就是韦达定理。
你可能会问,韦达是谁呀?其实,他是个很牛的数学家,专门研究方程的。
韦达定理主要是讲关于二次方程的根和系数之间的关系。
简单来说,如果你有一个形如 (ax^2 + bx + c = 0) 的方程,韦达定理告诉我们根的和和根的积是怎么回事。
听起来有点复杂,但别担心,咱们一步一步来,保证你听得明白!1.1. 根的和与根的积首先,咱们来看看根的和。
设这个方程的两个根是 (x_1) 和 (x_2),那么根据韦达定理,它们的和就是 (frac{b{a)。
哦,别以为这就完了!根的积也很重要,两个根的积是(frac{c{a)。
这就像你找朋友聚会,知道总共有多少人(和)和几对情侣(积),就能推算出不少事情来。
1.2. 实际例子来个实际例子,让你更容易理解。
假设我们有个方程 (2x^2 4x + 2 = 0)。
这里 (a = 2),(b = 4),(c = 2)。
根据韦达定理,根的和是 (frac{4{2 = 2),根的积是 (frac{2{2 = 1)。
哇,这样一算,感觉根的关系就像你和你最好的朋友一样,彼此心知肚明呢!2. 韦达定理的应用说到这儿,可能有的小伙伴会想:“这理论有啥用呢?”别急,让我给你讲讲韦达定理在实际生活中的妙用。
其实,这个定理在解决各种实际问题时简直是个好帮手!比如说,你想找出一个水池的水位变化,或者解决一些最优化问题,韦达定理都能派上用场,帮助你理清思路。
2.1. 在几何中的应用不仅如此,韦达定理在几何学里也大显身手哦!想象一下,一个三角形的顶点坐标,你可以用韦达定理来帮助你计算出某些重要的点,简直就是数学界的瑞士军刀,功能强大到不行。
2.2. 数学竞赛中的好帮手另外,韦达定理在数学竞赛中也是一大法宝。
许多题目都能通过它轻松解出,比如求解二次方程的根,甚至能帮助你推导出一些新的数学性质。
用韦达定理解一元二次方程
用韦达定理解一元二次方程一元二次方程,大家肯定都不陌生啦。
它在数学里可是个很重要的角色呢。
那今天咱们就来讲讲怎么用韦达定理解一元二次方程。
韦达定理呢,它可是解一元二次方程的一个超棒的小助手。
我们都知道一元二次方程的一般形式是ax²+bx+c = 0(a≠0)。
韦达定理说的就是在这个方程里,两根x₁和x₂有这样的关系:x₁+x₂=-b/a,x₁x₂=c/a。
那怎么用韦达定理来解方程呢?比如说我们有个方程x² - 5x+6 = 0。
我们先根据韦达定理,对于这个方程a = 1,b = - 5,c = 6。
那么两根之和x₁+x₂=-b/a = -(-5)/1 = 5,两根之积x₁x₂=c/a = 6/1 = 6。
然后我们就可以想啊,哪两个数相加等于5,相乘等于6呢?很容易就想到2和3啦。
所以这个方程的两个根就是x₁ = 2,x₂ = 3。
再比如说方程2x²+3x - 2 = 0。
这里a = 2,b = 3,c = - 2。
两根之和x₁+x₂=-b/a=-3/2,两根之积x₁x₂=c/a=-2/2=-1。
这时候我们又要去找那两个满足条件的数啦。
经过一番思考,我们会发现-1/2和2是符合的。
所以这个方程的根就是x₁=-1/2,x₂ = 2。
韦达定理的用处可不仅仅是解这种简单的方程哦。
当方程的系数比较复杂,或者我们只需要知道两根的关系而不需要求出根的具体值的时候,韦达定理就大显身手啦。
比如说有个一元二次方程ax²+bx+c = 0,我们只知道它的两根满足x₁ - x₂ = 1,又知道根据韦达定理x₁+x₂=-b/a,x₁x₂=c/a。
我们就可以通过(x₁ - x₂)²=(x₁+x₂)² - 4x₁x₂这个式子,把已知的条件代入进去,就可以求出关于a、b、c的一些关系啦。
而且啊,韦达定理在解决一些实际问题的时候也很有用呢。
比如说有个长方形,它的长和宽满足一个一元二次方程的关系,我们就可以用韦达定理来求出长和宽的值,从而算出长方形的面积之类的。
韦达定理的数学运用,这类学生很容易搞错
韦达定理的数学运用,这类学生很容易搞错韦达定理是一种基本的数学定理,它在解决三角形问题中有着广泛的应用。
在学习韦达定理时,学生往往会遇到一些困难,容易搞错。
本文将介绍韦达定理的数学运用,并提供一些解决问题的技巧和方法。
一、韦达定理的定义韦达定理是指在三角形ABC中,如果从顶点A向边BC引一条平分线AD,则有:\frac{AB}{AC}=\frac{BD}{DC}其中,AB、AC、BD、DC分别表示三角形ABC中的边长和平分线AD所分割的边长。
二、韦达定理的数学运用1. 求三角形的内心内心是三角形三条角平分线的交点,也是三角形内接圆的圆心。
利用韦达定理可以求出三角形的内心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形内心的坐标为:x=\frac{ax1+bx2+cx3}{a+b+c}y=\frac{ay1+by2+cy3}{a+b+c}其中,a、b、c分别表示三角形BC、AC、AB的边长。
2. 求三角形的外心外心是三角形三条垂直平分线的交点,也是三角形外接圆的圆心。
利用韦达定理可以求出三角形的外心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形外心的坐标为:x=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}y=\frac{a(x1^2+y1^2)+b(x2^2+y2^2)+c(x3^2+y3^2)}{2S}其中,a、b、c分别表示三角形BC、AC、AB的边长,S表示三角形的面积。
3. 求三角形的垂心垂心是三角形三条高线的交点。
利用韦达定理可以求出三角形的垂心坐标。
假设三角形ABC的三个顶点坐标分别为A(x1,y1)、B(x2,y2)、C(x3,y3),则三角形垂心的坐标为:x=\frac{(x1+x2+x3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(x1^2+x2^2+x3 ^2)}y=\frac{(y1+y2+y3)(a^2+b^2-c^2)}{2(a^2+b^2+c^2)-(y1^2+y2^2+y3 ^2)}其中,a、b、c分别表示三角形BC、AC、AB的边长。
韦达定理详细讲解
韦达定理详细讲解韦达定理是数学中的一个重要定理,它被广泛应用于代数、几何和概率等领域。
该定理的内容较为复杂,但通过详细的讲解,我们可以更好地理解和应用韦达定理。
我们来了解一下韦达定理的基本概念。
韦达定理又称作“韦达三角定理”或“韦达方程”,它是代数中关于多项式根与系数之间的关系的一个重要定理。
韦达定理是指对于一个二次方程,其两个根的和等于系数b的相反数,而两个根的乘积等于方程的常数项c。
为了更好地理解韦达定理,我们以一个具体的例子来说明。
假设我们有一个二次方程x^2 - 5x + 6 = 0,我们可以使用韦达定理来求解该方程的根。
根据韦达定理,我们知道两个根的和等于系数b的相反数,即根的和等于5的相反数,即-5。
所以,我们可以得到一个等式:x1 + x2 = -5。
接下来,根据韦达定理,我们知道两个根的乘积等于方程的常数项c,即根的乘积等于6。
所以,我们可以得到另一个等式:x1 * x2 = 6。
通过这两个等式,我们可以得到一个由根和系数构成的方程组,进一步求解得到方程的根。
在本例中,我们可以得到x1 = 2和x2 = 3,即方程的两个根分别为2和3。
除了二次方程,韦达定理也可以扩展到高次方程。
对于一个n次方程,韦达定理可以表示为:方程的n个根的和等于系数b的相反数,而n个根的乘积等于方程的常数项c。
韦达定理在代数中的应用非常广泛。
它可以用于求解方程的根,进一步用于因式分解、求解多项式的系数和揭示方程与根之间的关系。
通过韦达定理,我们可以更好地理解和解决各种代数问题。
除了代数中的应用,韦达定理在几何和概率中也有重要的应用。
在几何中,韦达定理可以用于求解三角形的边长,利用三角形的边长关系来解决几何问题。
在概率中,韦达定理可以用于计算多个独立事件同时发生的概率,从而帮助我们进行概率分析和计算。
总结一下,韦达定理是数学中的一个重要定理,它可以用于代数、几何和概率等领域。
通过韦达定理,我们可以求解方程的根,进行因式分解,揭示方程与根之间的关系,解决几何问题和计算概率等。
韦达定理与实根
韦达定理与实根介绍韦达定理是代数学中的一项重要定理,用于求解多项式方程的根。
该定理由法国数学家弗朗索瓦·韦达于16世纪提出,并在代数学中得到广泛应用。
本文将详细讨论韦达定理及其与实根的关系。
一、韦达定理的基本概念韦达定理是关于多项式方程根与系数之间的关系的定理。
对于一个n次多项式方程:a n x n+a n−1x n−1+⋯+a1x+a0=0其中,a i为系数,a n≠0,x为未知数。
韦达定理给出了计算方程根与系数之间的关系,即: 1. 多项式方程的根之和等于系数a n−1的相反数除以a n的系数,即−a n−1a n 。
2. 多项式方程的根之积等于系数a0除以a n的系数,即a0a n。
二、韦达定理的应用韦达定理在代数学中有着广泛的应用,可以用于求解多项式方程的根,以及判断多项式方程的根的性质。
下面我们将详细介绍韦达定理的几个常见应用:2.1 多项式方程的根之和对于一个多项式方程,通过韦达定理可以直接计算出根的和。
只需将方程的系数代入韦达定理的公式即可。
例如,对于方程x2−5x+6=0,其中的根之和为5,可以通过韦达定理计算得到。
2.2 多项式方程的根之积通过韦达定理,我们还可以计算出多项式方程的根之积。
同样地,只需将方程的系数代入韦达定理的公式即可。
例如,对于方程x2−5x+6=0,其中的根之积为6,可以通过韦达定理计算得到。
2.3 基于根的判断韦达定理还可以用于判断多项式方程的根的性质。
对于一个多项式方程:1.如果根的和为0,则多项式方程中存在一个或多个正根和负根。
2.如果根的积为正数,那么多项式方程中的所有根都是正数或零。
3.如果根的积为负数,那么多项式方程中的根既有正数也有负数。
三、韦达定理与实根的关系韦达定理在求解多项式方程的实根时具有重要作用。
对于一个多项式方程,实根即为满足方程的实数解。
而韦达定理给出的根之和与根之积的公式可以帮助我们判断方程是否有实根。
3.1 方程有实根的条件根据韦达定理,多项式方程的根之和与根之积的公式可以得知以下结论:1.如果多项式方程的根之和为0,那么方程至少有一个实根。
韦达定理y1y2和x1x2关系
韦达定理y1y2和x1x2关系
韦达定理y1y2和x1x2关系
韦达定理(也称为勾股定理)是一个重要的几何定理,它告诉我们:在直角三角形中,斜边的平方等于其两条直角边的平方和。
用数学符号表示就是:y1^2 + y2^2 = x1^2 + x2^2。
所以,当y1 和y2 确定时,x1 和x2 的大小是可以确定的,反之亦然。
例如,当y1=3,y2=4 时,直角三角形的斜边长度为5(根据勾股定理,3^2 + 4^2 = 5^2)。
此时,如果要求出x1 和x2 的值,可以先用勾股定理将斜边的平方表示为两条直角边的平方和,然后按照这个关系分别求出x1 和x2 的值。
这个定理在几何学和数学中都有着广泛的应用,可以帮助我们求出直角三角形的各个边长的长度。
韦达定理坐标公式
韦达定理坐标公式韦达定理在数学中可是个相当重要的知识点,它就像一把神奇的钥匙,能帮我们解决好多与方程相关的难题。
咱们先来说说韦达定理到底是啥。
韦达定理指出,在一元二次方程$ax^2 + bx + c = 0$($a$、$b$、$c$ 是实数且$a ≠ 0$)中,两根 $x_1$、$x_2$ 有这样的关系:$x_1 + x_2 = -\frac{b}{a}$,$x_1 \times x_2 =\frac{c}{a}$ 。
记得我之前教过一个学生小明,他在刚开始接触韦达定理的时候,那叫一个迷糊。
每次做题,不是把公式记错,就是不知道该怎么用。
有一次做作业,碰到一道题:已知方程 $x^2 - 5x + 6 = 0$ 的两根为$x_1$ 和 $x_2$,求 $x_1 + x_2$ 和 $x_1 \times x_2$ 的值。
小明愣是盯着题目看了半天,然后乱写一通。
我一看,他把 $a$、$b$、$c$ 的值都找错了,导致结果完全不对。
我就把小明叫到身边,耐心地给他讲解:“小明啊,你看这个方程$x^2 - 5x + 6 = 0$ ,这里 $a = 1$,$b = -5$,$c = 6$ 。
所以根据韦达定理,$x_1 + x_2 = -\frac{-5}{1} = 5$,$x_1 \times x_2 = \frac{6}{1} = 6$ 。
你可别再记错啦!”小明听了之后,似懂非懂地点点头。
为了让小明彻底搞明白,我又给他出了几道类似的题目让他练习。
一开始,他还是会出错,但慢慢地,他掌握了诀窍,做得越来越顺。
后来有一次考试,试卷上有一道比较难的题目:已知方程 $2x^2 +3x - 5 = 0$ 的一根为 $1$,求另一根。
这道题可把好多同学都难住了,但小明看到题后,心里有了底。
他先根据韦达定理算出两根之和为 $-\frac{3}{2}$,因为已知一根为 $1$,所以另一根就很容易算出来是 $-\frac{5}{2}$ 。
韦达定理经典例题及解题过程
韦达定理经典例题及解题过程韦达定理经典例题及解题过程一、概述韦达定理是初中数学中的一个重要定理,它是数学中的基本原理之一,广泛应用于初中数学和高中数学的相关知识点中。
韦达定理通过等比的概念,可以解决一些复杂的代数方程问题,具有很强的普适性和实用性。
本文将重点介绍韦达定理的相关概念、经典例题及解题过程,希望能让读者对韦达定理有更深入的理解。
二、韦达定理的相关概念1. 韦达定理的基本概念韦达定理是数学上一个重要的定理,它通过等比的概念,解决了关于代数方程的一些问题。
韦达定理的基本说法是:对于一元三次方程ax³+bx²+cx+d=0,如果它有三个不等实根,那么这三个根分别是p、q、r,那么有以下等式成立:p+q+r=-b/apq+qr+rp=c/apqr=-d/a2. 韦达定理的证明韦达定理的证明可以通过多种方式来完成,其中一种比较常见的方法是使用代数方程的解法和数学归纳法。
我们可以通过对一元三次方程的通解进行分析,最终得到韦达定理的结论。
这个过程需要一定的代数方程知识和数学推理能力。
三、经典例题及解题过程为了更好地理解韦达定理,我们将通过几个经典例题来演示解题过程。
例题一:已知一元三次方程x³-6x²+11x-6=0的根为p、q、r,求p+q+2r的值。
解题过程:根据韦达定理,我们可以得到以下等式:p+q+r=6pq+qr+rp=11pqr=6根据题目中的要求,我们需要求p+q+2r的值,所以我们可以先求出p+q+r的值,然后再将r的值替换为2r即可。
通过代数方程的解法,我们可以求得p+q+r=6,再将r替换为2r,得到p+q+2r=6+2r的值。
例题二:已知一元三次方程2x³-7x²+7x-3=0的根为p、q、r,求p²+q²+r²的值。
解题过程:同样地,根据韦达定理我们可以得到以下等式:p+q+r=7/2pq+qr+rp=7/2pqr=3/2题目中要求的是p²+q²+r²的值,我们可以通过(p+q+r)²-2(pq+qr+rp)的公式来求得。
高中数学专题韦达定理与均值不等式综合,解决求最小值问题
高中数学专题韦达定理与均值不等式综合,解决求最小值问题数学中有许多关于求最小值的问题,其中最常用的方法就是韦达定理和均值不等式。
两个方法结合起来使用,可以解决各种求最小值问题。
一、韦达定理韦达定理是指在已知方程ax²+bx+c=0的情况下,求出其两个根x₁和x₂之和x₁+x₂和积x₁x₂的方法。
具体做法是:1.求出方程的根公式:x₁=(-b+√(b²-4ac))/2a, x₂=(-b-√(b²-4ac))/2a。
2.求出根之和:x₁+x₂=-b/a。
3.求出根之积:x₁x₂=c/a。
韦达定理可以用来解决各种求最小值的问题。
例如,已知两个正数x和y的和为a,它们的积为b,那么当x和y分别等于多少时,它们的和最小。
解题步骤如下:1.利用韦达定理,求出方程x²-ax+b=0的根,即x₁和x₂。
2.由于x和y的和为a,因此我们有x+y=a。
又因为x和y的积为b,因此我们有xy=b。
3.将x和y分别替换为x₁和x₂,得到两个方程:x₁+x₂=a,x₁x₂=b。
4.根据均值不等式,有a²/4≥b,即a²/4-b≥0。
我们将x₁和x₂代入这个不等式中,得到(x₁-x₂)²≥0。
结合x₁和x₂的定义,可得到2x₁x₂≥a²,即xy≥(a²/4)。
5.因此,当且仅当x=y=(a/2)时,xy最小,其最小值为(a²/4)。
二、均值不等式均值不等式是解决求最小值问题中常用的方法。
均值不等式分为算术平均数和几何平均数两种:1.算术平均数:a₁、a₂、...、aₙ的算术平均数是它们之和除以n。
2.几何平均数:a₁、a₂、...、aₙ的几何平均数是它们的积开n 次方。
均值不等式的基本形式是:对于任意的正实数a₁、a₂、...、aₙ和正整数p,q,有:(a₁ᵖ+a₂ᵖ+...+aₙᵖ)¹/ᵖ≥(a₁ᵩ+a₂ᵩ+...+aₙᵩ)¹/ᵩ当p=1,q=0时,即为算术平均数不小于几何平均数。
九年级数学思维培训第四讲 韦达定理
第四讲 充满活力的韦达定理一、知识要点与思维方法一元二次方程)0(02≠=++a c bx ax 的求根公式是:aac b b x 2422,1-±-= 由此不难得到()ab a b a ac b b ac b b x x -=-=---+-+-=+222442221, ()()ac a ac a ac b b x x ==---=22222214444. 这表明一元二次方程两根之和与两根之积可用一元二次方程系数表示:ac x x a b x x =-=+2121, 被称为一元二次方程的根与系数的关系,也称为韦达定理.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.二、例题选讲例1、 已知βα,是方程012=--x x 的两个实数根,求代数式553223+--++βααβα的值.例2、 如果方程()()0212=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、10≤≤mB 、43≥mC 、143≤<mD 、143≤≤m 例3、设21,x x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.例4、设实数b a ,满足()()()81,402122=++=+++b b a a b b b a ,求2211ba +的值.三、课堂练习1、设21,x x 是方程020162=--x x 的两个实数根,则=-+20162017231x x2、设21,x x 是方程0342=-+x x 的两个实数根,且()23522221=+-+a x x x ,则=a 3、如果方程02=++q px x 的两个根是21,x x ,那么q x x p x x =-=+2121,,请根据以上结论,解决下列问题:⑴已知关于x 的方程()002≠=++n n mx x ,求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.(2)已知b a ,满足0515,051522=--=--b b a a ,求ba ab +的值. (3)已知c b a ,,满足16,0==++abc c b a ,求正数c 的最小值.。
专题 韦达定理(解析版)
专题02 韦达定理韦达定理虽是初二一元二次方程时的内容,但因为考试没有要求,很多学校都没怎么系统的讲过,很多学生还不是很了解韦达定理,更别提掌握和灵活运用了。
而韦达定理在高中阶段运用的非常频繁,许多知识点都要结合韦达定理来做,希望通过本章学习让学生能够理解掌握韦达定理.韦达定理实际上就是一元二次方程中根与系数的关系,韦达定理简单的形式中包含了丰富的数学内容,应用广泛,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.【例1】已知方程5x 2+kx -6=0的一个根是2,求它的另一个根及k 的值. 【难度】★★ 【答案】见解析【解析】由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.设方程的另一个根为1x,知识梳理知识结构模块一: 运用韦达定理,求方程中参数典例剖析则5621-=x ,531-=∴x .由52)53(k-=+-,得7-=k .所以,方程的另一个根为53-.k 的值为-7.1.1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 的值范围是 . 【难度】★★ 【答案】5132m -<≤2.0519998081999522=++=+-b b a a 及已知,求ba的值. 【难度】★★ 【答案】58 【解析】由方程的结构可知a 、b 1是方程08199952=+-x x 的两根,由韦达定理可得58=b a【例2】若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根. (1) 求|x 1-x 2|的值; (2) 求222111x x +的值; (3) 求31x +32x 的值. 【难度】★★ 【答案】见解析【解析】分析:分别变形为可以利用x 1+x 2和x 1x 2来表示的形式.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,2521-=+∴x x ,2321-=x x .(1)∵|x 1-x 2|2=21x +22x -2x 1x 2=(x 1+x 2)2-4x 1x 2)23(4)25(2-⨯--=6425+=449=, 27||21=-∴x x . 对点精练模块二:运用韦达定理,求代数式的值典例剖析(2)493425)23()23(2)25()(2)(112222121221222122212221+=--⨯--=-+=⋅+=+x x x x x x x x x x x x 937=. (3)31x +32x =(x 1+x 2)(21x -x 1x 2+22x )=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]8215)]23(3)25[()25(2-=-⨯--⨯-=.评析:利用根与系数的关系求值,要熟练掌握以下等式变形:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题(相关地,抛物线与x 轴两交点间的距离),为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0)的两根,则a acb b x 2421-+-=,aacb b x 2422---=,||4|242||2424|||222221a acb a ac b a ac b b a ac b b x x -=-=-----+-=-∴||a ∆=. 于是有下面的结论:【例3】已知α、β是方程x 2+2x -5=0的两个实数根,则α2+αβ+2α的值为_______. 【难度】★★ 【答案】见解析【解析】分析:运用根的意义和根与系数关系解题.解:由于α、β是方程x 2+2x -5=0的实数根,∴α2+2α-5=0,αβ=-5,∴α2+2α=5 ∴α2+αβ+2α=α2+2α+αβ =5-5=0评析:注意利用变形为可以用根系关系表示的形式.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧: (1) 恰当组合;(2) 根据根的定义降次; (3) 构造对称式.【例4】关于x 的方程240x x m ++=的两根为x 1,x 2满足| x 1-x 2|=2,求实数m 的值. 【难度】★★ 【答案】31.已知α、β是方程210x x --=的两个实数根,则代数式)2(22-+βαα的值为 . 【难度】★★ 【答案】02.设a ,b 是相异的两实数,满足ab b a b b a a 2222,34,34++=+=求的值. 【难度】★★ 【答案】3100-3.设实数a ,b 分别满足,01999,01991922=++=++b b a a 且ba ab ab 14,1++≠求的值. 【难度】★★ 【答案】-5【例5】已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值. 【难度】★★ 【答案】见解析【解析】分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此其根的判别式应大于等于零.解:设x 1,x 2是方程的两根,由韦达定理,得对点精练模块三:利用韦达定理并结合根的判别式,讨论根的情况典例剖析x 1+x 2=-2(m -2),x 1·x 2=m 2+4. ∵21x +22x -x 1·x 2=21, ∴(x 1+x 2)2-3x 1·x 2=21, 即[-2(m -2)]2-3(m 2+4)=21,化简,得m 2-16m -17=0,解得m =-1,或m =17. 当m =-1时,方程为x 2-6x +5=0,Δ>0,满足题意;当m =17时,方程为x 2+30x +293=0,Δ=302-4×1×293<0,不合题意,舍去. 综上,m = -1.评析:在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m 的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m 的值,取满足条件的m 的值即可.在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或等于零.因为,韦达定理成立的前提是一元二次方程有实数根.【例6】已知x 1、x 2是关于x 的一元二次方程4x 2+4(m -1)x +m 2=0的两个非零实数根,问x 1和x 2能否同号?若能同号,请求出相应的m 的取值范围;若不能同号,请说明理由. 【难度】★★ 【答案】见解析【解析】分析:利用判别式和根与系数关系共同解决本题. 解:由Δ=-32m +16≥0得21≤m .x 1+x 2=-m +1,041221≥=m x x . ∴x 1与x 2可能同号,分两种情况讨论:(1)若x 1>0,x 2>0,则⎩⎨⎧>>+002121x x x x ,解得m <1且m ≠0.21≤∴m 且m ≠0. (2)若x 1<0,x 2<0,则⎩⎨⎧><+002121x x x x ,解得m >1,与21≤m 相矛盾.综上所述:当21≤m 且m ≠0时,方程的两根同号.【例7】一元二次方程240x x a -+=有两个实根,一个比3大,一个比3小,求a 的取值范围.【难度】★★ 【答案】【解析】构造二次函数()a x x x f +-=42,由()03<f 即可满足题意【例8】已知一元二次方程222(9)560x a x a a +-+-+=一个根小于0,另一根大于2,求a 的取值范围. 【难度】★★ 【答案】【解析】构造二次函数()()659222+-+-+=a a x a x x f ,由()00<f 且()02<f 即可满足题意1.已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 . 【难度】★★ 【答案】m >72.设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x + 有最小值?并求出这个最小值. 【难度】★★ 【答案】见解析 【解析】3<a 382<<a 对点精练3.已知关于x 的方程:04)2(22=---m x m x .(1) 求证:无论m 取什么实数值,这个方程总有两个不相等的实根.(2) 若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 【难度】★★ 【答案】见解析【解析】分析: 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手. 解:(1)△=2m 2-4m +4=2(m -1)2+2>0, ∴方程总有两个不相等的实数根;(2) ∵x 1·x 2=24m -≤0,∴1x 、2x 异号或其中一根为0,∴对212+=x x 可分两种情况讨论,去掉绝对值.当x 1≥0,x 2<0时,-x 2-x 1=2,即-(m -2)=2,解得m =0, 此时,方程为x 2+2x =0,解得x 1=0,x 2=-2; 当x 1≤0,x 2>0时,x 2+x 1=m -2=2,解得m =4, 当m =4时,x 2-2x -4=0,解得151x =-+,251x =+.4.若关于x 的方程20x x a ++=的两个根,一个大于1、另一根小于1,求实数a 的取值范围. 【难度】★★ 【答案】2a <-【例9】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么baa b +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 【难度】★★模块四:利用韦达定理逆定理,构造一元二次方程辅助解题等典例剖析【答案】B【解析】评析 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.【例10】解方程121193482232222=+-++-++x x x x x x x x . 【难度】★★ 【答案】-1,-4,28952895-+,. 【解析】分析:观察方程左边两式的关系,用换元法,令t x x xx =-++4322代入求解.1.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 . 【难度】★★ 【答案】11182m <≤ 【解析】提示:根据两边之和、两边之差的关系及△≥0得到.2.已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根.(1) 当m =2和m >2时,四边形ABCD 分别是哪种四边形? 并说明理由;(2) 若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ=1,且AB<CD ,求AB 、CD 的长;(3) 在(2)的条件下,AD=BC=2,求一个一元二次方程,使它的两个根分别是tan ∠BDC 和tan ∠BCD . 【难度】★★★ 【答案】见解析【解析】(1)当m =2时,x 2-4x +4=0. ∵△=0,方程有两个相等的实数根.∴AB=CD ,此时AB ∥CD ,则该四边形是平行四边形; 当m >2时,△=m -2>0,对点精练又∵AB+CD=2m >0, AB•CD=217()24m -+ >0, ∴AB≠CD . 该四边形是梯形.(2) 根据三角形的中位线定理可以证明:连接梯形的两条对角线的中点的线段等于梯形的上下底的差的一半.则根据PQ=1,得CD -AB=2. 由CD -AB=||||21a x x ∆=-解得m =3 当m =3时,则有x 2-6x +8=0, ∴x =2或x =4, 即AB=2,CD=4(3)根据该梯形是等腰梯形,平移一腰,则得到等边△BEC . ∴∠BCD=60°,∠BDC=30°.∵tan ∠BDC+tan ∠BCD=tan ∠BDC•tan ∠BCD=1.∴所求作的方程是y 2-+1=0. 评析:对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.3.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD=m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求:m ,n 为整数时,一次函数y =mx +n 的解析式.【难度】★★★【答案】见解析 【解析】解:易证△ABC ∽△ACD ,∴AC ABAD AC=,AC 2=AD•AB ,同理BC 2=BD•AB , ∵2221AC BC =,∴21m n = ∴m =2n …①, ∵关于x 的方程14x 2-2(n -1)x +m 2-12=0有两实数根, ∴△=[-2(n -1)]2-4×14×(m 2-12)≥0,∴4n 2-m 2-8n +16≥0,把①代入上式得n ≤2…②, 设关于x 的方程14x 2-2(n -1)x +m 2-12=0的两个实数根分别为x 1,x 2, 则x 1+x 2=8(n -1),x 1•x 2=4(m 2-2),依题意有(x 1-x 2)2<192,即[8(n -1)]2-16(m 2-12)<192, ∴4n 2-m 2-8n +4<0,把①式代入上式得n >12…③, 由②、③得12<n ≤2, ∵m 、n 为整数,∴n 的整数值为1,2,当n =1,m =2时,所求解析式为y =2x +1,当n =2,m =4时,解析式为y =4x +2.韦达定理在高中阶段是一种非常常用且重要的解题手段,同学们一定要在充分理解的基础上加以掌握及灵活运用.同学们要能掌握根与系数的关系,知道韦达定理的常见变式与常规题型,注重设而不解,注重整体,通过整体带入来解决问题.一、选择题1.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程的两根,则02=++p qx x 反思总结课后练习p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,3 【难度】★★ 【答案】C2.在R t △ABC 中,∠C=90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( ) A .23 B .25C .5D .2 【难度】★★ 【答案】B3.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p的值是 ( )A .1B .-lC .21-D .21 【难度】★★ 【答案】C4.两个质数a 、b 恰好是整系数方程x 2-99x +m =0的两个根,则baa b +的值是 ( ) A .9413 B .1949413 C .999413 D .979413【难度】★★ 【答案】B5.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为 ( ) A .0232=---m x x B .0232=--+m x x C .02412=---x m x D .02412=+--x m x 【难度】★★ 【答案】D6.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( ) A .0≤m ≤1 B .m ≥43 C .143≤<m D .43≤m ≤1【答案】C二、填空题7.关于x 的一元二次方程22(1)10m x x m -++-=有一根为0,则m 的值为______ 【难度】★★ 【答案】-18.CD 是R t △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 . 【难度】★★ 【答案】69.已知α、β是方程012=--x x 的两个根,则βα34+的值为 . 【难度】★★ 【答案】510.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 . 【难度】★★ 【答案】见解析【解析】解:设x 1,x 2是方程的两个根,则①x 1+x 2=-p ,②x 1x 2=q , ∵②-①得:p+q=28, ∴x 1x 2-x 1-x 2=28, ∴x 1x 2-x 1-x 2+1=28+1, ∴x 1(x 2-1)-(x 2-1)=29, 即(x 1-1)(x 2-1)=29, ∵两根均为正整数,∴x 1-1=1,x 2-1=29或x 1-1=29,x 2-1=1,∴方程的两个根是:x 1=2,x 2=30.或x 1=30,x 2=2. 故答案为:x 1=30,x 2=2.三、解答题11. 若关于x 的一元二次方程3x 2+3(a +b )x +4ab =0的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?【答案】见解析【解析】解:(a +b )2≤4正确.理由:原式可化为(x 1+x 2)2-=3x 1x 2+1, ∴(a +b )2=4ab +1,∵△=9(a +b )2-4×3×4ab ≥0, ∴3(a +b )2-4×4ab ≥0, ∴(a +b )2≥163ab ,即4ab +1≥163ab ∴4ab ≤3,∴4ab +1≤4,即(a +b )2≤4.12.已知关于x 的方程01)32(22=++--k x k x . (1) 当k 为何值时,此方程有实数根;(2) 若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值. 【难度】★★ 【答案】(1)512k ≤;(2) 0.13.设m 是不小于1-的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x . (1) 若62221=+x x ,求m 的值.(2) 求22212111x mx x mx -+-的最大值. 【难度】★★ 【答案】见解析【解析】解:∵方程有两个不相等的实数根,∴△=b 2-4ac =4(m -2)2-4(m 2-3m +3)=-4m +4>0,∴m <1, 结合题意知:-1≤m <1.(1)∵x 12+x 22=(x 1+x 2)2-2x 1x 2=4(m -2)2-2(m 2-3m +3)=2m 2-10m +10=6 ∴m=,∵-1≤m <1,∴m=∴当m =-1时,式子取最大值为10.14.设a 、b 、c 为三个不同的实数,使得方程210x ax ++=和20x bx c ++=有一个相同的实数根,并且使方程20xx a ++=和20x cx b ++=也有一个相同的实数根,试求a b c ++的值.【难度】★★★ 【答案】见解析【解析】解:设x 12+ax 1+1=0,x 12+bx 1+c =0,两式相减,得(a -b )x 1+1-c =0,解得x 1=1c a b--, 同理,由x 22+x 2+a =0,x 22+cx 2+b =0,得x 2=(1)1a bc c -≠- ∴x 2=11x , 由韦达定理的两根之积的关系知,11x 是第一个方程的根, ∴x 2是方程x 2+ax +1=0和x 2+x +a =0的公共根, 因此两式相减有(a -1)(x 2-1)=0, 当a =1时,这两个方程无实根, 故x 2=1,从而x 1=1, 于是a =-2,b +c =-1, 所以a +b +c =-3.。
韦达定理详解
韦达定理详解韦达定理是解决几何中求未知量问题的重要工具之一。
它可以用来求平面上的三角形中各边平方和、角度数等问题。
本文将详细介绍韦达定理的原理、使用方法以及实例计算。
一、韦达定理的原理韦达定理是指:对于一个三角形ABC,它的三个内角所对应的边分别为a、b、c,则有以下公式成立:a²=b²+c²-2bc*cosA其中,cosA、cosB和cosC是表示对应角度余弦值的函数。
该公式由法国数学家韦达在1821年提出。
二、韦达定理的使用方法使用韦达定理时,首先需要明确已知的量和未知的量。
根据已知与未知,可以选择使用上述公式中的哪个。
一般情况下,需要根据题目条件,先确定一个角对应的两条边,再使用韦达公式求出未知边或角。
三、韦达定理的实例计算下面通过几个实例来演示韦达定理的计算方法。
1.已知三角形的三边长分别为3、4、5,求其内角度数。
解:将a=3,b=4,c=5带入公式,得到9=41-40×cosA所以∠A=cos⁻¹0.8≈36.87°,同理可得∠B≈53.13°,∠C=90°。
2.已知一个直角三角形,其中直角边为5,斜边为13,求另一条直角边长。
解:由题目条件可知a=5,c=13。
将这两个数带入公式:5²=b²+13²-2×b×13×cos90°25=b²+169b²=144∴b=12所以,另外一条直角边长为12。
解:将b=12,c=16,角A=120°代入公式:a²=144+256-384×(-0.5)a²=400∴a=20所以,第三边的长度为20。
总之,韦达定理是解决几何问题的常见方法。
通过运用韦达公式,可以求出三角形中的各边长度、角度大小等未知量,帮助我们更好地理解和掌握几何知识。
初中数学的韦达定理
初中数学的韦达定理一、韦达定理的内容1. 对于一元二次方程ax^2+bx + c = 0(a≠0),设它的两个根为x_{1},x_{2}。
- 韦达定理指出:x_{1}+x_{2}=-(b)/(a),x_{1}x_{2}=(c)/(a)。
二、韦达定理的推导1. 由一元二次方程ax^2+bx + c = 0(a≠0),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},设方程的两个根为x_{1}=frac{-b + √(b^2)-4ac}{2a},x_{2}=frac{-b-√(b^2)-4ac}{2a}。
2. 计算x_{1}+x_{2}:- x_{1}+x_{2}=frac{-b + √(b^2)-4ac}{2a}+frac{-b-√(b^2)-4ac}{2a}- 通分得到x_{1}+x_{2}=frac{-b+√(b^2)-4ac-b - √(b^2)-4ac}{2a}- 化简后x_{1}+x_{2}=-(b)/(a)。
3. 计算x_{1}x_{2}:- x_{1}x_{2}=frac{-b + √(b^2)-4ac}{2a}×frac{-b-√(b^2)-4ac}{2a}- 根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=-b,b=√(b^2)-4ac,则x_{1}x_{2}=frac{(-b)^2-(√(b^2)-4ac)^2}{4a^2}- 进一步化简x_{1}x_{2}=frac{b^2-(b^2-4ac)}{4a^2}=(4ac)/(4a^2)=(c)/(a)。
三、韦达定理的应用1. 已知方程的一个根,求另一个根- 例如,已知方程x^2-3x - 4 = 0的一个根为x_{1}=4,设另一个根为x_{2}。
- 对于方程x^2-3x - 4 = 0,这里a = 1,b=-3,c=-4。
- 根据韦达定理x_{1}+x_{2}=-(b)/(a)=3,因为x_{1}=4,所以x_{2}=3 - 4=-1。
初中数学韦达定理
初中数学韦达定理韦达定理是初中数学中的重要内容之一,它被广泛应用于代数求解和几何问题中。
韦达定理又称为韦达三角法则,它的基本思想是通过构造一个带有重心的三角形,利用各边与重心的连线之间的比例关系来求解未知量。
本文将详细介绍韦达定理的定义、原理以及应用实例。
一、定义和原理韦达定理是指在一个三角形中,确定三个顶点所对应边的长度和重心之间的关系。
其中,重心是指三角形三条中线的交点,它将全部三条中线按照长度等分。
韦达定理表示如下:设在一个三角形ABC中,AD为三角形的一条中线,将其分为两条相等的线段,由D可以构造三条平行于三边的线段BE、CF和AG,那么有以下关系成立:AB + AC = 2ADBC + BA = 2BECA + CB = 2CF二、韦达定理的证明我们来证明一下韦达定理。
设三角形ABC的重心为G,连接GD,并且延长至与AB相交于E,与AC相交于F。
由于G是三条中线的交点,所以AG=2GD。
同样的,通过类似的角度对应关系可以得到BE=2AB、CF=2AC。
根据平行线原理,我们知道三角形AGB与三角形GCF是相似的,所以可以写出一个比例等式:AB/AG = GC/CF将AG和CF的值代入后,我们得到:AB/2GD = GC/2AC通过移项可以得到:AC/GD = GC/AB同理,可以得到:AB/GD = GB/AC将这两个等式相加,我们得到:AC/GD + AB/GD = GC/AB + GB/AC化简后得到:(AB + AC)/GD = (GC + GB)/AB再次移项可得:AB + AC = 2GD同样的方法可以得到BC + AB = 2BE和CA + CB = 2CF,证明韦达定理成立。
三、韦达定理的应用实例韦达定理在代数求解和几何问题中具有广泛的应用。
下面给出几个具体的应用实例。
1. 已知三边长求重心若已知一个三角形的三条边的长度为a、b、c,可以利用韦达定理求解重心的坐标。
设重心的坐标为(x, y),我们可以得到以下关系:x = (ax1 + bx2 + cx3)/(a + b + c)y = (ay1 + by2 + cy3)/(a + b + c)其中,(x1, y1)、(x2, y2)、(x3, y3)分别是三个顶点的坐标。
韦达定理推导公式6个
韦达定理推导公式6个韦达定理是中学数学中非常重要的一个定理,它在解决一元二次方程的问题时,作用可大啦!今天咱们就来好好聊聊韦达定理的 6 个推导公式。
先来说说韦达定理到底是啥。
对于一元二次方程$ax^2 + bx + c =0$($a\neq 0$),它的两个根$x_1$和$x_2$有这样的关系:$x_1 + x_2 = -\frac{b}{a}$,$x_1x_2 = \frac{c}{a}$。
这就是韦达定理的基本内容。
咱们来推导第一个公式。
由$x_1 + x_2 = -\frac{b}{a}$两边平方可得:$(x_1 + x_2)^2 = \left(-\frac{b}{a}\right)^2$$x_1^2 + 2x_1x_2 + x_2^2 = \frac{b^2}{a^2}$$x_1^2 + x_2^2 = \frac{b^2}{a^2} - 2\frac{c}{a} = \frac{b^2 -2ac}{a^2}$这就是第一个推导公式啦。
再来看第二个。
由$x_1 + x_2 = -\frac{b}{a}$,$x_1x_2 =\frac{c}{a}$,可得:$(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2 = \left(-\frac{b}{a}\right)^2 - 4\frac{c}{a} = \frac{b^2}{a^2} - \frac{4ac}{a^2} = \frac{b^2 - 4ac}{a^2}$所以$|x_1 - x_2| = \frac{\sqrt{b^2 - 4ac}}{|a|}$,这就是第二个推导公式。
接着第三个。
$x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 - x_1x_2 + x_2^2)$把前面推导出的$x_1 + x_2 = -\frac{b}{a}$和$x_1^2 + x_2^2 =\frac{b^2 - 2ac}{a^2}$代入:$x_1^3 + x_2^3 = -\frac{b}{a}\left(\frac{b^2 - 2ac}{a^2} -\frac{c}{a}\right) = -\frac{b}{a}\frac{b^2 - 3ac}{a^2} = \frac{3abc -b^3}{a^3}$这就是第三个公式。
韦达定理所有公式
韦达定理所有公式韦达定理是解决三角形中任意三边与其对应的角之间的关系的重要定理。
在本文档中,我们将讨论韦达定理的各种公式及其应用。
一、韦达定理的基本形式韦达定理的一个基本形式是:在一个三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,则有以下公式成立:1. a² = b² + c² - 2bc·cosA2. b² = a² + c² - 2ac·cosB3. c² = a² + b² - 2ab·cosC这三个公式是韦达定理的基本形式,可以用来计算三角形中的任意一边的长度。
二、角的余弦定理韦达定理还可以通过角的余弦定理进行推导。
角的余弦定理是说,在一个三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,则有以下公式成立:1. cosA = (b² + c² - a²) / (2bc)2. cosB = (a² + c² - b²) / (2ac)3. cosC = (a² + b² - c²) / (2ab)将上述公式代入韦达定理的基本形式,可以得到:1. a² = b² + c² - 2bc·[(b² + c² - a²) / (2bc)]2. b² = a² + c² - 2ac·[(a² + c² - b²) / (2ac)]3. c² = a² + b² - 2ab·[(a² + b² - c²) / (2ab)]经过简化,得到了韦达定理的基本形式。
三、韦达定理的特殊情况1. 直角三角形在一个直角三角形ABC中,设边长分别为a、b、c,对应的角为A、B、C,其中角C为直角,则有以下公式成立:1. a² = b² + c²2. b² = a² + c²3. c² = a² + b²这是因为在直角三角形中,余弦函数的值为0,所以角的余弦定理可以简化为上述形式。
初中数学 什么是一元二次方程的韦达定理
初中数学什么是一元二次方程的韦达定理一元二次方程的韦达定理是一种用于求解一元二次方程根的方法。
韦达定理基于一元二次方程的系数和根之间的关系,可以通过系数来计算方程的根的和与积。
下面将详细介绍一元二次方程的韦达定理及其推导过程。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b 和c 是已知的实数常数,x 是未知数。
一元二次方程的韦达定理可以总结为以下公式:根的和:x1 + x2 = -b / a根的积:x1 * x2 = c / a推导过程如下:1. 假设方程的两个根分别为x1 和x2,那么可以将方程表示为两个因式的乘积:ax^2 + bx + c = a(x - x1)(x - x2)2. 将上式展开并化简,得到:ax^2 + bx + c = ax^2 - a(x1 + x2)x + ax1x23. 将方程的两边进行比较,可以得出以下结论:b = -a(x1 + x2)c = ax1x24. 根据以上结论,可以得到一元二次方程的韦达定理:根的和:x1 + x2 = -b / a根的积:x1 * x2 = c / a韦达定理的应用:韦达定理提供了一种简单且直接的方法来计算一元二次方程的根的和与积。
这种方法在解决实际问题时非常有用,特别是当我们需要计算方程根的和与积来进一步分析方程的性质时。
以下是一些常见的应用场景:1. 利用根的和与积可以判断方程的解的情况。
例如,当根的和和根的积都为正数时,说明方程的两个根都是正数;当根的和为负数而根的积为正数时,说明方程的两个根一个为正数一个为负数。
2. 韦达定理可以用于求解一元二次方程的根的和与积。
通过求解根的和与积,我们可以得到方程的根的具体数值,从而解决实际问题。
3. 韦达定理还可以用于拟合数据。
通过找到满足给定数据点的一元二次方程,我们可以使用韦达定理计算方程的根的和与积,从而得到最佳拟合曲线的特征。
总结:一元二次方程的韦达定理是一种用于计算方程根的和与积的方法。
韦达定理复习课件
选择题
A. -4 B. -2
C. 0
选择题
D. 2
答案4:D. 2
解答题
总结词
考察韦达定理的综合应用
题目5
已知一元二次方程 x^2 - (k + 1)x + k = 0 的两个根为 x1 和 x2, 且 x1 + x2 = 3,求 k 的值。
答案5
解得 k = 2 或 k = -4。
THANKS
02
韦达定理的内容
韦达定理的公式
韦达定理公式
对于一元二次方程 ax^2 + bx + c = 0 (a ≠ 0),其解的公式为 x = [-b ± sqrt(b^2 - 4ac)] / (2a)。
解释
该公式用于求解一元二次方程的 根,其中 a、b、c 是方程的系数 ,b^2 - 4ac 是判别式。
。
解释
通过一系列代数变换, 将方程的解表示为根号 下的形式,从而得出解
的公式。
韦达定理的特例
01
02
03
04
特例1
当 b = 0,c = 0 时,方程变 为 ax^2 = 0,其解为 x = 0
。
特例2
当 a = 0 时,方程退化为线 性方程,不适用韦达定理。
特例3
当 b = 0,且 a 与 c 不相等 时,方程有两个相等的实根,
分式方程的实例
总结词
分式方程的解与系数的关系
详细描述
对于分式方程 $frac{x^2}{a} + frac{y^2}{b} = 1$,其解为 $(x_1, y_1), (x_2, y_2)$,则有 $x_1 cdot x_2 = pm frac{a}{sqrt{a^2 - b}}$ 和 $y_1 cdot y_2 = pm frac{b}{sqrt{a^2 - b}}$。
韦达定理如何解方程
韦达定理如何解方程韦达定理是解决方程组的一个重要工具,它可以用来确定一组线性方程是否有解以及解的具体形式。
本文将介绍韦达定理的原理和应用,并通过实例演示其解方程的方法。
一、韦达定理的原理韦达定理是由法国数学家伊塞尔·韦达于1815年提出的。
该定理主要用于解决由n个未知数和n个线性方程组成的方程组。
韦达定理的核心思想是通过消元和回代的方法,将方程组转化为一个阶梯形矩阵,从而求出方程组的解。
具体来说,我们可以将方程组表示为一个增广矩阵,其中每行代表一个方程,每列代表一个未知数。
通过初等行变换,我们可以将增广矩阵转化为阶梯形矩阵。
阶梯形矩阵的特点是,每一行的主元素(即第一个非零元素)的列索引递增,并且每一行的主元素下方的元素都为零。
二、韦达定理的应用韦达定理可以用来解决线性方程组的各种问题,包括确定是否有解、求解唯一解还是无穷解以及求解特解等。
下面通过一个实例来演示韦达定理的具体应用。
例题:解方程组2x + 3y - z = 7x - y + 2z = 13x + 2y - 3z = 4步骤一:构建增广矩阵将方程组表示为增广矩阵形式:[2 3 -1 | 7][1 -1 2 | 1][3 2 -3 | 4]步骤二:消元通过初等行变换,将增广矩阵转化为阶梯形矩阵:[1 -1 2 | 1][0 5 -5 | 5][0 0 -9 | -9]步骤三:回代从阶梯形矩阵的最后一行开始,依次回代求解未知数的值:-9z = -9,解得z = 15y - 5z = 5,代入z = 1,解得y = 2x - y + 2z = 1,代入y = 2、z = 1,解得x = 2因此,方程组的解为x = 2,y = 2,z = 1。
通过这个实例,我们可以清楚地看到韦达定理在解决方程组中的应用。
通过构建增广矩阵、消元和回代的过程,我们可以得到方程组的解。
如果方程组存在唯一解,那么解就是唯一的;如果方程组存在无穷解,那么我们可以通过参数化的方式表示解的形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
执教者:虞申君
一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
X1,2=
b b2 4ac 2a
解下列方程并完成填空: (1)x2-7x+12=0 (2)x2+3x-4=0 (3) 2x2+3x-2=0
方程
x2-7x+12=0 x2+3x-4=0 2x2+3x-2=0
两根
x1
(2)p= 9 q= -54
(3)p= 0 q= -21
(4)p= 12 q= -3
1、已知方程3x2-19x+m=0的一个根是1,求它的另一个根x1+1=
19 3
,
∴
x1=
16 3
,
又x1●1=
m 3
,
∴ m= 3x1 = 16
2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值。
(1) x1 = 1, x2 =2
(2) x1 = 3, x2 = -6
(3) x1 = - 7 , x2 = 7 (4) x1 = -2+ 5 , x2 = -2- 5
解:由韦达定理,得 ∴p= -3(x1+x2) q=3
x1
·xx12+xx1 2·3p=x2-=
,
q 3
(1)p= -9 q= 6
∴x12+x22
=(x1+x2)2
-2x1x2
=(-
2 3
)2
-2×(-3)=6
4 9
例2、已知方程x2-(k+1)x+3k=0的一个根是2 , 求它的另一个根及k的值。
解:设方程的另一个根为x1. 把x=2代入方程,得 4-2(k+1)+3k=0
解这方程,得 k= - 2
由韦达定理,得x1●2=3k 即2 x1 =-6 ∴ x1 =-3 答:方程的另一个根是-3 , k的值是-2。
解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1 ∵ (x2-x1)2=(x1+x2)2-4x1x2
由韦达定理得x1+x2=
k 1 2
,
k 3
x1x2= 2
∴( k 1)2 4 k 3 1
2
2
解得k1=9,k2= -3
当k=9或-3时,由于△≥0,∴k的值为9或-3。
2、设x1,x2是方程x2-2(k-1)x+k2=0的两个实数根,且 x12+x22=4,求k的值。
=
c a
如果方程x2+px+q=0的两根是
X1 ,X2,那么X1+X2= -P ,
X1X2= q
说出下列各方程的两根之和与两根之积:
1、 x2 - 2x - 1=0
x1+x2=2
x1x2=-1
2、
2x2 - 3x +
1
2 =0
3
x1+x2= 2
1
x1x2= 4
3、 2x2 - 6x =0 4、 3x2 = 4
解:由韦达定理,得
x1+x2=
-
2
,
x1
·x2=
3 2
∴
(x1+1)(x2+1)
=
x1
x2
+
(x1+x2)+1
=-2+(
3 2
)+1=
5 2
1、韦达定理及其推论
2、利用韦达定理解决有关一元二次方程 根与系数问题时,注意两个隐含条件:
(1)二次项系数a≠0 (2)根的判别式△ ≥0
1、当k为何值时,方程2x2-(k+1)x+k+3=0的两根差为1。
x2
3
4
1
-4
-2
1
2
两根和 两根积
X1+x2 7
x1x2 12
-3
-4
-3
-1
2
一元二次方程的根与系数的关系: (韦达定理)
如果方程ax2+bx+c=0(a≠0)的两个根是X1 , X2 ,
那么X1+x2= -
b a
,
X1x2=
c a
注:能用韦达定理的前提条件为△≥0
韦达(1540-1603)
例2、已知方程x2-(k+1)x+3k=0的一个根是2 ,
求它的另一个根及k的值。
解二:设方程的另一个根为x1.
由韦达定理,得
x1 +2= k+1
x1 ●2= 3k
解这方程组,得 x1 =-3 k =-2
答:方程的另一个根是-3 , k的值是-2。
已知x1,x2是方程3x2+px+q=0的两个根, 分别根据下列条件求出p和q的值:
解:由方程有两个实数根,得
4(k 1)2 4k 2 0 即-8k+4≥0
由韦达定理得x1+x2= 2(k-1) , x1x2=k2
k 1 2
∴ X12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4
由X12+x22 =4,得2k2-8k+4=4 解得k1=0 , k2=4
x1+x2=3 x1+x2=0
x1x2=0
x1x2=
-
4 3
例1、已知3x2+2x-9=0的两根是x1 , x2 。
求:(1)
1 1 x1 x2
(2) x12+x22
解:由题意可知x1+x2=
-
2 3
, x1 ·x2=-3
(1)
11
= x1 x2
=
2 3
=
2
x1 x2
x1 x2
3 9
(2)∵ (x1+x2)2= x12+x22 +2x1x2
经检验, k2=4不合题意,舍去。
∴ k=0
韦达定理的证明:
x1 b b2 4ac 2a
b b2 4ac x2
2a
b b2 4ac
X1+x2=
2a
2b
=
=
-b
2a
a
b b2 4ac
+
2a
b b2 4ac b b2 4ac
X1x2=
2a
●
2a
=
(b)2 ( b2 4ac)2 4a 2
=
4ac 4a 2