光谱分析技术总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1可见与紫外分光光度法
紫外--可见分光光度法:是根据物质分子对波长为200-760nm这一范围的电磁波的吸收特性所建立起来的一种定性、定量和结构分析方法。操作简单、准确度高、重现性好。波长长(频率小)的光线能量小,波长短(频率大)的光线能量大。分光光度测量是关于物质分子对不同波长和特定波长处的辐射吸收程度的测量。
特点:
灵敏度高------10-5 mol·L-1 ~10 -6 mol·L-1
相对误差小------2%~5%
应用广泛-----医药、卫生、环保、化工等领域。
设备:紫外-可见分光光度计
价格主要在5000-35000左右
应用场合:
食品分析、药物分析、环境监测
2红外光谱法
红外光谱法又称“红外分光光度分析法”。简称“IR”,分子吸收光谱的一种。利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。被测物质的分子在红外线照射下,只吸收与其分子振动、转动频率相一致的红外光谱。对红外光谱进行剖析,可对物质进行定性分析。化合物分子中存在着许多原子团,各原子团被激发后,都会产生特征振动,其振动频率也必然反映在红外吸收光谱上。据此可鉴定化合物中各种原子团,也可进行定量分析。特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。
特点:
优点:(1)快速,通常30秒内就可给出分析结果,可进行在线分析;
(2)制样简单;
(3)信息量大,可同时测定多组分;
(4)经定标建模后,无须用其他常规化学分析手段,不使用有毒有机试剂,无污染;
(5)非破坏性分析,可实现产品的无损质量检测;
(6)可使用光纤,从而可实现远程分析检测。
缺点:(1)建立模型需要大量有代表性且化学值已知的样品;
(2)模型需要不断的维护改进;
(3)近红外测定精度与参比分析精度直接相关,在参比方法精度不够的情况下,
无法得到满意结果。设备:红外光谱仪
价格一般在9万到20万之间
应用场合:
红外光谱分析可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。已有几种汇集成册的标准红外光谱集出版,可将这些图谱贮存在计算机中,用以对比和检索,进行分析鉴定。利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。由于分子中邻近基团的相互作用,使同一基团在不同分子中的特征波数有一定变化范围。此外,在高聚物的构型、构象、力学性质的研究,以及物理、天文、气象、遥感、生物、医学等领域,也广泛应用红外光谱。
3分子荧光光度法
分子荧光光谱法又称分子发光光谱法或荧光分光光度法,即通常所谓的荧光分析法。该法是一种利用某一波长的光线照射试样,使试样吸收这一辐射,然后在发射出波长相同或波长较长的光线的化学分析方法。如果这种再发射约在s内发生,则称为荧光;若能在s或更长
的时间后发生,则称磷光。分子荧光光谱法就是利用这种再发射的荧光的特性和强度来对荧光物质进行定性和定量分析的。
荧光分析法的突出优点是灵敏度高,其测定下限比一般分光光度法低二至四数量级。选择性也比分光光度法好,但其应用不如分光光度广泛,因为只有有限数量的化合物才能产生荧光
特点:
优点:
1)灵敏度高,检出限为10-7-10-9g/ml,比紫外可见分光光度法高10~1000倍。
2)荧光法的选择性强,能吸收光的物质并不一定能产生荧光,且不同物质由于结构不同,虽吸收同一波长,产生的荧光强度也不同。
3)它还有用样量少、操作简便等的优点。
缺点:由于许多物质不发射荧光,因此使它的应用范围受到限制。
设备:荧光分光光度计
价格一般在1万-10万之间
应用场合:
因荧光光度法具有灵敏度高、选择性好、因荧光光度法具有灵敏度高、选择性好、取样量少等优点,而被广泛应用于医学检验、药物分析、少等优点,而被广泛应用于医学检验、药物分析、环境监测和卫生防疫等领域。
荧光分光光度计对经光源激发后产生荧光的物质或经化学处理后产生荧光的物质成份分析,可应用于生物化学、生物医学、环境化工等部门。
4近红外光谱分析技术
近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录
的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同基团(如甲基、亚甲基、苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成与性质的测量。
特点:
紫外、可见吸收光谱常用于研究不饱和有机物,特别是具有共轭体系的有机化合物,而红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼光谱中出现)。因此,除了单原子和同核分子如Ne、He、O2、H2等之外,几乎所有的有机化合物在红外光谱区均有吸收。除光学异构体,某些高分子量的高聚物以及在分子量上只有微小差异的化合物外,凡是具有结构不同的两个化合物,一定不会有相同的红外光谱。
红外吸收带的波数位置、波峰的数目以及吸收谱带的强度反映了分子结构上的特点,可以用来鉴定未知物的结构组成或确定其化学基团而吸收谱带的吸收强度与分子组成或化学基团的含量有关,可用以进行定量分析和纯度鉴定。由于红外光谱分析特征性强,气体、液体、固体样品都可测定,并具有用量少,分析速度快,不破坏样品的特点。因此,红外光谱法不仅与其它许多分析方法一样,能进行定性和定量分析,而且是鉴定化合物和测定分子结构的用效方法之一。
设备:近红外光谱仪