【最新】高中数学-2018高考数学(文)大一轮复习习题 板块命题点专练(八) word版含答案

合集下载

2018届高考数学一轮复习8.6

2018届高考数学一轮复习8.6
第六节 双曲线
第八章
第六节
双曲线
名师考点精讲 综合能力提升
主干知识回顾
-2-
考纲概述
考查热点 双曲线的定义及其应用
考查频次 ★★★
备考指导 双曲线的定义是重要考点,应用定 义求标准方程、研究几何性质如 离心率,要有应用定义解题的意识. 双曲线的标准方程、几何性质也
(1)了解双曲线的定义、几何图形 和标准方程,知道其简单几何性质(
第八章
知识清单 基础自测
第六节
双曲线
名师考点精讲 综合能力提升
主干知识回顾
-4-
2.双曲线的标准方程和几何性质
标准方程
x2 a2

y2 =1(a>0,b>0) b2
y2 a2
x2 − b2=1(a>0,b>0)
图形
第八章
知识清单 基础自测
第六节
双曲线
名师考点精讲 综合能力提升
主干知识回顾
-5-
范围 对称性 几何 性质 顶点 轴 渐近线 离心率 a,b,c的关系
范围、对称性、顶点、离心率、
渐近线); (2)了解双曲线的简单应用; (3)理解数形结合的思想 双曲线的标准方程、几何性质 ★★★★★
是必考考点,尤其是离心率、渐近 线等,更加是考查的重中之重.题型 以选择题或填空题为主
第八章
知识清单 基础自测
第六节
双曲线
名师考点精讲 综合能力提升
主干知识回顾
-3-
1 2
4 3
1 2
双曲线定义应用的几个题型 (1)已知双曲线上一点和两个焦点,用定义法求标准方程; (2)求解过程中经常结合‖PF1|-|PF2‖=2a,运用方程两边平方的方法,建 立它与|PF1||PF2|的联系.

2018高考数学文科一轮复习讲义 8.7 第八板块 单元质量检测

2018高考数学文科一轮复习讲义 8.7  第八板块 单元质量检测

第八板块 必修4 第一章 三角函数 第三章 三角恒等变换单元质量检测第Ⅰ卷(选择题 共55分)一、选择题(本大题共11题,每小题5分,共55分) 1.已知(,0)2x π∈-,4cos 5x =,则=x 2tan ( ) A247 B 247- C 724 D 724-2.函数3sin 4cos 5y x x =++的最小正周期是( ) A5π B 2πC πD 2π 3. 在△ABC 中,cos cos sin sin A B A B >,则△ABC 为( ) A 锐角三角形 B 直角三角形 C 钝角三角形 D 无法判定4. 设00sin14cos14a =+,00sin16cos16b =+,2c =,则,,a b c 大小关系( ) A a b c << B b a c << C c b a << D a c b <<5.函数)cos[2()]y x x ππ-+是( )A 周期为4π的奇函数 B 周期为4π的偶函数 C 周期为2π的奇函数 D 周期为2π的偶函数6.已知cos 23θ=44sin cos θθ+的值为( ) A1813 B 1811 C 97 D 1-7.设212tan13cos66,,21tan 13a b c ===+则有( )A a b c >>B a b c <<C a c b <<D b c a <<8.已知3sin(),45x π-=则sin 2x 的值为( )A1925 B 1625 C 1425 D 7259.函数2sin cos y x x x =的图象的一个对称中心是( )A 2(,3π B 5(,6π C 2(3π- D (,)3π 10.0000(1tan 21)(1tan 22)(1tan 23)(1tan 24)++++ 的值是( ) A 16 B 8 C 4 D 211.当04x π<<时,函数22cos ()cos sin sin xf x x x x=-的最小值是( )A 4 B12C 2D 14第Ⅱ卷(非选择题 共95分)二、填空题(本大题共4小题,每小题4分,共16分)12.求值:0000tan 20tan 4020tan 40+=_____________13.若1tan 2008,1tan αα+=-则1tan 2cos 2αα+14.已知sincos22θθ+=那么sin θ的值为 ,cos 2θ 15.ABC ∆的三个内角为A 、B 、C ,当A 为 时,cos 2cos2B CA ++取得最大值,且这个最大值为三、解答题(本大题共6小题, 共79分, 解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值心脏在跳动时,血压在增加或减小.血压的最大值,最小值分别称为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数120/80 mm Hg 为标准值.设某人的血压满足函数式()11525sin160P t t π=+,其中()P t 为血压(mm Hg),t 为时间(min).,(Ⅰ)求函数()P t 的周期; (Ⅱ)此人每分钟心跳的次数;(Ⅲ)画出函数()P t 的草图; (Ⅳ)求出此人的血压在血压计上的读数,并与标准值18.(本小题满分14分)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.19.(本小题满分12分)已知函数)(),,0(2sin 22cos4)(2x f a a x xx f 且其中R ∈>+-+=ωωω的图象在y轴右侧的第一个最高的横坐标为2.(I )求ω的值;(II )若)(x f 在区间[8,16]上的最大值为3,求a 的值.若函数y=x2-4px-2的图象过点(tanα,1),及点(tanβ,1).求2cos2αcos2β+p sin2(α+β)+2sin2(α-β)的值.21.(本小题满分14分)海水受日月的引力,在一定的时候发生涨落的现象叫潮汐,一般的早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近船坞;卸货后落潮时返回海洋.下面给出了某点时的水深的近似数值;(Ⅱ)一条货船的吃水深度(船底与水面的距离)为4m,安全条例规定至少要有1.5m的安全间隙(船底与海底的距离),该船何时能进入港口?在港口能呆多久?(Ⅲ)若船的吃水深度为4m,安全间隙为1.5m,该船在2:00开始卸货,吃水深度以每小时0.3m的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?80160第八板块 必修4 第一章 三角函数 第三章 三角恒等变换单元质量检测参考答案三、解答题:16. 解析:sin sin sin ,cos cos cos ,βγαβγα+=-+=-22(sin sin )(cos cos )1,βγβγ+++=122cos()1,cos()2βγβγ+-=-= 17.解析: (Ⅰ) 2116080T ππ==; (Ⅱ) 180f T==(次); (Ⅲ)列表如下:(Ⅳ) 此人的收缩压和舒张压在血压计上的读数为140 mm Hg 和90 mm Hg .均高于相应的x标准值.18.解析:(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x xx x x ⎛⎫=-+=-=- ⎪⎝⎭. 因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭,3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭,故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如右图所示:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的3π14f ⎛⎫=-⎪⎝⎭. 19.解析:(I )a x x x f ++=ωωsin 2cos 2)(.)4sin(22a x ++=πω.由题意知,.8,242πωππω==+得(II )a x x f ++=48sin(22)(ππ, ].49,45[48],16,8[ππππ∈+∴∈x x由图象可知,当,349sin 22,)(,16,4948=+==+a x f x x ππππ由最大时即 得.1=a20.解析:由条件知tan α、tan β是方程x 2-4px -2=1的两根. ∴⎩⎨⎧-==+3tan tan 4tan tan βαβαp∴tan (α+β)=p p=--)3(14.∴原式=2cos2αcos2β+tan (α+β)sin2(α+β)+2sin 2(α-β)=cos2(α+β)+cos2(α-β)+2sin 2(α+β)+2sin 2(α-β) =cos2(α+β)+cos2(α-β)+[1-cos2(α+β))+[1-cos2(α-β)]=2 21.分析:(1)考察数据,可选用正弦函数,再利用待定系数法求解; (2)在涉及三角不等式时,可利用图象求解.(用《几何画板》演示港口水位变化情况)观察问题中给出的数据可以看出,港口的水深(用《Excel 用光滑曲线连接.从曲线的形状可以判断,这个港口的水深与时间的关系可以用形如sin()y A x h ωϕ=++的函数来刻画,其中x 是时间,y 是水深,根据数据可以具体确定A ,ω,ϕ,h 的值.在得到函数解析式以后,我们计算出每一个整点时水深的近似值,或计算出水深为某个指解析: (Ⅰ)可设所求函数为()sin f x A x k ω=+,由已知数据求得2.5,5A k ==,26T ππω==, 故() 2.5sin 56f x x π=+. 在整点时的水深为: 1:00, 5:00,13:00,17:00,为6.3m; 2:00,4:00,14:00,16:00为7.2m; 7:00,11:00,19:00,23:00为3.7m; 8:00,10:00,20:00,22:00为2.8m. (Ⅱ)由2.5sin5 5.56x π+≥,得sin0.26x π≥,画出 2.5sin6y x π=的图象(如图所示),由图象可得0.4 5.6x ≤≤或12.417.6x ≤≤.故该船在0:24至5:36和12:24至17:36期间可以进港,在港口能呆5.2h.(Ⅲ)若224x ≤≤,x 时刻的吃水深度为()40.3(2)h x x =--, 由()() 1.5f x h x ≥+,得sin0.440.126x x π≥-.画出sin6y x π=和0.440.12y x =-的图象(如图所示),由图象可知,当 6.7x =时,即6:42时,该船必颀停止卸货,驶向较深的水域.。

2018版高三数学一轮温习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第八章节 立体几何

2018版高三数学一轮温习(3年真题分类+考情精解读+知识全通关+题型全突破+能力大提升)第八章节 立体几何
应用直线与平面垂直的判定定理证明线面垂直是证明直线与平面垂直 的主要方法.充分利用条件寻找平面中的两条相交直线与已知直线垂直 是解决问题的关键.证明时注意分析几何图形,寻找隐含的和题干中能 推导出的线线垂直关系,进而证明线面垂直.等腰三角形底边上的中线, 菱形的对角线,勾股定理等都可以用来寻找线线垂直.
图8-5-5 符号语言:α⊥β,α∩β=CD,AB⊂α,AB⊥CD⇒AB⊥β.
继续学习
数学
知识全通其性质
【名师提醒】
1.两个平面互相垂直是两个平面相交的特殊情况,正 方体中任意相邻的两个面都是互相垂直的; 2.由定理可知,要证明平面与平面垂直,可转化为从 现有直线中寻找平面的垂线,即证明线面垂直; 3.面面垂直的判定定理提供了找出垂直于一个平面 的另一个平面的依据.
图8-5-4 符号语言:AB⊥β,AB⊂α⇒α⊥β.
【注意】平面和平面垂直的判定定理的两个条件:l⊂α,l⊥β,缺一不可.
继续学习
数学
知识全通关 7
第五讲 直线、平面垂直的判定及其性质
3.平面与平面垂直的性质定理 自然语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 图形语言:如图8-5-5所示.
又AC∩AA1=A,所以BC⊥平面AA1C1C, 因为BC⊂平面A1BC,所以平面A1BC⊥平面AA1C1C.
继续学习
数学
题型全突破 10
第五讲 直线、平面垂直的判定及其性质
【解析】
(2)设A1D与AC1交于点E,连接AB1交A1B于点G,连接EG,如图8-5-15所示,
因为AD∥A1C1,所以∠ADE=∠C1A1E,∠DAE=∠A1C1E,
继续学习
数学
知识全通关 5
第五讲 直线、平面垂直的判定及其性质

2018届高考数学一轮复习8.5

2018届高考数学一轮复习8.5

所以点A的坐标为 ������, ±
2 ������
,
������ 1+������2 ������ 2
故AF1所在的直线方程为x-acy+c=0, 所以坐标原点O到直线AF1的距离为 =
������ ������2 −1
.
又|OF1|=c,
所以
������ ������2 −1
知识清单 基础自测
第五节


主干知识回顾 名师考点精讲
-5-
3.直线与椭圆的位置关系 直线与椭圆的位置关系有三种:相离、相切、相交. (1)直线与椭圆相离的充要条件是直线与椭圆所组成的方程组无解,即转化所 得的一元二次方程的判别式小于0; (2)直线与椭圆相切的充要条件是直线与椭圆所组成的方程组有唯一解,即转 化所得的一元二次方程的判别式等于0; (3)直线与椭圆相交的充要条件是直线与椭圆所组成的方程组有两组不同的 解,即转化所得的一元二次方程的判别式大于0.
第五节 椭 圆
第八章
第五节


主干知识回顾 名师考点精讲
-2-
考纲概述 (1)了解椭圆的实际背景,了解椭圆 在刻画现实世界和解决实际问题 中的作用; (2)掌握椭圆的定义、几何图形、 标准方程及简单几何性质(范围、 对称性、顶点、离心率); (3)了解椭圆的简单应用; (4)理解数形结合的思想
考查热点 椭圆的定义、标准方程与几何性
第五节


主干知识回顾 名师考点精讲
-8-
������ 2 5.设椭圆C: 2 ������
点,������������2 ·
������ 2 + =1(a>0)的左、右焦点分别为F1,F2,A是椭圆C上的一 2 1 ������1 ������2 =0,坐标原点O到直线AF1的距离为 |OF1|. 3

2018届高考数学(文)一轮复习精编配套试题第一章《集合与常用逻辑用语》(含答案精细解析)

2018届高考数学(文)一轮复习精编配套试题第一章《集合与常用逻辑用语》(含答案精细解析)

其中正确的个数是(

A .4
B .3 C .2
D .1
11、 ( 2013 年高考陕西卷(文 6)) 设 z 是复数 , 则下列命题中的假命题是(

A .若 z 2 0 , 则 z 是实数
B.若 z2 0 , 则 z 是虚数
C.若 z 是虚数 , 则 z 2 0
D.若 z 是纯虚数 , 则 z2 0
B.有的实数的平方是正数 D.至少有一个实数的平方是正数
2
7、 ( 2013 年 高考课标 Ⅰ 卷(文)) ( 1)已知集合 A { 1 , 2, 3, 4} , B { x | x n , n A} ,来自则A B ()
(A ){ 1, 4} (B ){ 2, 3} (C) {9 ,16} (D){ 1, 2}
A { x | log 1 (2 x 1) 0}, 则 C R A =
2
1
A. ( , )
2
B . (1 , )
1
1
C . [0, ] [1 , ) D . ( , ] [1 , )
2
2
6. .【云南师大附中 2013 届高三高考适应性月考卷(四)文】命题“所有实数的平方都是
正数”的否定为 A.所有实数的平方都不是正数 C.至少有一个实数的平方不是正数
l : x y 1 0 上”的(

A .充分而不必要条件 C.充分必要条件 C.充要条件 10、【贵州省六校联盟 2013 届高三第一次联考
B.必要而不充分条件 D .既不充分也不必要条件 D .既不充分也不必要条件 文】 给出下列四个命题:
(1)命题 “若
,则 tan
4
1 ”的逆否命题为假命题;
(2)命题 p : x

2018年普通高等学校招生全国统一考试最新高考信息卷(八)数学(文)含答案解析

2018年普通高等学校招生全国统一考试最新高考信息卷(八)数学(文)含答案解析

绝密 ★ 启用前2018年普通高等学校招生全国统一考试最新高考信息卷文 科 数 学(八)注意事项:、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考生号填写在答题卡上。

、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在试卷上无效。

、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。

、考试结束,将本试卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数34i 2i 5a z -=+-的实部与虚部之和为1,则实数a 的值为( )A .2B .1C .4D .3【答案】A【解析】由题意可得,()()()2i 234i34i 34i 2i 5555a a a a z +++---=+=+=-,因为实部与虚部之和为1,2341255a a a +-∴+=⇒=,实数a 的值为2,故选A . 2.下列说法错误的是( )A .“若2x ≠,则2560x x -+≠”的逆否命题是“若2560x x -+=,则2x =”B .“3x >”是“2560x x -+>”的充分不必要条件C .“x ∀∈R ,2560x x -+≠”的否定是“0x ∃∈R,200560x x -+=”卷只装订不密封姓名 准考证号 考场号 座位号D .命题:“在锐角ABC △中,sin cos A B <”为真命题 【答案】D【解析】依题意,根据逆否命题的定义可知选项A 正确;由2560x x -+>得3x >或2x <,∴“3x >”是“2560x x -+>”的充分不必要条件,故B 正确;因为全称命题的否定是特称命题,所以C 正确;锐角ABC △中,ππ022π2A B A B +>⇒>>->,sin sin cos π2A B B⎛⎫∴>-= ⎪⎝⎭,∴D 错误,故选D .3.“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺.若从该芦苇上随机取一点,则该点取自水上的概率为( )A .1213B .113C .314D .213【答案】B【解析】设水深为x 尺,根据勾股定理可得()22215x x +=+,解得12x =,可得水深12尺,芦苇长13尺,根据几何概型概率公式可得,从该芦苇上随机取一点,该点取自水上的概率为113P =,故选B . 4.如图,网格纸上的小正方形边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .83B .43C .163D .8【答案】A【解析】三视图还原为三棱锥A BCD -,如图所示,由三视图可知:4BC =,2AO CO BO DO ====,AB AC BD CD AD =====,平面ABC ⊥平面BCD ,AO ⊥平面BCD ,则三棱锥A BCD -的体积为118422323A BCDV-=⨯⨯⨯⨯=,故选A . 5.已知双曲线的两个焦点为()10F、)2F ,M 是此双曲线上的一点,且满足120MF MF =⋅,122MF MF ⋅=,则该双曲线的焦点到它的一条渐近线的距离为( )A .3B .13C .12D .1【答案】 D【解析】120MF MF ⋅=,12MF MF ∴⊥,221240MF MF ∴+=,()212MF MF ∴-2211222402236MF MF MF MF =-⋅+=-⨯=,12263MF MF a a ∴-==⇒=,又c =,22222119x b c a y ⇒=-=⇒-=,其渐近线方程为13y x=±, ∴焦点到它的一条渐近线的距离为1d ==,故选D .6.已知函数()1sin 2222f x x x =+,把函数()f x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得到的曲线向左平移π6各单位长度,得到函数()g x 的图象,则函数()g x 的对称中心是( ) A .2π,0π6k ⎛⎫+⎪⎝⎭,k ∈Z B .2π,0π2k ⎛⎫+⎪⎝⎭,k ∈Z C .π,0π2k ⎛⎫+⎪⎝⎭,k ∈Z D .π,0π4k ⎛⎫+⎪⎝⎭,k ∈Z 【答案】C【解析】()1sin 2cos 222f x x x =+,()sin π23f x x ⎛⎫∴=+ ⎪⎝⎭,sin 23πy x ⎛⎫∴=+ ⎪⎝⎭图象的横坐标伸长到原来的2倍,可得πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象,πsin 3y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6各单位长度,可得sin cos 2πy x x ⎛⎫=+= ⎪⎝⎭的图象,()cos g x x ∴=,函数()g x 的对称中心为π,0π2k ⎛⎫+ ⎪⎝⎭,k ∈Z ,故选C . 7.秦九韶算法是南宋时期数学家秦九韶提出的一种多项式简化算法,即使在现代,它依然是利用计算机解决多项式问题的最优算法,如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输人n ,x 的值分別为4,5,则输出ν的值为( )A .211B .100C .1048D .1055【答案】D【解析】执行程序框图,输入4n =,5x =,则1v =,3i =,0i ≥,进入循环, 得1538v =⨯+=,312i =-=;0i ≥,故进入循环,得85242v =⨯+=,211i =-=; 0i ≥,故进入循环,得4251211v =⨯+=,110i =-=;0i ≥,故进入循环,得211501055v =⨯+=,011i =-=-,此时,不满足0i ≥,故结束循环,输出1055v =,故选D .8.在ABC △中,120A ∠=︒,3AB AC -⋅=,点G 是ABC △的重心,则AG 的最小值是( )A .23B.3C.3D .53【答案】B【解析】设BC 的中点为D ,因为点G 是ABC △的重心,所以()()22113323AG AD AB AC AB AC ==⨯+=+,再令AB c=,AC b=,则cos12036AB AC bc bc ⋅=⋅︒=-⇒=,()()()22222111226269993AG AB AB AC AC c bbc ∴=+⋅+=+-≥-=,6AG ∴≥,当且仅当b c ==B .9.已知函数()()2,,,df x a b c d ax bx c =∈++R 的图象如图所示,则下列说法与图象符合的是( )A .0,a >,0b >,0c <,0d >B .0a <,0b >,0c <,0d >C .0a <,0b >,0c >,0d >D .0a >,0b <,0c >,0d >【答案】B【解析】由图象可知,1x ≠且5x ≠,20ax bx c ++≠,可知20ax bx c ++=的两根为1,5,由韦达定理得126bx x a +=-=,125c x x a ⋅==,a ∴,b 异号,a ,c 同号,又()00df c=<,c ∴,d 异号,只有选项B 符合题意,故选B .10.在ABC △中,已知2224a b c S +-=(S 为ABC △的面积),若c =2a -的取值范围是()A .(B .()1,0-C .(-D .(【答案】C【解析】222222144sin 2sin 2a b c S a b c ab C ab C+-=⇒+-=⨯=222sin 2a b c C ab +-⇒=,cos si πn 4C C C ∴=⇒=, 2sin sin sin a b c A B C====,2sin a A ∴=,2sin b B =,又23π2sin 2sin2sin 2sin 224a b A B A B A A ⎛⎫-=-⨯==- ⎪⎝⎭sin cos π4A A A ⎛⎫=-=- ⎪⎝⎭, π3π04442ππA A <<⇒-<-<,π14A ⎛⎫∴-<-< ⎪⎝⎭,1a ∴-<-<C . 11.当n 为正整数时,定义函数()N n 表示n 的最大奇因数.如()33N =,()105N =,,()()()()()1232nS n N N N N =++++,则()5S =( )A .342B .345C .341D .346【答案】A 【解析】()()2N n N n =,()2121N n n -=-,而()()()()()123...2n S n N N N N =++++,()()()()()()()()135...2124...2n nS n N N N N N N N ⎡⎤∴=++++-++++⎣⎦, ()()()()()1135...21123...2n n S n N N N N -⎡⎤∴=++++-+++++⎣⎦, ()()()()()11212121422n nn S n S n n S n S n -+-∴=⨯+-≥⇒--=,又()()()112112S N N =+=+=,()()()()()()()()()234515443...2144445S S S S S S S S S ⎡⎤⎡⎤⎡⎤∴-=-+-++-=+++⇒⎣⎦⎣⎦⎣⎦23424444=++++342=,故选A .12a =()A .2-B .12-C .1-D .12-或1- 【答案】A【解析】有唯一零点,设2x t -=,()()()12e 222tt t g t a g t ---=-+=,∴()g t 为偶函数,又()y g t =与2y a =有唯一的交点,∴此交点的横坐标为0,22a a ∴-=,解得2a =-或1a =(舍去),故选A .第Ⅱ卷卷包括必考题和选考题两部分。

2018高考数学文大一轮复习习题 板块命题点专练八 含答案 精品

2018高考数学文大一轮复习习题 板块命题点专练八 含答案 精品

板块命题点专练(八)n 1n A .d <0 B .d >0 C .a 1d <0D .a 1d >0解析:选 C ∵数列{2a 1a n }为递减数列,a 1a n =a 1=a 1dn +a 1(a 1-d ),等式右边为关于n 的一次函数,∴a 1d <0.2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n ,a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2014·安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =22.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14.答案:14n 10100A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C . 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C .2.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:选A ∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3, ∴a 3=1, ∴S 5=a 1+a 52=5a 3=5,故选A .3.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:选B ∵a 1=3,a 1+a 3+a 5=21, ∴3+3q 2+3q 4=21.∴1+q 2+q 4=7,解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12解析:选B ∵{a n }的公差为1, ∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6.又∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.5.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n6.(2016·全国乙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因此{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.7.(2016·全国甲卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前10项和,其中表示不超过x 的最大整数,如=0,=2. 解:(1)设数列{a n }的首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3,解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n=1,2,3时,1≤2n+35<2,b n=1;当n=4,5时,2≤2n+35<3,b n=2;当n=6,7,8时,3≤2n+35<4,b n=3;当n=9,10时,4≤2n+35<5,b n=4.所以数列{b n}的前10项和为1×3+2×2+3×3+4×2=24. 8.(2015·全国卷Ⅰ)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.解:(1)由a2n+2a n=4S n+3,①可知a2n+1+2a n+1=4S n+1+3.②②-①,得a2n+1-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a2n+1-a2n=(a n+1+a n)(a n+1-a n).由a n>0,得a n+1-a n=2.又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.(2)由a n=2n+1可知b n=1a n a n+1=1n+n+=12⎝⎛⎭⎪⎫12n+1-12n+3.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+⎝⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n+1-12n+3=nn+.9.(2014·全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解:(1)证明:由题设,a n a n+1=λS n-1,则a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.1.(2016·天津高考)已知{a n}是等比数列,前n项和为S n(n∈N*),且a1-a2=a3,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n b2n}的前2n项和.解:(1)设数列{a n}的公比为q.由已知,有1a1-1a1q=2a1q2,解得q=2或q=-1.又由S6=a1·1-q61-q=63,知q≠-1,所以a1·1-261-2=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n b2n}的前n项和为T n,则T2n=(-b21+b22)+(-b23+b24)+…+(-b22n-1+b22n) =b1+b2+b3+b4+…+b2n-1+b2n=2n b1+b2n2=2n2.2.(2016·四川高考)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n .解:(1)由已知S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1,n ∈N *都成立.所以数列{a n }是首项为1,公比为q 的等比数列. 从而a n =qn -1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3,所以a 3=2a 2,故q =2.所以a n =2n-1(n ∈N *).(2)由(1)可知a n =qn -1,所以双曲线x 2-y 2a 2n =1的离心率e n =1+a 2n =1+qn -.由e 2=1+q 2=2,解得q =3, 所以e 21+e 22+…+e 2n =(1+1)+(1+q 2)+…+ =n +=n +q 2n -1q 2-1=n +12(3n -1).。

2018版高考数学文北师大版大一轮复习讲义教师版文档

2018版高考数学文北师大版大一轮复习讲义教师版文档

1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式3.柱、锥、台和球的表面积和体积【知识拓展】1.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差. (2)底面面积及高都相等的两个同类几何体的体积相等. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × )1.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32cm 答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2 cm.2.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为 S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.3.(2016·全国甲卷)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( ) A .12π B.323π C .8π D .4π 答案 A解析 由题意可知正方体的棱长为2,其体对角线23即为球的直径,所以球的表面积为4πR 2=(2R )2π=12π,故选A.4.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(1丈=10尺,1尺=10寸,斛为容积单位,1斛≈1.62立方尺,π≈3),则圆柱底面圆周长约为( ) A .1丈3尺 B .5丈4尺 C .9丈2尺 D .48丈6尺 答案 B解析 设圆柱底面半径为r 尺,高为h 尺,依题意,圆柱体积为V =πr 2h =2 000×1.62≈3×r 2×13.33,所以r 2≈81,即r ≈9,所以圆柱底面圆周长为2πr ≈54,54尺=5丈4尺,即圆柱底面圆周长约为5丈4尺,故选B.5.如图,三棱柱ABC -A 1B 1C 1的体积为1,P 为侧棱B 1B 上的一点,则四棱锥P -ACC 1A 1的体积为______.答案 23解析 设点P 到平面ABC ,平面A 1B 1C 1的距离分别为h 1,h 2,则棱柱的高为h =h 1+h 2,又记S =S △ABC =111A B C S ∆,则三棱柱的体积为V =Sh =1.而从三棱柱中去掉四棱锥P -ACC 1A 1的剩余体积为V ′=V P -ABC +111P A B C V -=13Sh 1+13Sh 2=13S (h 1+h 2)=13,从而11P ACC A V -=V -V ′=1-13=23.题型一 求空间几何体的表面积例1 (1)(2016·淮北模拟)一个多面体的三视图如图所示,则该多面体的表面积为( )A .21+ 3B .18+ 3C .21D .18(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)A (2)12解析 (1)由几何体的三视图可知,该几何体的直观图如图所示,因此该几何体的表面积为 6×(4-12)+2×34×(2)2=21+ 3.故选A.(2)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2016·大连模拟)如图所示的是一个几何体的三视图,则该几何体的表面积为________.答案 26解析 该几何体为一个长方体从正上方挖去一个半圆柱剩下的部分,长方体的长,宽,高分别为4,1,2,挖去半圆柱的底面半径为1,高为1,所以表面积为S =S长方体表-2S半圆柱底-S圆柱轴截面+S半圆柱侧=2×4×1+2×1×2+2×4×2-π×12-2×1+12×2π×1=26.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2016·山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥为正四棱锥,它的底面边长为1,高为1,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 命题点2 求简单几何体的体积例3 (2016·江苏改编)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.若AB =6 m ,PO 1=2 m ,则仓库的容积为________m 3.答案 312解析 由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.(1)(2016·四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的主视图如图所示,则该三棱锥的体积是________.(2)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( )A .3 B.32 C .1 D.32答案 (1)33(2)C 解析 (1)由题意可知,因为三棱锥每个面都是腰为2的等腰三角形,由主视图可得俯视图(如图),且三棱锥高为h =1,则体积V =13Sh =13×(12×23×1)×1=33.(2)在正△ABC 中,D 为BC 的中点,则有AD =32AB =3,11DB C S ∆=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , 平面BB 1C 1C ∩平面ABC =BC , AD ⊥BC ,AD 平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高. ∴11A B DC V -三棱锥=1311DB C S ∆·AD =13×3×3=1.题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( ) A.3172B .210 C.132 D .310答案 C解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.已知棱长为4的正方体,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.已知棱长为a 的正四面体,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 正四面体的表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a=612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.已知侧棱和底面边长都是32的正四棱锥,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 答案 A解析 如图,设球心为O ,半径为r ,则在Rt △AOF 中,(4-r )2+(2)2=r 2, 解得r =94,∴该球的表面积为4πr 2=4π×(94)2=814π.15.巧用补形法解决立体几何问题典例 (2016·青岛模拟)如图,在△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5,则此几何体的体积为________.思想方法指导 解答本题时可用“补形法”完成.“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”,将不规则的几何体补成规则的几何体等. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ×AA ′=12×24×8=96.答案 961.(2016·合肥质检)某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2答案 D解析 由三视图可得该几何体是平放的直三棱柱,该直三棱柱的底面是腰长为2的等腰直角三角形、侧棱长为4,所以表面积为12×2×2×2+4×2×2+4×22=20+82,故选D.2.(2016·大同模拟)一个几何体的三视图如图所示,且其左视图是一个等边三角形,则这个几何体的体积为( )A.(4+π)33B.(8+π)36C.(8+π)33D .(4+π) 3答案 B解析 由三视图可知该几何体是由一个半圆锥和一个四棱锥组成的,其中半圆锥的底面半径为1,四棱锥的底面是一个边长为2的正方形,它们的高均为 3.则V =13·⎝⎛⎭⎫12π+4·3=(8+π)36.故选B.3.(2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE=π×12×2-13π×12×1=5π3,故选C.4.(2015·安微)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2答案 B解析 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.5.(2016·湖北优质高中联考)甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π 答案 B解析 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B.6.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛 答案 B解析 由题意知米堆的底面半径为163尺,体积V =13×14πR 2·h =3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).7.(2016·北京)某四棱柱的三视图如图所示,则该四棱柱的体积为________.答案 32解析 由三视图知该四棱柱为直四棱柱, 底面积S =(1+2)×12=32,高h =1,所以四棱柱体积V =S ·h =32×1=32.8.(2016·新疆乌鲁木齐地区二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________. 答案 7π解析 (图略)在四面体ABCD 中, 取线段CD 的中点为E ,连接AE ,BE . ∵AC =AD =BC =BD =2, ∴AE ⊥CD ,BE ⊥CD . 在Rt △AED 中,CD =6, ∴AE =102.同理BE =102. 取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥AB .在Rt △EF A 中, ∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA , 则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD , ∴该四面体的外接球的半径是72, ∴外接球的表面积是7π.9. (2016·三门峡陕州中学对抗赛)如图所示,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.则三棱锥P -ABC 体积的最大值为________.答案 13解析 V P -ABC =13PO ·S △ABC ,当△ABC 的面积最大时,三棱锥P -ABC 体积达到最大值.当CO ⊥AB 时,△ABC 的面积最大,最大值为12×2×1=1,此时V P -ABC =13PO ·S △ABC =13.10.(2016·武汉模拟)已知某几何体的三视图如图所示,则该几何体的体积为________.答案 3π解析 方法一 由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V=34×π×12×4=3π. 方法二 由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用两个大小与形状完全相同的该几何体补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.11.(2016·全国丙卷)如图,四棱锥P ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ; (2)求四面体NBCM 的体积. (1)证明 由已知得AM =23AD =2.如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2.又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT 平面P AB ,MN 平面P AB ,所以MN ∥平面P AB .(2)解 因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A .取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5. 由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5.所以四面体NBCM 的体积V NBCM =13×S △BCM ×P A 2=453.12.(2016·湖北七校联考)如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.解 (1)当M 是线段AE 的中点时,AC ∥平面MDF . 理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN 平面MDF ,AC平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为 V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积 V ADE -BCF =V ADE -B ′CF -V F -BB ′C =8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积 V M -DEF =13×⎝⎛⎭⎫12×2×4×1=43,所以V ADM-BCF=203-43=163,所以两几何体的体积之比为43∶163=1∶4.。

2018版高考数学文人教大一轮复习讲义 教师版文档第八

2018版高考数学文人教大一轮复习讲义 教师版文档第八

1.直线与平面垂直 (1)定义如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直. (2)判定定理与性质定理2.平面与平面垂直 (1)平面和平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. (2)平面与平面垂直的判定定理与性质定理【知识拓展】 重要结论:(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线l 与平面α内的无数条直线都垂直,则l ⊥α.( × )(2)垂直于同一个平面的两平面平行.( × ) (3)直线a ⊥α,b ⊥α,则a ∥b .( √ ) (4)若α⊥β,a ⊥β⇒a ∥α.( × )(5)若直线a ⊥平面α,直线b ∥α,则直线a 与b 垂直.( √ )1.(教材改编)下列命题中不正确的是( )A .如果平面α⊥平面β,且直线l ∥平面α,则直线l ⊥平面βB .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ 答案 A解析 根据面面垂直的性质,知A 不正确,直线l 可能平行平面β,也可能在平面β内. 2.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件答案 A解析 若α⊥β,因为α∩β=m ,b ⊂β,b ⊥m ,所以根据两个平面垂直的性质定理可得b ⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.3.设m、n是两条不同的直线,α、β是两个不同的平面,则()A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m⊥β,n⊥β,n⊥α,则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α答案 C解析A中,由m⊥n, n∥α,可得m⊂α或m∥α或m与α相交,错误;B中,由m∥β,β⊥α,可得m⊂α或m∥α或m与α相交,错误;C中,由m⊥β,n⊥β,可得m∥n,又n⊥α,则m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α,可得m与α相交或m⊂α或m∥α,错误.4.(2016·深圳模拟)在正四面体ABCD中,E,F,G分别是BC,CD,DB的中点,下面的结论不正确的是()A.BC∥平面AGFB.EG⊥平面ABFC.平面AEF⊥平面BCDD.平面ABF⊥平面BCD答案 C解析易知点A在平面BCD上的射影在底面的中心,而中心不在EF上,所以平面AEF⊥平面BCD错误,选C.5.(教材改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若P A=PB=PC,则点O是△ABC的________心.(2)若P A⊥PB,PB⊥PC,PC⊥P A,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,P A=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.∵PC⊥P A,PB⊥PC,P A∩PB=P,∴PC ⊥平面P AB ,AB ⊂平面P AB ,∴PC ⊥AB , 又AB ⊥PO ,PO ∩PC =P , ∴AB ⊥平面PGC , 又CG ⊂平面PGC ,∴AB ⊥CG ,即CG 为△ABC 边AB 上的高. 同理可证BD ,AH 为△ABC 底边上的高, 即O 为△ABC 的垂心.题型一 直线与平面垂直的判定与性质例1 (2016·全国甲卷改编)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置.OD ′=10.证明:D ′H ⊥平面ABCD .证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H ,且OH ,EF ⊂平面ABCD , 所以D ′H ⊥平面ABCD .思维升华 证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);③面面平行的性质(a ⊥α,α∥β⇒a ⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(2015·江苏)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1.设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.证明(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.题型二平面与平面垂直的判定与性质例2如图,四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE ∥平面P AD ; (2)求证:平面EFG ⊥平面EMN .证明 (1)方法一 取P A 的中点H ,连接EH ,DH . 又E 为PB 的中点,所以EH 綊12AB .又CD 綊12AB ,所以EH 綊CD .所以四边形DCEH 是平行四边形,所以CE ∥DH . 又DH ⊂平面P AD ,CE ⊄平面P AD . 所以CE ∥平面P AD . 方法二 连接CF . 因为F 为AB 的中点,所以AF =12AB .又CD =12AB ,所以AF =CD .又AF ∥CD ,所以四边形AFCD 为平行四边形. 因此CF ∥AD ,又CF ⊄平面P AD ,AD ⊂平面P AD , 所以CF ∥平面P AD .因为E ,F 分别为PB ,AB 的中点,所以EF ∥P A . 又EF ⊄平面P AD ,P A ⊂平面P AD ,所以EF∥平面P AD.因为CF∩EF=F,故平面CEF∥平面P AD.又CE⊂平面CEF,所以CE∥平面P AD.(2)因为E、F分别为PB、AB的中点,所以EF∥P A.又因为AB⊥P A,所以EF⊥AB,同理可证AB⊥FG.又因为EF∩FG=F,EF⊂平面EFG,FG⊂平面EFG.所以AB⊥平面EFG.又因为M,N分别为PD,PC的中点,所以MN∥CD,又AB∥CD,所以MN∥AB,所以MN⊥平面EFG.又因为MN⊂平面EMN,所以平面EFG⊥平面EMN.引申探究1.在本例条件下,证明:平面EMN⊥平面P AC.证明因为AB⊥P A,AB⊥AC,且P A∩AC=A,所以AB⊥平面P AC.又MN∥CD,CD∥AB,所以MN∥AB,所以MN⊥平面P AC.又MN⊂平面EMN,所以平面EMN⊥平面P AC.2.在本例条件下,证明:平面EFG∥平面P AC.证明因为E,F,G分别为PB,AB,BC的中点,所以EF∥P A,FG∥AC,又EF⊄平面P AC,P A⊂平面P AC,所以EF∥平面P AC.同理,FG∥平面P AC.又EF∩FG=F,所以平面EFG∥平面P AC.思维升华(1)判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2016·江苏)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.证明(1)由已知,DE为△ABC的中位线,∴DE∥AC,又由三棱柱的性质可得AC∥A1C1,∴DE∥A1C1,又∵DE⊄平面A1C1F,A1C1⊂平面A1C1F,∴DE∥平面A1C1F.(2)在直三棱柱ABCA1B1C1中,AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1B1⊥A1C1,且A1B1∩AA1=A1,∴A1C1⊥平面ABB1A1,∵B1D⊂平面ABB1A1,∴A1C1⊥B1D,又∵A1F⊥B1D,且A1F∩A1C1=A1,∴B1D⊥平面A1C1F,又∵B1D⊂平面B1DE,∴平面B1DE⊥平面A1C1F.题型三直线、平面垂直的综合应用例3如图所示,在四棱锥P—ABCD中,平面P AD⊥平面ABCD,AB∥DC,△P AD是等边三角形,已知BD=2AD=8,AB=2DC=4 5.(1)设M是PC上的一点,求证:平面MBD⊥平面P AD;(2)求四棱锥P—ABCD的体积.(1)证明在△ABD中,∵AD=4,BD=8,AB=45,∴AD 2+BD 2=AB 2,∴AD ⊥BD .又∵平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,BD ⊂平面ABCD ,∴BD ⊥平面P AD . 又BD ⊂平面MBD , ∴平面MBD ⊥平面P AD . (2)解 过P 作PO ⊥AD ,∵平面P AD ⊥平面ABCD , ∴PO ⊥平面ABCD ,即PO 为四棱锥P —ABCD 的高.又△P AD 是边长为4的等边三角形,∴PO =2 3. 在四边形ABCD 中,AB ∥DC ,AB =2DC , ∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高.∴S 四边形ABCD =25+452×855=24.∴V P —ABCD =13×24×23=16 3.思维升华 垂直关系综合题的类型及解法(1)三种垂直的综合问题,一般通过作辅助线进行线线、线面、面面垂直间的转化. (2)垂直与平行结合问题,求解时应注意平行、垂直的性质及判定的综合应用.(3)垂直与体积结合问题,在求体积时,可根据线面垂直得到表示高的线段,进而求得体积.(2016·全国乙卷)如图,已知正三棱锥P-ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G .(1)证明:G 是AB 的中点;(2)作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. (1)证明 因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD .因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 因为PD ∩DE =D ,PD ,DE 都在平面PED 内, 所以AB ⊥平面PED ,又PG 在平面PED 内, 故AB ⊥PG .又由已知可得,P A =PB ,从而G 是AB 的中点.(2)解 在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影.理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC ,PC ∩P A =P ,PC 与P A 都在平面P AC 中,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且P A =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中, 可得EF =PF =2,所以四面体PDEF 的体积V =13×12×2×2×2=43.17.立体几何证明问题中的转化思想典例 (12分)如图所示,M ,N ,K 分别是正方体ABCD —A 1B 1C 1D 1的棱AB ,CD ,C 1D 1的中点.求证:(1)AN∥平面A1MK;(2)平面A1B1C⊥平面A1MK.思想方法指导(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.规范解答证明(1)如图所示,连接NK.在正方体ABCD—A1B1C1D1中,∵四边形AA1D1D,DD1C1C都为正方形,∴AA1∥DD1,AA1=DD1,C1D1∥CD,C1D1=CD.[2分]∵N,K分别为CD,C1D1的中点,∴DN∥D1K,DN=D1K,∴四边形DD1KN为平行四边形,[3分]∴KN∥DD1,KN=DD1,∴AA1∥KN,AA1=KN,∴四边形AA1KN为平行四边形,∴AN∥A1K.[4分]∵A1K⊂平面A1MK,AN⊄平面A1MK,∴AN∥平面A1MK.[6分](2)如图所示,连接BC1.在正方体ABCD—A1B1C1D1中,AB∥C1D1,AB=C1D1.∵M,K分别为AB,C1D1的中点,∴BM∥C1K,BM=C1K,∴四边形BC1KM为平行四边形,∴MK∥BC1.[8分]在正方体ABCD—A1B1C1D1中,A1B1⊥平面BB1C1C,BC1⊂平面BB1C1C,∴A1B1⊥BC1.∵MK∥BC1,∴A1B1⊥MK.∵四边形BB1C1C为正方形,∴BC1⊥B1C.[10分]∴MK⊥B1C.∵A1B1⊂平面A1B1C,B1C⊂平面A1B1C,A1B1∩B1C=B1,∴MK⊥平面A1B1C.又∵MK⊂平面A1MK,∴平面A1B1C⊥平面A1MK.[12分]1.已知直线m,n和平面α,β,若α⊥β,α∩β=m,要使n⊥β,则应增加的条件是() A.n⊂α且m∥n B.n∥αC.n⊂α且n⊥m D.n⊥α答案 C解析由面面垂直的性质定理知选C.2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案 D解析A中,m与n可垂直、可异面、可平行;B中,m与n可平行、可异面;C中,若α∥β,仍然满足m⊥n,m⊂α,n⊂β,故C错误;故选D.3.(2016·包头模拟)如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是()A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.AE与B1C1是异面直线,且AE⊥B1C1D.A1C1∥平面AB1E答案 C解析A不正确,因为CC1与B1E在同一个侧面中,故不是异面直线;B不正确,由题意知,上底面ABC是一个正三角形,故不可能存在AC⊥平面ABB1A1;C正确,因为AE,B1C1为在两个平行平面中且不平行的两条直线,故它们是异面直线;D不正确,因为A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故A1C1∥平面AB1E不正确,故选C.4.正方体ABCD-A′B′C′D′中,E为A′C′的中点,则直线CE垂直于()A.A′C′B.BD C.A′D′D.AA′答案 B解析连接B′D′,∵B′D′⊥A′C′,B′D′⊥CC′,且A′C′∩CC′=C′,∴B′D′⊥平面CC′E.而CE⊂平面CC′E,∴B′D′⊥CE.又∵BD∥B′D′,∴BD⊥CE.5.如图所示,直线P A垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M 为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面P AC的距离等于线段BC的长.其中正确的是()A.①②B.①②③C.①D.②③答案 B解析对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,OM⊄平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离,故①②③都正确.6.如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△P AC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.答案AB、BC、AC AB解析∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC;∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面P AC,∴与AP垂直的直线是AB.7.如图所示,在四棱锥P-ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)答案DM⊥PC(或BM⊥PC等)解析由定理可知,BD⊥PC.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD⊥平面PCD.8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.答案①②③解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,且P A∩AC=A,∴BC⊥平面P AC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF ⊥平面PBC ,∴AF ⊥PB ,又AE ⊥PB ,AE ∩AF =A , ∴PB ⊥平面AEF ,∴PB ⊥EF . 故①②③正确.9.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个. 答案 2解析 若α,β换为直线a ,b ,则命题化为“a ∥b ,且a ⊥γ⇒b ⊥γ”,此命题为真命题;若α,γ换为直线a ,b ,则命题化为“a ∥β,且a ⊥b ⇒b ⊥β”,此命题为假命题;若β,γ换为直线a ,b ,则命题化为“a ∥α,且b ⊥α⇒a ⊥b ”,此命题为真命题.10.(2016·四川)如图,在四棱锥P-ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由; (2)证明:平面P AB ⊥平面PBD .(1)解 取棱AD 的中点M (M ∈平面P AD ),点M 即为所求的一个点,理由如下: 连接BM ,CM .因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面P AB ,CM ⊄平面P AB . 所以CM ∥平面P AB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点) (2)证明 由已知,P A ⊥AB ,P A ⊥CD . 因为AD ∥BC ,BC =CD =12AD ,所以直线AB 与CD 相交,所以P A ⊥平面ABCD , 从而P A ⊥BD .又BC ∥MD ,且BC =MD . 所以四边形BCDM 是平行四边形, 所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面P AB . 又BD ⊂平面PBD , 所以平面P AB ⊥平面PBD .11.(2016·北京)如图,在四棱锥P-ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面P AC ; (2)求证:平面P AB ⊥平面P AC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得P A ∥平面CEF ?说明理由. (1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面P AC ,AC ⊂平面P AC ,∴DC ⊥平面P AC . (2)证明 ∵AB ∥CD ,CD ⊥平面P AC , ∴AB ⊥平面P AC ,又AB ⊂平面P AB , ∴平面P AB ⊥平面P AC .(3)解 棱PB 上存在点F ,使得P A ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又∵E 为AB 的中点,∴EF 为△P AB 的中位线,∴EF ∥P A .又P A ⊄平面CEF ,EF ⊂平面CEF ,∴P A ∥平面CEF .*12.(2016·山东)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC. 证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,如图,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI∥EF.又EF∥DB,所以GI∥DB.在△CFB中,因为H是FB的中点,所以HI∥BC.又HI∩GI=I,DB∩BC=B,所以平面GHI∥平面ABC,因为GH⊂平面GHI,所以GH∥平面ABC.。

2018高考数学(文)大一轮复习习题 板块命题点专练(一)

2018高考数学(文)大一轮复习习题 板块命题点专练(一)

板块命题点专练(一)1.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 集合A={x|x>2或x<0},所以A∪B={x|x>2或x<0}∪{x|-5<x<5}=R,故选B.2.(2016·全国丙卷)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( )A.{4,8} B.{0,2,6}C.{0,2,6,10} D.{0,2,4,6,8,10}解析:选C ∵集合A={0,2,4,6,8,10},B={4,8},∴∁A B={0,2,6,10}.3.(2016·全国丙卷)设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=( )A.B.(-∞,2]∪∪[3,+∞)解析:选D 由题意知S={x|x≤2或x≥3},则S∩T={x|0<x≤2或x≥3}.故选D.4.(2015·全国卷Ⅰ)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2解析:选D 集合A中元素满足x=3n+2,n∈N,即被3除余2,而集合B中满足这一要求的元素只有8和14.5.(2012·全国卷)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3 B.6C.8 D.10解析:选D 列举得集合B={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},共含有10个元素.水秀中华A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选A |x-2|<1⇔1<x<3.由于{x|1<x<2}是{x|1<x<3}的真子集,所以“1<x<2”是“|x-2|<1”的充分而不必要条件.2.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A 由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a 和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.3.(2014·全国卷Ⅱ)函数f(x)在x=x0处导数存在.若p:f′(x0)=0;q:x=x0是f(x)的极值点,则( )A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件解析:选C 当f′(x0)=0时,x=x0不一定是f(x)的极值点,比如,y=x3在x=0时,f′(0)=0,但在x=0的左右两侧f′(x)的符号相同,因而x=0不是y=x3的极值点.由极值的定义知,x=x0是f(x)的极值点必有f′(x0)=0.综上知,p是q的必要条件,但不是充分条件.1.(2012·全国卷)下面是关于复数z=-1+i的四个命题:p1:|z|=2, p2:z2=2i,p3:z的共轭复数为1+i, p4:z的虚部为-1.其中的真命题为( )A.p2,p3B.p1,p2C.p2,p4D.p3,p4解析:选C ∵复数z=2-1+i=-1-i,∴|z|=2,z2=(-1-i)2=(1+i)2=2i,z的共轭复数为-1+i,z的虚部为-1,综上可知p2,p4是真命题.2.(2015·山东高考)设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是( )水秀中华水秀中华A .若方程x 2+x -m =0有实根,则m >0 B .若方程x 2+x -m =0有实根,则m ≤0 C .若方程x 2+x -m =0没有实根,则m >0 D .若方程x 2+x -m =0没有实根,则m ≤0解析:选D 根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是( )A .p ∨qB .p ∧qC .(綈p )∧(綈q )D .p ∨(綈q )解析:选A如图,若a =A 1A ―→,b =AB ―→,c =B 1B ―→,则a ·c ≠0,命题p 为假命题;显然命题q 为真命题,所以p ∨q 为真命题.2.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:选A 綈p :甲没有降落在指定范围;綈q :乙没有降落在指定范围,至少有一位学员没有降落在指定范围,即綈p 或綈q 发生.即为(綈p )∨(綈q ).A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n解析:选C 因为“∃x ∈M ,p (x )”的否定是“∀x ∈M ,綈p (x )”,所以命题“∃n ∈N ,n 2>2n”的否定是“∀n ∈N ,n 2≤2n”.2.(2016·浙江高考)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2水秀中华B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 2解析:选D 由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式为“∃x ∈R ,∀n ∈N *,使得n <x 2”.3.(2015·山东高考)若“∀x ∈⎣⎢⎡⎦⎥⎤0,π4,t a n x ≤m ”是真命题,则实数m 的最小值为________.解析:由题意,原命题等价于t a n x ≤m 在区间⎣⎢⎡⎦⎥⎤0,π4上恒成立,即y =t a n x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值小于或等于m ,又y =t a n x 在⎣⎢⎡⎦⎥⎤0,π4上的最大值为1,所以m ≥1,即m 的最小值为1. 答案:1。

2018版高考数学文江苏专用大一轮复习讲义文档 第八章 立体几何 8.5 含答案 精品

2018版高考数学文江苏专用大一轮复习讲义文档 第八章 立体几何 8.5 含答案 精品

1.证明方法(1)证明平行关系的方法:①证明线线平行的常用方法a.利用平行公理,即证明两直线同时和第三条直线平行;b.利用平行四边形进行转换;c.利用三角形中位线定理证明;d.利用线面平行、面面平行的性质定理证明.②证明线面平行的常用方法a.利用线面平行的判定定理,把证明线面平行转化为证线线平行;b.利用面面平行的性质定理,把证明线面平行转化为证面面平行.③证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.(2)证明空间中垂直关系的方法:①证明线线垂直的常用方法a.利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;b.利用勾股定理逆定理;c.利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.②证明线面垂直的常用方法a.利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;b.利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;c.利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.③证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.2.应特别注意的几个易错点【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若平面外一条直线上有两个点到平面的距离相等,则直线与平面平行.(×)(2)若直线a∥α,P∈α,则过点P且平行于a的直线有无数条.(×)(3)若a⊥b,b⊥c,则a∥c.(×)(4)α,β,γ为三个不同平面,α∥β,β∥γ⇒α∥γ.(√)(5)若α⊥γ,β⊥γ,且α∩β=l,则l⊥γ.(√)(6)α⊥β,a⊥β,b⊥α⇒a∥b.(×)1.(教材改编)如图,已知平面α,β,且α∩β=AB,PC⊥α,垂足为C,PD⊥β,垂足为D,则直线AB与CD的位置关系是________.答案AB⊥CD解析∵PC⊥α,∴PC⊥AB,又∵PD⊥β,∴PD⊥AB,∴AB⊥平面PCD,∴AB⊥CD.2.已知正方体ABCD—A1B1C1D1中,E,F,G分别为B1C1,A1D1,A1B1的中点,则平面EBD 与平面FGA的位置关系为______.答案平行3.(2016·常州一模)给出下列四个命题:①若两个平面平行,那么其中一个平面内的直线一定平行于另一个平面;②若两个平面平行,那么垂直于其中一个平面的直线一定垂直于另一个平面;③若两个平面垂直,那么垂直于其中一个平面的直线一定平行于另一个平面;④若两个平面垂直,那么其中一个平面内的直线一定垂直于另一个平面.其中为真命题的是________.(填序号)答案①②解析③中的直线可能在另一平面内;④中的直线与另一平面,可能是线面平行、线面相交或直线在平面内.4.已知点P是等腰三角形ABC所在平面外一点,且P A⊥平面ABC,P A=8,在△ABC中,底边BC=6,AB=5,则P到BC的距离为________.答案4 5解析取BC的中点D,连结AD,PD.∵AD⊥BC,P A⊥BC,且AD∩P A=A,∴BC⊥平面P AD,∴BC⊥PD,∴在Rt △P AD 中,PD =82+42=4 5.5.(教材改编)如图,在三棱锥V —ABC 中,∠VAB =∠VAC =∠ABC =90°,则平面VBA 与平面VBC 的位置关系为_______.答案 垂直解析 ∵∠VAB =∠VAC =∠ABC =90°, ∴BC ⊥AB ,VA ⊥AC ,VA ⊥AB , 由⎭⎪⎬⎪⎫VA ⊥AB VA ⊥AC ⇒VA ⊥平面ABC , ∴VA ⊥BC ,由⎭⎪⎬⎪⎫VA ⊥BC AB ⊥BC ⇒BC ⊥平面VAB , 又BC ⊂平面VBC , ∴平面VBC ⊥平面VBA .题型一 线、面平行与垂直关系的判定例1 (1)如图所示,在直棱柱ABC —A 1B 1C 1中,若D 是AB 的中点,则AC 1与平面CDB 1的关系为________.(2)已知m ,n 为直线,α,β为平面,给出下列命题:①⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ⇒n ∥α;②⎩⎪⎨⎪⎧m ⊥β,n ⊥β⇒m ∥n ; ③⎩⎪⎨⎪⎧m ⊥α,m ⊥β⇒α∥β;④⎩⎪⎨⎪⎧m ⊂α,n ⊂β,α∥β⇒m ∥n .其中正确的命题是________.答案(1)AC1∥平面CDB1(2)②③解析(1)如图,连结BC1,BC1与CB1交于E点,连结DE,则DE∥AC1,又DE⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1.(2)对于①,n可能在α内;对于④,m与n可能异面.易知②,③是真命题.思维升华对线面平行、垂直关系的判定(1)易忽视判定定理与性质定理的条件,如易忽视线面平行的判定定理中直线在平面外这一条件.(2)结合题意构造或绘制图形,结合图形作出判断.(3)可举反例否定结论或用反证法判断结论是否正确.(1)在正方形SG1G2G3中,E,F分别为G1G2,G2G3的中点.现在沿SE,SF及EF 把这个正方形折成一个四面体,使点G1,G2,G3重合,记为点G,则SG与平面EFG的位置关系为________.答案垂直解析翻折后SG⊥EG,SG⊥FG,从而SG⊥平面EFG.(2)已知三个平面α,β,γ.若α∥β,α∩γ=a,β∩γ=b,且直线c⊂β,c∥b.①判断c与α的位置关系,并说明理由;②判断c与a的位置关系,并说明理由.解①c∥α,∵α∥β,∴α与β没有公共点.又∵c⊂β,∴c与α无公共点,故c∥α.②c∥a.∵α∥β,∴α与β没有公共点.又α∩γ=a,β∩γ=b,∴a⊂α,b⊂β,且a,b⊂γ,∴a∥b.又c∥b,∴a∥c.题型二平行与垂直关系的证明命题点1线面平行的证明例2 在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别为棱BC ,C 1D 1的中点.求证:EF ∥平面BB 1D 1D . 证明 如图所示,连结AC 交BD 于点O ,连结OE ,则OE ∥DC ,OE =12DC .∵DC ∥D 1C 1,DC =D 1C 1,F 为D 1C 1的中点,∴OE ∥D 1F ,OE =D 1F , ∴四边形D 1FEO 为平行四边形,∴EF ∥D 1O .又∵EF ⊄平面BB 1D 1D ,D 1O ⊂平面BB 1D 1D ,∴EF ∥平面BB 1D 1D .命题点2 面面平行的证明例3 如图所示,已知正方体ABCD —A 1B 1C 1D 1.(1)求证:平面A 1BD ∥平面B 1D 1C .(2)若E ,F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明 (1)∵B 1B ∥DD 1,B 1B =D 1D ,∴四边形BB 1D 1D 是平行四边形,∴B 1D 1∥BD ,又BD ⊂平面A 1BD ,B 1D 1⊂平面B 1D 1C , ∴BD ∥平面B 1D 1C . 同理A 1D ∥平面B 1D 1C ,又∵A 1D ∩BD =D ,A 1D ,BD ⊂平面A 1BD , ∴平面A 1BD ∥平面B 1D 1C .(2)由BD ∥B 1D 1,得BD ∥平面EB 1D 1.如图所示,取BB 1的中点G ,连结AG ,GF ,易得AE ∥B 1G , 又∵AE =B 1G ,∴四边形AEB 1G 是平行四边形,∴B 1E ∥AG . 同理GF ∥AD .又∵GF =AD , ∴四边形ADFG 是平行四边形,∴AG ∥DF ,∴B 1E ∥DF ,∴DF ∥平面EB 1D 1. 又∵BD ∩DF =D , ∴平面EB 1D 1∥平面FBD .命题点3 直线与平面垂直的证明例4 (2016·连云港模拟)如图,在多面体ABCDEF 中,四边形ABCD 是菱形,AC 、BD 相交于点O ,EF ∥AB ,AB =2EF ,平面BCF ⊥平面ABCD ,BF =CF ,点G 为BC 的中点.(1)求证:OG ∥平面EFCD ; (2)求证:AC ⊥平面ODE .证明 (1)∵四边形ABCD 是菱形,AC ∩BD =O , ∴点O 是BD 的中点,∵点G 是BC 的中点,∴OG ∥CD , 又∵OG ⊄平面EFCD ,CD ⊂平面EFCD , ∴OG ∥平面EFCD .(2)∵BF =CF ,点G 为BC 的中点,∴FG ⊥BC . ∵平面BCF ⊥平面ABCD , 平面BCF ∩平面ABCD =BC , FG ⊂平面BCF ,FG ⊥BC , ∴FG ⊥平面ABCD .∵AC ⊂平面ABCD ,∴FG ⊥AC ,∵OG ∥AB ,OG =12AB ,EF ∥AB ,EF =12AB ,∴OG ∥EF ,OG =EF ,∴四边形EFGO 为平行四边形,∴FG ∥EO . 又∵FG ⊥AC ,∴AC ⊥EO .∵四边形ABCD 是菱形,∴AC ⊥DO , ∵EO ∩DO =O ,EO 、DO 在平面ODE 内,∴AC ⊥平面ODE . 命题点4 面面垂直的证明例5 如图所示,在正三棱柱ABC —A 1B 1C 1中,E 为BB 1的中点,求证:截面A 1CE ⊥侧面ACC 1A 1.证明 如图所示,取A 1C 的中点F ,AC 的中点G ,连结FG ,EF ,BG ,则FG ∥AA 1,且GF =12AA 1.因为BE =EB 1,A 1B 1=CB ,∠A 1B 1E =∠CBE =90°,所以△A 1B 1E ≌△CBE , 所以A 1E =CE .因为F 为A 1C 的中点,所以EF ⊥A 1C . 又FG ∥AA 1∥BE ,GF =12AA 1=BE ,且BE ⊥BG ,所以四边形BEFG 是矩形,所以EF ⊥FG . 因为A 1C ∩FG =F , 所以EF ⊥侧面ACC 1A 1. 又因为EF ⊂平面A 1CE , 所以截面A 1CE ⊥侧面ACC 1A 1. 命题点5 平行、垂直的综合证明例6 (2016·泰州一模)如图,在四棱锥E —ABCD 中,△ABD 为正三角形,EB =ED ,CB =CD .(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BEC.证明(1)如图,取BD的中点O,连结EO,CO.因为EB=ED,CD=CB,所以CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,所以BD⊥平面EOC.因为EC⊂平面EOC,所以EC⊥BD.(2)因为N是AB的中点,△ABD为正三角形,所以DN⊥AB.因为BC⊥AB,所以DN∥BC.因为BC⊂平面BCE,DN⊄平面BCE,所以DN∥平面BCE.因为M为AE的中点,N为AB的中点,所以MN∥BE.因为MN⊄平面BCE,BE⊂平面BCE,所以MN∥平面BCE.因为MN∩DN=N,所以平面DMN∥平面BEC.思维升华(1)空间线面的位置关系的判定方法①证明直线与平面平行,设法在平面内找到一条直线与已知直线平行,解答时合理利用中位线性质、线面平行的性质,或构造平行四边形,寻求比例关系确定两直线平行.②证明直线与平面垂直,主要途径是找到一条直线与平面内的两条相交直线垂直.解题时注意分析观察几何图形,寻求隐含条件.(2)空间面面的位置关系的判定方法①证明面面平行,需要证明线面平行,要证明线面平行需证明线线平行,将“面面平行”问题转化为“线线平行”问题.②证明面面垂直,将“面面垂直”问题转化为“线面垂直”问题,再将“线面垂直”问题转化为“线线垂直”问题.(2016·苏锡常镇四市调研)如图,四边形AA1C1C为矩形,四边形CC1B1B为菱形,且平面CC1B1B⊥平面AA1C1C,D,E分别为边A1B1,C1C的中点.求证:(1)BC1⊥平面AB1C;(2)DE∥平面AB1C.证明(1)∵四边形AA1C1C为矩形,∴AC⊥C1C.又平面CC1B1B⊥平面AA1C1C,平面CC1B1B∩平面AA1C1C=CC1,∴AC⊥平面CC1B1B.∵BC1⊂平面CC1B1B,∴AC⊥BC1.又四边形CC1B1B为菱形,∴B1C⊥BC1.∵B1C∩AC=C,∴BC1⊥平面AB1C.(2)取AA1的中点F,连结DF,EF.∵四边形AA1C1C为矩形,E,F分别为C1C,AA1的中点,∴EF∥AC.∵EF⊄平面AB1C,AC⊂平面AB1C,∴EF∥平面AB1C.∵D,F分别为边A1B1,AA1的中点,∴DF∥AB1.∵DF⊄平面AB1C,AB1⊂平面AB1C,∴DF∥平面AB1C.∵EF∩DF=F,EF⊂平面DEF,DF⊂平面DEF,∴平面DEF∥平面AB1C.∵DE⊂平面DEF,∴DE∥平面AB1C.题型三平行与垂直的应用例7(2015·安徽)如图,三棱锥P-ABC中,P A⊥平面ABC,P A=1,AB=1,AC=2,∠BAC =60°.(1)求三棱锥P -ABC 的体积;(2)证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC 的值.(1)解 由题设AB =1,AC =2,∠BAC =60°, 可得S △ABC =12·AB ·AC ·sin 60°=32.由P A ⊥平面ABC ,可知P A 是三棱锥P -ABC 的高,又P A =1. 所以三棱锥P -ABC 的体积V =13·S △ABC ·P A =36.(2)证明 在平面ABC 内,过点B 作BN ⊥AC ,垂足为N ,在平面P AC 内,过点N 作MN ∥P A 交PC 于点M ,连结BM . 由P A ⊥平面ABC 知P A ⊥AC ,所以MN ⊥AC .由于BN ∩MN =N ,故AC ⊥平面MBN ,又BM ⊂平面MBN ,所以AC ⊥BM .在Rt △BAN 中,AN =AB ·cos ∠BAC =12,从而NC =AC -AN =32,由MN ∥P A ,得PM MC =AN NC =13.思维升华 (1)利用平行关系可以转移点到面的距离,从而求几何体体积或解决关于距离的最值问题.(2)对于存在性问题的证明与探索有三种途径: 途径一:先猜后证,即先观察与尝试给出条件再证明;途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性. 途径三:将几何问题转化为代数问题,探索出命题成立的条件.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,P A ⊥平面ABCD ,P A =AD=1,AB =3,点F 是PD 的中点,点E 是边DC 上的任意一点.(1)当点E 为DC 边的中点时,判断EF 与平面P AC 的位置关系,并加以证明; (2)证明:无论点E 在边DC 的何处,都有AF ⊥EF ; (3)求三棱锥B —AFE 的体积.(1)解 当点E 为DC 边的中点时,EF 与平面P AC 平行. 证明如下:在△PDC 中,E ,F 分别为DC ,PD 的中点, ∴EF ∥PC ,又EF ⊄平面P AC , 而PC ⊂平面P AC ,∴EF ∥平面P AC .(2)证明 ∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD .∵四边形ABCD 是矩形,∴CD ⊥AD . ∵AD ∩AP =A ,∴CD ⊥平面P AD . 又AF ⊂平面P AD ,∴AF ⊥CD .∵P A =AD ,点F 是PD 的中点,∴AF ⊥PD . 又CD ∩PD =D ,∴AF ⊥平面PCD . ∵EF ⊂平面PCD ,∴AF ⊥EF .即无论点E 在边DC 的何处,都有AF ⊥EF .(3)解 作FG ∥P A 交AD 于G ,则FG ⊥平面ABCD ,且FG =12,又S △ABE =32,∴V B —AEF =V F —AEB =13S △ABE ·FG =312.∴三棱锥B —AFE 的体积为312.6.立体几何平行、垂直的证明问题典例 (14分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,AA 1=AC =2,BC =1,E ,F 分别是A 1C 1,BC 的中点.(1)求证:平面ABE ⊥平面B 1BCC 1; (2)求证:C 1F ∥平面ABE ; (3)求三棱锥E -ABC 的体积. 规范解答(1)证明 在三棱柱ABC -A 1B 1C 1中,BB 1⊥底面ABC ,所以BB 1⊥AB .[1分]又因为AB ⊥BC ,BB 1∩BC =B , 所以AB ⊥平面B 1BCC 1, [2分] 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1.[3分] (2)证明 取AB 的中点G ,连结EG ,FG . [4分] 因为E ,F 分别是A 1C 1,BC 的中点, 所以FG ∥AC ,且FG =12AC .[6分] 因为AC ∥A 1C 1,且AC =A 1C 1, 所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形. 所以C 1F ∥EG .[8分] 又因为EG ⊂平面ABE ,C 1F ⊄平面ABE , 所以C 1F ∥平面ABE .[10分] (3)解 因为AA 1=AC =2,BC =1,AB ⊥BC , 所以AB =AC 2-BC 2= 3. [12分]所以三棱锥E -ABC 的体积 V =13S △ABC ·AA 1=13×12×3×1×2=33. [14分]证明线面平行问题(一)第一步:作(找)出所证线面平行中的平面内的一条直线; 第二步:证明线线平行;第三步:根据线面平行的判定定理证明线面平行; 第四步:反思回顾.检测关键点及答题规范. 证明线面平行问题(二)第一步:在多面体中作出要证线面平行中的线所在的平面;第二步:利用线面平行的判定定理证明所作平面内的两条相交直线分别与所证平面平行;第三步:证明所作平面与所证平面平行;第四步:转化为线面平行;第五步:反思回顾,检查答题规范.证明面面垂直问题第一步:根据已知条件确定一个平面内的一条直线垂直于另一个平面内的一条直线;第二步:结合已知条件证明确定的这条直线垂直于另一平面内的两条相交直线;第三步:得出确定的这条直线垂直于另一平面;第四步:转化为面面垂直;第五步:反思回顾,检查答题规范.1.设α,β为两个不重合的平面,l,m,n为两两不重合的直线,给出下列四个命题:①若α∥β,l⊂α,则l∥β;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若m,n是异面直线,m∥α,n∥α,且l⊥m,l⊥n,则l⊥α.其中真命题的序号是________.答案①③④解析①由α∥β,l⊂α知,l与β无公共点,故l∥β.②当m⊂α,n⊂α,m与n相交,m∥β,n∥β时,α∥β.③由l∥α知,α内存在l′,使得l′∥l.因为l⊥β,所以l′⊥β,故α⊥β.④易知α内存在m′,n′,使得m′∥m,n′∥n,且m′,n′相交,由l⊥m,l⊥n知,l⊥m′且l⊥n′,故l⊥α.2.(2016·南京二模)已知平面α,β,直线m,n,给出下列命题:①若m∥α,n∥β,m∥n,则α∥β;②若α∥β,m∥α,n∥β,则m∥n;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若α⊥β,m⊥α,n⊥β,则m⊥n.其中是真命题的是________.答案③④解析对于①,平面α与β可能相交,故①错;对于②,若α∥β,m∥α,n∥β,则直线m与n可能平行,可能相交,也可能异面,故②错;对于③,由面面垂直的判定可知③正确;对于④,由面面垂直的性质可知m⊥n,故④正确.因此真命题的序号为③④.3.在四棱锥P—ABCD中,P A⊥底面ABCD,底面各边都相等,M是PC上一动点,当M满足是________时,平面MBD⊥平面ABCD.答案PC的中点解析当M是PC中点时,连结AC,BD交于O,由题意知,O是AC的中点,连结MO,则MO∥P A.∵P A⊥平面ABCD,∴MO⊥平面ABCD,MO⊂平面MBD,∴平面MBD⊥平面ABCD.4.(2016·连云港模拟)如图,在直四棱柱ABCD—A1B1C1D1中,A1A=2,底面是边长为1的正方形,E、F、G分别是棱BB1、AA1、AD的中点,则平面A1DE与平面BGF的位置关系是________(填“平行”或“相交”).答案平行解析在直四棱柱ABCD—A1B1C1D1中,E、F、G分别是棱BB1、AA1、AD的中点,所以FG∥A1D,所以FG∥平面A1DE,同理FB∥平面A1DE,又FG∩FB=F,所以平面BGF∥平面A1DE. 5.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF=________时,CF⊥平面B1DF.答案a或2a解析由题意易知,B1D⊥平面ACC1A1,所以B1D⊥CF.要使CF⊥平面B1DF,只需CF⊥DF即可.令CF⊥DF,设AF=x,则A1F=3a-x.易知Rt△CAF∽Rt△F A1D,得ACAF=A1FA1D,即2ax=3a-xa,整理得x2-3ax+2a2=0,解得x=a或x=2a.6.在正四面体P—ABC中,D,E,F分别是AB,BC,CA的中点,给出下面三个结论:①BC∥平面PDF;②DF⊥平面P AE;③平面PDF⊥平面ABC.其中不成立...的结论是________.答案③解析如图,由题知BC∥DF,∴BC∥平面PDF.∵四面体P—ABC为正四面体,∴BC⊥P A,AE⊥BC,BC⊥平面P AE,∴DF⊥平面P AE,∴平面P AE⊥平面ABC,∴①和②成立.设此正四面体的棱长为1,则P A=1,AM=34,PM2=PD2-DM2=⎝⎛⎭⎫322-⎝⎛⎭⎫142=1116,∴P A2≠AM2+PM2,故③不成立.7.(2016·常州调研)如图,四棱锥P—ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB=PD,P A⊥PC,CD⊥PC,O,M分别是BD,PC的中点,连结OM.求证:(1)OM∥平面P AD;(2)OM⊥平面PCD.证明(1)连结AC.因为四边形ABCD是平行四边形,所以O为AC的中点.在△P AC中,因为O,M分别是AC,PC的中点,所以OM∥P A.因为OM⊄平面P AD,P A⊂平面P AD,所以OM∥平面P AD.(2)连结PO.因为O是BD的中点,PB=PD,所以PO⊥BD.因为平面PBD⊥平面ABCD,平面PBD∩平面ABCD=BD,PO⊂平面PBD,所以PO⊥平面ABCD,从而PO⊥CD.因为CD⊥PC,PC∩PO=P,PC⊂平面P AC,PO⊂平面P AC,所以CD⊥平面P AC.因为OM⊂平面P AC,所以CD⊥OM.因为P A⊥PC,OM∥P A,所以OM⊥PC.因为CD⊂平面PCD,PC⊂平面PCD,CD∩PC=C,所以OM⊥平面PCD.8.如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.(1)证明:平面ADC1B1⊥平面A1BE;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.(1)证明如图,因为ABCD-A1B1C1D1为正方体,所以B1C1⊥面ABB1A1.因为A1B⊂面ABB1A1,所以B1C1⊥A1B.又因为A1B⊥AB1,B1C1∩AB1=B1,所以A1B⊥面ADC1B1.因为A1B⊂面A1BE,所以平面ADC1B1⊥平面A1BE.(2)解当点F为C1D1中点时,可使B1F∥平面A1BE.证明如下:易知:EF ∥C 1D ,且EF =12C 1D .设AB 1∩A 1B =O ,则B 1O ∥C 1D 且B 1O =12C 1D ,所以EF ∥B 1O 且EF =B 1O , 所以四边形B 1OEF 为平行四边形. 所以B 1F ∥OE .又因为B 1F ⊄面A 1BE ,OE ⊂面A 1BE . 所以B 1F ∥面A 1BE .9.(2016·南京三模)如图,在四棱锥P —ABCD 中,O 为AC 与BD 的交点,AB ⊥平面P AD ,△P AD 是正三角形,DC ∥AB ,DA =DC =2AB .(1)若E 为棱P A 上一点,且OE ∥平面PBC ,求AEPE 的值;(2)求证:平面PBC ⊥平面PDC .(1)解 因为OE ∥平面PBC ,OE ⊂平面P AC , 平面P AC ∩平面PBC =PC ,所以OE ∥PC , 所以AO ∶OC =AE ∶EP . 因为DC ∥AB ,DC =2AB , 所以AO ∶OC =AB ∶DC =1∶2, 所以AE PE =12.(2)方法一 取PC 的中点F ,连结FB ,FD .因为△P AD 是正三角形,DA =DC , 所以DP =DC .因为F 为PC 的中点,所以DF ⊥PC . 因为AB ⊥平面P AD ,所以AB ⊥P A ,AB ⊥AD ,AB ⊥PD . 因为DC ∥AB ,所以DC ⊥DP ,DC ⊥DA .设AB =a ,在等腰直角三角形PCD 中,DF =PF =2a .在Rt △P AB 中,PB =5a .在直角梯形ABCD 中,BD =BC =5a . 因为BC =PB =5a ,F 为PC 的中点, 所以PC ⊥FB .在Rt △PFB 中,FB =3a .在△FDB 中,由DF =2a ,FB =3a ,BD =5a , 可知DF 2+FB 2=BD 2,所以FB ⊥DF . 因为DF ⊥PC ,DF ⊥FB ,PC ∩FB =F , PC ,FB ⊂平面PBC , 所以DF ⊥平面PBC . 又DF ⊂平面PCD , 所以平面PBC ⊥平面PDC .方法二 取PD ,PC 的中点分别为M ,F ,连结AM ,FB ,MF , 所以MF ∥DC ,MF =12DC .因为DC ∥AB ,AB =12DC ,所以MF ∥AB ,MF =AB , 即四边形ABFM 为平行四边形, 所以AM ∥BF .在正三角形P AD 中,M 为PD 的中点, 所以AM ⊥PD ,所以BF ⊥PD . 因为AB ⊥平面P AD ,所以AB ⊥AM . 又因为DC ∥AB ,所以DC ⊥AM . 因为BF ∥AM ,所以BF ⊥DC .又因为PD ∩DC =D ,PD ,DC ⊂平面PCD , 所以BF ⊥平面PCD .因为BF ⊂平面PBC ,所以平面PBC ⊥平面PDC .10.(2016·无锡期末)如图,过四棱柱ABCD —A 1B 1C 1D 1的木块上底面内的一点P 和下底面的对角线BD 将木块锯开,得到截面BDEF .(1)请在木块的上表面作出过点P 的锯线EF ,并说明理由;(2)若该四棱柱的底面为菱形,四边形BB 1D 1D 是矩形,试证明:平面BDEF ⊥平面ACC 1A 1. (1)解 在上底面内过点P 作B 1D 1的平行线分别交A 1D 1,A 1B 1于E ,F 两点,则EF 为所作的锯线.在四棱柱ABCD —A 1B 1C 1D 1中,侧棱B 1B ∥D 1D ,B 1B =D 1D ,所以四边形BB 1D 1D 是平行四边形,B 1D 1∥BD .又EF ∥B 1D 1,所以EF ∥BD ,故EF 为截面BDEF 与平面A 1B 1C 1D 1的交线,故EF 为所作锯线.如图所示.(2)证明 由于四边形BB 1D 1D 是矩形, 所以BD ⊥B 1B .又A 1A ∥B 1B ,所以BD ⊥A 1A . 又四棱柱的底面为菱形,所以BD ⊥AC . 因为AC ∩A 1A =A ,所以BD ⊥平面A 1C 1CA . 因为BD ⊂平面BDEF , 所以平面BDEF ⊥平面A 1C 1CA .11.(2016·辽宁沈阳二中月考)如图,P A 垂直于矩形ABCD 所在的平面,AD =P A =2,CD =22,E ,F 分别是AB ,PD 的中点.(1)求证:AF ∥平面PCE ; (2)求证:平面PCE ⊥平面PCD ; (3)求四面体PECF 的体积.(1)证明 设G 为PC 的中点,连结FG ,EG . ∵F 为PD 的中点,E 为AB 的中点, ∴FG 綊12CD ,AE 綊12CD ,∴FG 綊AE ,∴四边形AEGF 为平行四边形,∴AF ∥GE . ∵GE ⊂平面PEC ,AF ⊄平面PEC , ∴AF ∥平面PCE .(2)证明 ∵P A =AD =2,∴AF ⊥PD.又∵P A ⊥平面ABCD ,CD ⊂平面ABCD , ∴P A ⊥CD .∵AD ⊥CD ,P A ∩AD =A ,∴CD ⊥平面P AD .∵AF ⊂平面P AD ,∴AF ⊥CD .∵PD ∩CD =D ,∴AF ⊥平面PCD ,∴GE ⊥平面PCD .∵GE ⊂平面PEC ,∴平面PCE ⊥平面PCD .(3)解 由(2)知GE ⊥平面PCD ,所以EG 为四面体PEFC 的高,又EG =AF =2,CD =22,S △PCF =12PF ·CD =2, 所以四面体PEFC 的体积V =13S △PCF ·EG =223.。

2018年高考真题文科数学分类汇编专题8选修系列

2018年高考真题文科数学分类汇编专题8选修系列

专题8选修系列(2018全国1卷)22. [选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】 (1).(2)综上,所求的方程为.【解析】分析:(1)就根据,以及,将方程中的相关的量代换,求得直角坐标方程;(2)结合方程的形式,可以断定曲线是圆心为,半径为的圆,是过点且关于轴对称的两条射线,通过分析图形的特征,得到什么情况下会出现三个公共点,结合直线与圆的位置关系,得到k所满足的关系式,从而求得结果.详解:(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.当与只有一个公共点时,到所在直线的距离为,所以,故或.经检验,当时,与没有公共点;当时,与没有公共点.综上,所求的方程为.点睛:该题考查的是有关坐标系与参数方程的问题,涉及到的知识点有曲线的极坐标方程向平面直角坐标方程的转化以及有关曲线相交交点个数的问题,在解题的过程中,需要明确极坐标和平面直角坐标之间的转换关系,以及曲线相交交点个数结合图形,将其转化为直线与圆的位置关系所对应的需要满足的条件,从而求得结果.(2018全国1卷)23. [选修4–5:不等式选讲]已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.【答案】(1).(2).【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.(2018全国2卷)22. [选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.详解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0) 若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.(2018全国2卷)23. [选修4-5:不等式选讲]设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1),(2)【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.(2018全国3卷)22. 选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得。

2018版高考数学文科北师大版一轮复习课件:第八章 立

2018版高考数学文科北师大版一轮复习课件:第八章 立

关闭
只有B1C1与EF在同一平面内,是相交的.选项A,B,C中直线与EF都是异面 直线,故选D. D
解析
关闭
答案
-8知识梳理 双基自测 自测点评
1
2
3
4
5
3.已知l,m是两条不同的直线,α,β是两个不同的平面,下列命题: ①若l⫋α,m⫋α,l∥β,m∥β,则α∥β; ②若l⫋α,l∥β,α∩β=m,则l∥m; ③若α∥β,l∥α,则l∥β; ④若l⊥α,m∥l,α∥β,则m⊥β. 其中真命题有 (写出所有真命题的序号).
-6知识梳理 双基自测 自测点评
பைடு நூலகம்
1
2
3
4
5
1.下列结论正确的画“√”,错误的画“×”. (1)两个不重合的平面只能把空间分成四个部分. ( ) (2)两个平面α,β有一个公共点A,就说α,β相交于A点,记作α∩β=A. ( ) (3)已知a,b是异面直线,直线c平行于直线a,那么c 与b不可能是平行直线. ( ) (4)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交, 并记作α∩β=a.( ) (5)若a,b是两条直线,α,β是两个平面,且a⫋α,b⫋β,则a,b是异面直线. ( )
-12考点1 考点2 考点3
考点 1 空间图形的公理及应用
例1
如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点, 求证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点.
思考如何利用空间图形的公理证明点共线和线共点?
-13考点1 考点2 考点3
证明 (1)如图,连接EF,CD1,A1B. ∵E,F分别是AB,AA1的中点, ∴EF∥A1B. 又A1B∥CD1, ∴EF∥CD1,∴E,C,D1,F四点共面. (2)∵EF∥CD1,EF<CD1, ∴CE与D1F必相交,设交点为P, 则由P∈CE,CE⫋平面ABCD, 得P∈平面ABCD. 同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA, ∴P∈直线DA.∴CE,D1F,DA三线共点.

2018版高考数学文北师大版大一轮复习讲义教师版文档

2018版高考数学文北师大版大一轮复习讲义教师版文档

1.直线与平面平行的判定与性质a α,bα,a ∥ba ∥α,a β, α∩β=b2.面面平行的判定与性质aβ,b β,a ∩b =P ,a ∥α,b ∥αα∥β,a β【知识拓展】 重要结论:(1)垂直于同一条直线的两个平面平行,即若a ⊥α,a ⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.(×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)(5)若直线a与平面α内无数条直线平行,则a∥α.(×)(6)若α∥β,直线a∥α,则a∥β.(×)1.(教材改编)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,bα,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且lα,mβ,则“l∩m=∅”是“α∥β”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1平面ACE,EO平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面P AD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP , FO 平面BEF ,AP 平面BEF , ∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面P AD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面P AD .又FH ∩OH =H ,∴平面OHF ∥平面P AD . 又∵GH 平面OHF ,∴GH ∥平面P AD .命题点2直线与平面平行的性质例2(2016·长沙模拟)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.(1)证明因为BC∥平面GEFH,BC平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)解如图,连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为P A=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO⊥底面ABCD.又因为平面GEFH⊥平面ABCD,且PO平面GEFH,所以PO∥平面GEFH.因为平面PBD∩平面GEFH=GK,所以PO∥GK,且GK⊥底面ABCD,从而GK⊥EF.所以GK是梯形GEFH的高.由AB=8,EB=2得EB∶AB=KB∶DB=1∶4,从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6, 所以GK =3.故四边形GEFH 的面积S =GH +EF 2·GK =4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点); (2)利用线面平行的判定定理(aα,bα,a ∥b ⇒a ∥α);(3)利用面面平行的性质定理(α∥β,a α⇒a ∥β); (4)利用面面平行的性质(α∥β,aα,aβ,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH , 而平面EFGH ∩平面BCD =EF , ∴CD ∥EF .同理HG ∥CD ,∴EF ∥HG . 同理HE ∥GF ,∴四边形EFGH 为平行四边形. ∴CD ∥EF ,HE ∥AB ,∴∠HEF 为异面直线CD 和AB 所成的角或其补角. 又∵CD ⊥AB ,∴HE ⊥EF . ∴平行四边形EFGH 为矩形.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF平面BCHG,BC平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E平面BCHG,GB平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD平面A1B1BA,A1B平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B平面A1BD1,DM平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1平面A1BD1,BD1平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM平面AC1D,∴平面A1BD1∥平面AC1D.思维升华 证明面面平行的方法 (1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 是底面中心,A 1O ⊥底面ABCD ,AB =AA 1= 2.(1)证明:平面A 1BD ∥平面CD 1B 1; (2)求三棱柱ABD -A 1B 1D 1的体积. (1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD平面CD 1B 1,B 1D 1平面CD 1B 1,∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C . 又A 1B平面CD 1B 1,D 1C 平面CD 1B 1,∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又S △ABD =12×2×2=1,∴111-ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1. 下面给出证明:如图,取BB 1的中点F ,连接DF , 则DF ∥B 1C 1,∵AB 的中点为E ,连接EF ,ED , 则EF ∥AB 1,B 1C 1∩AB 1=B 1, ∴平面DEF ∥平面AB 1C 1. 而DE 平面DEF , ∴DE ∥平面AB 1C 1.方法二 假设在棱AB 上存在点E , 使得DE ∥平面AB 1C 1,如图,取BB 1的中点F ,连接DF ,EF ,ED ,则DF ∥B 1C 1,又DF平面AB 1C 1,B 1C 1平面AB 1C 1,∴DF ∥平面AB 1C 1, 又DE ∥平面AB 1C 1, DE ∩DF =D ,∴平面DEF ∥平面AB 1C 1,∵EF 平面DEF ,∴EF ∥平面AB 1C 1,又∵EF 平面ABB 1,平面ABB 1∩平面AB 1C 1=AB 1, ∴EF ∥AB 1,∵点F 是BB 1的中点,∴点E 是AB 的中点. 即当点E 是AB 的中点时,DE ∥平面AB 1C 1.思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和CD ,试问截面在什么位置时其截面面积最大?解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG ,EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC ,y b =BG BC ,两式相加得x a +y b =1,即y =ba (a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αax (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan ∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan ∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2, V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF 平面SAB ,CE 平面SAB ,∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2016·保定模拟)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 命题①:l 可以在平面α内,不正确;命题②:直线a 与平面α可以是相交关系,不正确;命题③:a 可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m α,n α,l 1β,l 2β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.故选D.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β 答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l β,也可能相交,故D 项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且P A =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245 C .14 D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则P A PC =PBPD ,∴PB =165,∴BD =245;若点P 在α,β之间,则P A PC =PBPD ,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ; ③如果α∥β,mα,那么m ∥β;④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,nγ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,nβ;②m∥γ,n∥β;③n∥β,mγ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,mγ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N 相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN 平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形, 其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥EG , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1, BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH 平面ABCD ,EG 平面ABCD ,所以EG ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形,所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE =2×13×a +2a 2×a ×32a=32a 3. 13.如图所示,斜三棱柱ABC -A1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求ADDC 的值.解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连接A 1B ,交AB 1于点O , 连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1. 又∵OD 1平面AB 1D 1,BC 1平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1.(2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DCAD, 又∵A 1O OB =1,∴DC AD =1,即AD DC=1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块命题点专练(八) 命题点一 数列的概念及表示命题指数:☆☆☆☆难度:中、低题型:选择题、填空题n 1n A .d <0 B .d >0 C .a 1d <0D .a 1d >0解析:选 C ∵数列{2a 1a n }为递减数列,a 1a n =a 1=a 1dn +a 1(a 1-d ),等式右边为关于n 的一次函数,∴a 1d <0.2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n ,a 8=2,则a 1 =________.解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n ,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2014·安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =22.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n ,故a 7=2×⎝ ⎛⎭⎪⎫226=14.答案:14命题点二 等差数列与等比数列命题指数:☆☆☆☆☆难度:中、低题型:选择题、填空题、解答题n 10100A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C . 法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.故选C .2.(2015·全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:选A ∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3, ∴a 3=1, ∴S 5=5a 1+a 52=5a 3=5,故选A .3.(2015·全国卷Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:选B ∵a 1=3,a 1+a 3+a 5=21, ∴3+3q 2+3q 4=21.∴1+q 2+q 4=7,解得q 2=2或q 2=-3(舍去). ∴a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42.4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12解析:选B ∵{a n }的公差为1, ∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6.又∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.5.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1, ∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n.答案:-1n6.(2016·全国乙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1). 因此{a n }的各项都为正数,所以a n +1a n =12. 故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.7.(2016·全国甲卷)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =,求数列{b n }的前10项和,其中表示不超过x 的最大整数,如=0,=2. 解:(1)设数列{a n }的首项为a 1,公差为d ,由题意有⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3,解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35.当n=1,2,3时,1≤2n+35<2,b n=1;当n=4,5时,2≤2n+35<3,b n=2;当n=6,7,8时,3≤2n+35<4,b n=3;当n=9,10时,4≤2n+35<5,b n=4.所以数列{b n}的前10项和为1×3+2×2+3×3+4×2=24. 8.(2015·全国卷Ⅰ)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n+3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.解:(1)由a2n+2a n=4S n+3,①可知a2n+1+2a n+1=4S n+1+3.②②-①,得a2n+1-a2n+2(a n+1-a n)=4a n+1,即2(a n+1+a n)=a2n+1-a2n=(a n+1+a n)(a n+1-a n).由a n>0,得a n+1-a n=2.又a21+2a1=4a1+3,解得a1=-1(舍去)或a1=3.所以{a n}是首项为3,公差为2的等差数列,通项公式为a n=2n+1.(2)由a n=2n+1可知b n=1a n a n+1=12n+12n+3=12⎝⎛⎭⎪⎫12n+1-12n+3.设数列{b n}的前n项和为T n,则T n=b1+b2+…+b n=12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫13-15+⎝⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n+1-12n+3=n32n+3.9.(2014·全国卷Ⅰ)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解:(1)证明:由题设,a n a n+1=λS n-1,则a n+1a n+2=λS n+1-1.两式相减得a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)由题设,a1=1,a1a2=λS1-1,可得a2=λ-1.由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得数列{a n}为等差数列.命题点三数列的综合应用命题指数:☆☆☆难度:高、中题型:解答题1.(2016·天津高考)已知{a n}是等比数列,前n项和为S n(n∈N*),且a1-a2=a3,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n b2n}的前2n项和.解:(1)设数列{a n}的公比为q.由已知,有1a1-1a1q=2a1q2,解得q=2或q=-1.又由S6=a1·1-q61-q=63,知q≠-1,所以a1·1-261-2=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=12(log2a n+log2a n+1)=12(log22n-1+log22n)=n-12,即{b n}是首项为12,公差为1的等差数列.设数列{(-1)n b2n}的前n项和为T n,则T2n=(-b21+b22)+(-b23+b24)+…+(-b22n-1+b22n) =b1+b2+b3+b4+…+b2n-1+b2n=2n b1+b2n2=2n2.2.(2016·四川高考)已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q >0,n ∈N *.(1)若a 2,a 3,a 2+a 3成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n=1的离心率为e n ,且e 2=2,求e 21+e 22+…+e 2n .解:(1)由已知S n +1=qS n +1,得S n +2=qS n +1+1,两式相减得到a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得到a 2=qa 1,故a n +1=qa n 对所有n ≥1,n ∈N *都成立.所以数列{a n }是首项为1,公比为q 的等比数列. 从而a n =qn -1.由a 2,a 3,a 2+a 3成等差数列,可得2a 3=a 2+a 2+a 3,所以a 3=2a 2,故q =2.所以a n =2n-1(n ∈N *).(2)由(1)可知a n =qn -1,所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q2n -1.由e 2=1+q 2=2,解得q =3, 所以e 21+e 22+…+e 2n =(1+1)+(1+q 2)+…+ =n +=n +q 2n -1q 2-1=n +12(3n -1).。

相关文档
最新文档