关于悖论的一个PPT

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11
我对悖论的分类与理解
我认为从古至今,无论在哪个学科出现的任意形式的悖论,从其本质上讲,可以 分为两类。 1、最简单最常见的一种,就是偷换概念引起的悖论。我甚至认为所有真正意义 上的逻辑悖论都属于这种情况。 例1、阿基里斯和乌龟赛跑的悖论。在这个悖论中,芝诺所说的永远并不是我们一 般意义上所理解的永远。一般意义上我们所理解的永远是一个时间概念。而这里 不是。 虽然悖论中的分析步骤可以一 直做下去,永远不会结束。但 做每一步所需要的时间是在逐 渐减少的。所用时间之和并非 永远,而是一个有限的数值。 因此,这个悖论的实质就是将 步骤的永远偷换成了时间的永 远。
13
2、由有限和无限概念引起的一些悖论。很多比较早的悖论都属于这种情况。 例1、毕达哥拉斯悖论 毕达哥拉斯悖论的问题在于没有认识到介于任意两个不同数之间的数一定有无 限多个。只用整数是不够的。 例2、伽利略悖论
1 2 3 ↕ ↕ ↕ 4 ↕ 5 ↕ 6 ↕ 7 ↕ 8 ↕ 9 10 11 … n … ↕ ↕ ↕ ↕ ↕
一篇描述朴素集合论问题的文章
6
3、上帝全能悖论
甲说:上帝是全能的! 乙说:全能就是任何事 情都能做到! 请问:上帝能创造一个 对手打败自己吗? 如果能,则说明上帝并 非全能; 如果不能,则说明上帝 并非全能。
7
4、撒谎者悖论
公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯 说:所有克里特岛的人说的每一句话都是谎话。 试问这句话是真是假? 如真,伊壁门尼德斯也 是克里特岛的人,从而 推出这句话假;如假, 从而推出这句话真;但 是公元4世纪,欧几里得 改进版:我现在所说的 是假话。如真,则推话 假;如假,则导致这句 话真。这可能是记载中 最早的悖论。
逻辑悖论
2013.11.15
1
一、什么是悖论
悖论:从“正确”的前提出发,经过“正 确”的逻辑推理,得出荒谬的结论。 中国古代关于“矛 盾”的故事是对悖 论最通俗的解释。
2
网上找到的号称现实生活中的最牛的悖论。
3
二、历史上著名的悖论
1、毕达哥拉斯悖论 “万物皆数”学说认为“任何数都可表为 整数的比”;但以1为边的正方形的对角线 之长却不能表为整数的比,这也是悖论。 称为毕达哥拉斯悖论。这 个悖论导致了第一次数学 危机和无理数的产生。
2
1 4 9 16 25 36 49 64 81 100 121 … n …
[ 该两集合:有一一对应,于是推出两集合的 元素个数相等;但由“部分小于全体”,又推 出两集合的元素个数不相等。这就形成悖论。] 例3、罗素悖论实际上也是由无限引起的。
伽利略(Galileo Galilei,1564-1642),
芝诺
9
阿基里斯追不上乌龟。
10
三、悖论的解决
很多悖论让人们困惑了很长时间,有不少些人直到现在还认为应该接受悖论。 1、常见的悖论分类
存在多种不同的分类方式。
如有人将悖论分为:语法(法)悖论,语义悖论和语用悖论。 参看:张建军。逻辑悖论研究引论[M]。南京:南京大学出版社,2002。 也有人将悖论分为: 1、日常悖论,即听起来荒谬,但至少有一种论证方式。 2、二律背反。即从公认原则出发,按照公认方式推出自相矛盾的结果。 3、黑格尔论题。基本含义是有些违反矛盾律的命题是可以接受的。 参看:论悖论的实质,根源和解决方案。杨武金,中国人民大学哲学院。
4
2、理发师悖论
数学中最著名的悖论是罗素于1902年提出的。
一理发师宣称:只给所有自己不刮脸的人刮脸,而不给 自己刮脸的人刮脸。
一智者问:理发师先生, 你是否应该为自己刮脸呢? 理发师无言以对。如果给 自己刮脸,就与“不给自 己刮脸的人刮脸”矛盾; 如果不给自己刮脸,又与 “给所有自己不刮脸的人 刮脸”矛盾。
BertrandRussell,英国数学家
5
这个悖论使得数学家考虑朴素康托集合论中存在的问题,从而导致了 公理化集合论的产生。公理化集合论被普遍接受为现代数学的基础。 对这个工作中贡献最大的是策梅罗(E.Zermelo)。但有人说,实际上康 比罗素早10年就提出了类似的罗素悖论。
康托Georg Ferdinand Philip Cantor (1845~1918) 德国数学 家,集合论的创始者。
例4、上帝万能悖论。
意大利物理学家、天文学家和哲学家。
14
朴素康托集合论的问题
注:对有限集合A,其基数为其所含元素个数, 对无穷集合,其基数由两个可构造一一映射的 集合对比确定。
15
结论: 1、悖论是不能被接受的,必须予以消除的。而且任何悖 论都是可以消除的。 2、悖论的产生通常是由于现有数学模型的不足引起的。
12
例2、说谎者悖论:
我现在所说的是假话。
悖论提出者认为:如果我先说的是正确的,那这句话就是错误的;反之,如果 我说的是正确的,则这句话就是正确的。 我们借用一些数学逻辑符号来分析这个悖论的问题。 记A:我现在说的话。B:我现在说的话是错误的(这句话)。 有人认为A和B是同一个主体。这是错误的,因为B指的是所说的内容,而B 是这个内容的一个指称,或者叫做一个代表符号。A强调这句话的形式或存 在性。故这个悖论中显然存在概念偷换。 也有人认为产生这个悖论的根源在于这里存在一个递归否定结构。 即A的内容是B,而A又是B的主语。好比一条蛇,一直试图咬到 自己的尾巴,但头部移动的时候,尾巴也在动,所以永远咬不到, 而永远停不下来,无法得到一个确定的结果(咬到还是咬不到)。 参看:悖论的语言结构-递归否定。陈保亚,陈樾,北京大学学 报,2009年5月。 例3 先有鸡还是先有蛋?
3、人类语言是非常复杂的。悖论很多时候是由语言的复 杂性引起的。至于引起悖论的语言具有什么必要形式还 是个值得探讨的问题。
16

பைடு நூலகம்
谢!
王会勇
17
8
5、芝诺悖论
芝诺(前490?—前430?)是(南 意大利的)爱利亚学派创始人巴门 尼德的学生。他企图证明该学派的 学说:“多”和“变”是虚幻的, 不可分的“一”及“静止的存在” 才是唯一真实的;运动只是假象。 于是他设计了四个例证,人称“芝 诺悖论”。这些悖论是从哲学角度 提出的。我们从数学角度看其中的 一个悖论。
相关文档
最新文档