SPSS教程-生存分析

合集下载

SPSS数据分析—生存分析

SPSS数据分析—生存分析

生存分析是对生存时间进行统计分析的一种技术,所谓生存时间,就是指从某一时间点起到所关心的事件发生的这段时间。

这里的时间不一定就是钟表日历上的时间,也有可能是其他的度量单位,比如长度单位等。

生存时间有两个特点:1.存在删失,是指由于某种原因导致生存时间没用被准确或完整的记录下来,这种情况很常见,如果不存在删失,那么生存分析和一般统计方法没用太大区别,但是一旦出现删失,就必须考虑其影响,一般统计方法将不再适用。

2.生存时间非负,且分布常常右偏,导致基于正态分布理论的常规统计方法不适用。

用生存分析就可以解决以上问题。

生存分析的几个就基本概念1.事件也称为失效事件,是指由研究者所规定的事件的结局,这在生存分析中是一个非常重要的概念,其定义应该非常明确,并且应该在研究开始阶段就要确定。

失效事件并不一定是消极的,也可以是正面、积极的,这取决于研究目的。

2.生存时间指从某一时间点起到所关心的事件也就是实效事件发生前的这段时间,生存时间的起点需要人为规定3.删失是指观察对象的终止观察并不是由于实效事件的发生,而是由于其他原因导致终止,这种情况往往不知道终止的时间点,因此会造成其时间数据不完整,并且删失需要在各组之间随机,如果删失的出现并不随机,则不能用生存分析4.生存函数用于描述生存时间分布的工具,当t=0时,生存函数取值为1,随着时间推移t 增大,生存函数的取值逐渐减小。

5.风险函数也是用于描述生存时间分布,表示随机变量T已至时点t的条件下,在接下来的一瞬间失效事件发生的概率生存分析的基本内有1.刻画生存时间分布2.生存时间分布的组间比较3.评价生存时间分布影响因子的效果生存分析可以分为参数法、半参数法、非参数法三种,参数法相当于非线性回归,半参数法有Cox回归,非参数法有寿命表法和Kaplan-Meier法,SPSS中的生存分析都集中在生存函数过程中,下面我们分别介绍这几种方法一、Kaplan-Meier法分析—生存函数—Kaplan-Meier例:现在有一组临床实验数据,抽取44名患者,被随机分到新药组和对照组,每组22名,对此进行生存分析研究,数据如下可见记录生存时间数据至少需要两个变量,一个是时间变量,另一个是时间状态变量,用于表示该时间点是失效事件发生的时间还是删失的时间,如果有多个组别,还需要加上组别变量,因此本例中一共有三个变量,分别是时间变量,指示变量,组别变量,指示变量中,0表示没有删失,1表示失访,2表示研究结束时仍未发生失效事件以上数据的组成样本量较小,并且每个观察个体的时间能够被准确记录,因此可以使用Kaplan-Meier法二、寿命表法Kaplan-Meier法仅适用于每个观察个体的时间能够被准确记录,但是有时候我们收集的数据组成为分段记录的,这时应该使用寿命表法分析—生存函数—寿命表例,对114名患者进行随访,数据如下这种类型的数据组成形式非常类似于对计数资料分组之后的频数表,在本例中,time为时间变量,died为指示变量,0为删失,1为失效事件,num为人数。

生存分析SPSS

生存分析SPSS

生存分析SPSS生存分析是一种统计分析方法,用于研究个体在其中一种特定事件发生之前的生存时间或其持续时间。

生存数据通常是从健康、病理学或其他研究中收集到的,常见的应用有医学领域的生存率研究、产品的寿命分析等。

SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了强大的功能和易于使用的界面,可以进行生存分析和其他统计分析。

生存分析的目的是探讨事件发生的概率和时间。

与传统的统计分析方法不同,生存分析考虑了数据中的故障时间,即个体的生存时间。

生存时间可以是不同个体之间的差异,也可以是同一个体在不同时间点的变化。

在SPSS中进行生存分析,首先需要准备生存数据集。

生存数据集通常包括以下几个要素:个体的生存时间,事件是否发生,个体的特征变量等。

个体的生存时间可以是连续的,也可以是离散的。

事件是否发生通常用0表示未发生,1表示发生。

个体的特征变量可以是性别、年龄、治疗方式等。

在SPSS中进行生存分析,主要采用的方法是Kaplan-Meier生存曲线和Cox比例风险模型。

Kaplan-Meier生存曲线是一种非参数方法,用于估计生存时间和生存概率。

它将个体的生存时间按照事件是否发生进行分类,并计算每个时间点上的生存概率。

SPSS中可以通过选择“Analyze”菜单下的“Survival”子菜单中的“Nonparametric Tests”来进行Kaplan-Meier 生存曲线分析。

Cox比例风险模型是一种半参数方法,用于估计生存时间和危险因素对生存的影响。

它可以考虑多个危险因素,并通过估计每个危险因素的风险比来评估其对生存的影响。

SPSS中可以通过选择“Analyze”菜单下的“Survival”子菜单中的“Cox Regression”来进行Cox比例风险模型分析。

除了Kaplan-Meier生存曲线和Cox比例风险模型,SPSS还提供了其他生存分析方法,如Log-rank检验、Proportional Hazard模型等。

SPSS生存分析

SPSS生存分析

SPSS生存分析生存分析(Survival Analysis)是一种统计方法,用于研究时间到达一些特定事件的概率。

该方法适用于各种学科领域,包括医学、社会科学、工程等,可以分析个体在不同时间点发生一些事件的风险。

生存分析的基本概念是生存函数和生存时间。

生存函数描述了在给定时间点之前没有发生事件的个体比例。

生存时间是指个体从起始时间点到达特定事件的时间。

生存分析的目标是估计生存函数,并比较不同因素对生存时间的影响。

SPSS(Statistical Package for the Social Sciences)是一种常用的统计分析软件,它提供了进行生存分析的功能。

以下将以SPSS进行生存分析为例,介绍生存分析的具体步骤。

首先,需要准备数据。

数据应包括个体的起始时间点和观察时间(或终止时间),以及是否发生特定事件的信息。

数据应按照个体的起始时间点排序。

在SPSS中,选择"Analyze"菜单下的"Survival"子菜单,然后选择"Kaplan-Meier"。

在弹出的窗口中,将起始时间点和观察时间字段分别拖放到"Time"和"Censored Time"框中,将事件发生与否的字段拖放到"Censoring Variable"框中。

点击"OK"按钮运行分析。

SPSS将输出生存函数曲线图和表格。

生存函数曲线图显示了在不同时间点的生存概率,曲线下降表示生存概率下降,即事件发生的风险增加。

生存函数表格列出了不同时间点的生存概率和标准误差。

通过观察曲线和表格,可以初步了解生存情况和影响生存的因素。

如果需要进一步比较不同因素对生存时间的影响,可以使用SPSS的"Analyze"菜单下的"Survival"子菜单中的其他功能,比如"Log-rank"检验、Cox回归模型等。

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。

根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。

2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。

生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。

有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。

3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。

常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。

4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。

t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。

二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。

对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。

2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。

这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。

下面用一个例子来说明SPSS中Cox回归模型的操作方法。

例题要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:操作步骤:SPSS变量视图菜单选择:点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor变量选入“状态”框,其余分析变量选入“协变量”框。

SPSS生存分析过程

SPSS生存分析过程

SPSS Survival(生存分析)菜单SPSS Survival菜单包括Life Tables过程、Kaplan-Meier过程、Cox Regression过程、Cox w/Time-Dep Cov过程。

这里只介绍Life Tables过程和Kaplan-Meier过程。

Life Tables过程Life Tables过程用于:1、估计某生存时间的生存率。

2、绘制各种曲线如生存函数、风险函数曲线等。

3、对某一研究因素不同水平的生存时间分布进行比较,控制另一因素后对研究因素不同水平的生存时间分布进行比较,包括从总体上比较和不同水平之间进行两两比较。

一、建立数据文件定义两个列变量:时间变量:取名“time”,label标上“survival time(week)”。

生存状态变量:取名“status”,并赋值:0=“删失”,1=“死亡”。

二、操作过程从菜单选择1、Analyze==>Survival ==>Life Tables2、Time框:选入time3、Display Time Intervals框:在by前面的框内填入生存时间上限,本例填入20(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入5,以保证结果列出“15-”的组段。

4、Status框:选入status;击define events钮,在single value框右边的空格中输入15、单击Option按钮,弹出对话框:●Life Table(s) 输出寿命表,系统默认● Plots: 选Survival(累积生存函数曲线)击Continue6、单击OK钮附:界面说明图1 寿命表主对话框【Time】框选入生存时间变量。

【Display Time Intervals】框欲输出生存时间范围及组距。

在by前面的框内填入生存时间上限,本例填入200(此区间必须包括生存时间的最大值);在by后面的框内填入生存时间的组距,本例填入20,以保证结果列出“100-”的组段。

医学统计学SPSS生存分析实例

医学统计学SPSS生存分析实例

将生存时间按从小到大顺序排列如下:
表1 BCG治疗组生存情况
死亡=1;删失=0
表2 药物和BCG结合治疗组生存情况
死亡=1;删失=0
按上述二表将数据输入SPSS软件,其中数据编号为i,列1即时间为t,列3即生存结局为status,表1为group1,表2为group2;
选择Analyze中的Survival里的Kaplan-Meier分析,将Time,Status,Factor依次选定,option和Compare Factor依次设定完成后,得到输出结果,结果分析如下:
Survival Table中:
1为BCG治疗组患者生存率Estimate及其标准误Std. Error的计算结果;
2为药物与BCG结合治疗组患者生存率Estimate及其标准误Std. Error的计算结果;
Overall Comparisons
Test of equality of survival distributions for the different levels of group.
两组生存率的log-rank检验
:两种疗法患者生存率相同
H
:两种疗法患者的生存率不同
H
1
α=
采用SPSS软件对两组生存率进行检验,得到上面Overall Comparisons表,其中第一
,还不能认为用BCG疗法和用药行为LogRank检验结果;即X2=,P=;按α=水准,不拒绝H
物与BCG结合疗法治疗黑色素瘤患者的生存率有差别;
生存曲线如上图所示,其中生存时间为横轴,生存率为纵轴;。

SPSS生存分析过程

SPSS生存分析过程

SPSS生存分析过程SPSS(Statistical Package for the Social Sciences)是一款常用的统计分析软件,它提供了许多功能强大的数据分析方法,其中包括生存分析(Survival Analysis)。

生存分析适用于研究时间至关重要的事件或结果的数据,例如疾病的存活时间、机械故障的发生时间等。

下面将介绍SPSS生存分析的具体过程。

一、数据准备在进行生存分析之前,首先需要准备好相关的数据。

常见的生存分析数据包括个体的生存时间(或称为观察时间)、生存状态(生存/死亡)、以及一些影响因素(如性别、年龄、治疗方式等)。

在SPSS中,可以将这些数据保存在一个数据集中,每一行代表一个个体,每一列代表一个变量。

二、加载数据集打开SPSS软件,选择“文件”-“打开”-“数据”,然后选择相应的数据文件进行加载。

三、生存曲线估计1.选择“分析”-“生存”-“生存曲线”菜单,打开生存曲线分析对话框。

2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。

3. 选择评估生存函数类型,默认为“Kaplan-Meier”方法。

4.设置显著性水平,默认为0.055.点击“确定”按钮,即可生成生存曲线图。

生存曲线图显示了不同时间点上个体存活的比例。

根据生存曲线图,可以观察到存活时间的变化趋势,比较不同组别(如性别、年龄组别等)之间的存活差异。

四、生存分析模型除了生存曲线图,我们还可以进行更深入的生存分析,包括拟合生存分析模型和进行相关统计检验。

1. 选择“分析”-“生存”-“Cox 比例风险”菜单,打开Cox比例风险模型对话框。

2.将生存时间变量拖放到“时间”框中,将生存状态变量拖放到“事件”框中。

3.选择将影响因素拖放到“因素”框中,可以同时拖放多个因素进行分析。

选中的因素将出现在“选择项”列表中。

4.点击“方法”按钮,选择要使用的估计方法,如“法向向似然估计”。

5. 点击“确定”按钮,即可生成Cox比例风险模型的结果报告。

第17章spss21教程完整版

第17章spss21教程完整版


17.2.2 实例分析
1.参数设置 选择菜单“分析→生存函数→寿命表”,则弹出如图17-6所示对话框,此对话框用 于生命表分析过程中的参数设置。 如图17-6所示,选入变量Months with service到“时间”变量框中,其下的“显示 时间间隔”选项栏中,设置到为60,步长为3。选中变量Churn within last month到“状 态”变量框中。选中变量custcat到“因子”变量框。
17.3 Kaplan-Meier分析
17.3.1 Kaplan-Meier分析的步骤 选择菜单“分析→生存函数→Kaplan-Meier。 1.时间选项 此选项用于选中生效时间变量。 2.状态选项 此选项用于选入生存状态变量。选入变量后,系统会自动激活“定义事 件”按钮,单击此按钮,则会弹出图17-14所示对话框。 • 单值:当生存状态为二元变量时,选中此项,并在后面的输入框中指定状 态变量的代表事件发生的取值即可。
(2)因子水平的线性趋势选项 此栏用于指定分组因素各水平之间的线性趋势检验。 (3)图17-15最后的一组单选框用来指定进行总体比较还是两两比较,以及分层变量的 处理方式,各选项含义如下所述。 • • • • 在层上比较所有因子水平:对各因素变量取值水平下的生存曲线作整体比较,此为 默认选项。 对于每层:按照分层变量的不同取值,对每一层分别进行因素变量各取值水平间的 整体比较,如果没有指定分层变量,则不会输出。 在层上成对比较因子水平:作因素变量各水平之间的两两比较。对线性趋势检验无 效。 为每层成对比较因子水平:按照分层变量的不同取值,对每一层分别进行因素变量 各取值水平间的两两比较。对线性趋势检验无效。
① 协变量栏:用于存放选入的所有分类协变量。 ② 分类协变量栏:用于选入指定为分类变量的协变量,变量名后的括号里显示的是正 在使用的对照方法。 ③ 更改对比栏:此栏用于设置对指定协变量的对照方式,修改后,可以单击“要改” 按钮以确认。Contrast下拉菜单有7种对照方式,具体如下所示。 • 指示符:用于指示是否属于某一个分类; • 简单:用于预测变量的每个分类都与参考分类进行比较; • 差值:除了第一类外,预测变量的每个分类都与前面所有分类的平均效应进行比较; • Helmert比较:除了最后一类外,预测变量的每个分类都与其后面的所有分类的平均 效应进行比较; • 重复比较:除了第一类外,预测变量的每个分类都与前面所有分类进行比较; • 多项式:此方法假设各类别间距相等,仅适用于数值型变量; • 偏差:预测变量的每个分类都与总体效应进行比较。 ④ 参考类别:此栏用于指定参考分类。如果选择了指示符、简单、偏差方法,则需要 指定一个参考类别,可以选择:First(第一类)和Last(最后一类),系统默认为 Last。

生存分析SPSS

生存分析SPSS

生存分析SPSS生存分析是一种用于研究事件发生时间的统计方法,主要应用于医学研究领域,如生存时间、康复时间、心脏事件等的研究。

SPSS是一种常用的统计分析软件,可以用于进行生存分析。

生存分析的核心概念是生存函数和风险函数。

生存函数描述了一些时刻前存活的个体比例,而风险函数描述了在一些时刻内发生事件的个体比例。

通过生存函数和风险函数,可以得到不同因素对事件发生的影响程度。

生存分析常用的方法包括Kaplan-Meier法、Cox比例风险模型等。

使用SPSS进行生存分析的步骤如下:1.导入数据:在SPSS中,将数据导入到工作区,确保数据格式正确。

2.创建生存时间变量:根据研究需求,将事件发生的时间变量(如存活时间)输入到SPSS中。

3.创建事件变量:根据事件发生的情况,创建对应的事件变量(如生存状态),通常用1表示事件发生,0表示事件未发生。

4.进行生存函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“生存函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。

6.进行风险函数分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“风险函数”,将生存时间变量和事件变量输入到对应的框中,选择相应的统计量。

7. 进行Cox比例风险模型分析:在SPSS的菜单栏中选择“分析”->“生存分析”->“Cox回归”,将生存时间变量和事件变量以及其他影响因素输入到对应的框中,进行模型拟合和参数估计。

8. 结果解读:分析结果会给出生存函数曲线、风险函数曲线以及Cox模型的参数估计和显著性检验结果。

根据研究问题进行合理解读,并绘制相应的图表和报告。

需要注意的是,进行生存分析时要选择适当的方法和模型,并考虑各种假设的合理性。

此外,对数据的质量和可靠性也要进行充分的检查和验证。

总结起来,SPSS是一种功能强大的统计分析软件,可以用于进行生存分析。

在使用SPSS进行生存分析时,需要导入数据、创建变量、选择适当的分析方法和模型,并对结果进行合理解读和报告。

SPSS生存分析过程

SPSS生存分析过程

SPSS生存分析过程SPSS生存分析是一种统计方法,用于分析生存数据,以估计特定事件发生的概率。

生存数据通常指描述个体或物体生存时间的时间数据,以及相关因素对个体生存时间的影响。

生存时间可以是一些事件的发生时间,例如死亡,失业,或者产品的失效时间。

1.数据准备:首先,需要将生存数据导入到SPSS软件中。

生存数据通常包含两列:一列是“时间”变量,表示每个个体从起始时间开始到特定事件发生的时间段;另一列是“事件”变量,表示该事件是否发生(例如,1表示事件已发生,0表示事件未发生)。

如果数据还包含其他相关因素,例如个体特征或处理组别,也需要导入到SPSS中。

2.生存函数估计:在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。

然后,在“非参数生存估计”选项中,选择适当的方法来估计生存函数。

常见的生存函数估计方法有卡普兰-梅尔法(Kaplan-Meier)估计和纳尔逊-艾伦估计。

此过程将计算每个时间点的生存率和累积生存率。

3.生存曲线绘制:在生存函数估计后,可以选择将生存曲线绘制出来以直观地展示结果。

在SPSS软件中,选择“曲线图”选项,在对话框中选择适当的数据集和变量。

然后,选择“生存曲线”类型,并进行必要的设置,例如选择颜色和样式。

生成的生存曲线可以展示不同组别或条件下的生存状况。

4.半参数模型拟合:半参数模型(如Cox比例风险模型)可以用来研究不同因素对生存时间的影响。

在SPSS软件中,选择“生存分析”功能,在对话框中选择合适的数据集和变量。

然后,在“半参数模型”选项中选择适当的模型,例如Cox比例风险模型。

进行模型拟合后,可以查看各个因素的风险比(Hazard Ratio)和置信区间,了解不同因素对生存时间的影响。

5.结果解释:对于生存分析的结果解释,需要考虑生存率、生存曲线及相关因素的影响。

可以根据生存函数估计结果和生存曲线来比较不同组别、条件或处理下的生存状况。

通过半参数模型拟合的结果,可以解释不同因素对生存时间的影响程度和方向。

SPSS生存分析

SPSS生存分析

SPSS生存分析生存分析(Survival Analysis),也称为事件分析(Event Analysis)或持续时间分析(Duration Analysis),是一种统计方法,用于研究事件的发生和结束时间,如生命、疾病治愈、工作停留时间等。

生存分析的目的是研究一组对象的生命周期,并了解特定因素对事件发生和结束的影响。

在这种分析中,对象可以是个体、组织、产品等。

常见的应用包括生物医学研究、流失分析、医疗保险研究和个体退休研究等。

生存分析的关键概念是生存函数和风险函数。

生存函数是描述一个对象存活到给定时间的概率,通常用生存曲线表示。

风险函数描述了一个对象在给定时间点发生事件的风险,它可以用来比较不同组之间事件发生的差异。

在进行生存分析时,常用的统计模型包括Kaplan-Meier法、Cox比例风险模型和加速失效时间模型。

Kaplan-Meier法用于无偏估计生存函数,能够考虑有丢失数据和不完全随访的情况。

Cox比例风险模型可以用来估计各种相关因素对事件发生的相对风险,而加速失效时间模型可以考虑随时间变化的风险因素。

在使用SPSS进行生存分析时,首先需要导入数据并定义目标事件和截尾事件。

然后,可以使用Kaplan-Meier法绘制生存曲线,并进行生存函数的比较。

同时,也可以使用Cox比例风险模型来估计不同因素对事件发生的影响,并计算相对风险。

除了基本的生存分析方法外,SPSS还提供了许多扩展功能,如处理丢失数据、处理时间依赖变量和处理集群数据等。

这些功能可以帮助研究人员更好地分析和解释生存数据。

总之,生存分析是一种有力的统计方法,可以用于研究事件发生和结束的时间,并评估相关因素对事件的影响。

使用SPSS进行生存分析可以方便地进行数据处理、模型拟合和结果解释,使研究人员能够深入了解事件发生的模式和原因。

生存分析SPSS解析

生存分析SPSS解析

生存分析SPSS解析
生存分析(Survival Analysis)是一种用于研究时间直到一些事件
发生的技术,例如死亡、发病或失败。

SPSS是一种常用的统计软件,可
以进行生存分析的操作和解析。

在生存分析中,最常用的分析方法是Kaplan-Meier生存曲线和Cox比例风险模型。

下面将详细介绍生存分析
的SPSS解析。

首先,从SPSS菜单栏选择“分析(Analyze)”-“生存(Survival)”-“生存(Survival)”。

接下来,我们需要选择解释变量或是协变量,这些变量可以影响事件
发生的可能性。

可以从右侧的“协变量(Covariates)”框中选择变量,
并将其拖动到“协变量(Covariates)”框中。

点击“确定(OK)”按钮后,SPSS会生成生存分析结果。

可以在输
出窗口中查看生存分析的结果和图表。

对于Kaplan-Meier生存曲线,可
以观察随时间推移生存率的变化和生存函数的形状。

对于Cox比例风险模型,可以观察每个协变量对事件发生的影响。

根据生存分析结果,可以得出一些结论,例如一些协变量对生存率的
显著性影响、一些时间点的生存率等。

此外,在生存分析中,还可以进行
生存曲线的比较和组间差异的检验,例如Log-rank检验。

综上所述,SPSS提供了方便快捷的工具来进行生存分析的操作和解析。

通过选择相应的变量、设置和结果输出,可以对时间直到事件发生的
数据进行生存分析,并得出相关的结论。

生存分析是一种重要的统计方法,可以用于研究和预测各种事件发生的概率和时间。

SPSS教程第十五课生存分析

SPSS教程第十五课生存分析

SPSS教程第十五课:生存分析信息来源:本站原创更新时间:2004-7-12 21:11:00在临床诊疗工作的评价中,慢性疾病的预后一般不适合用治愈率、病死率等指标来考核,因为其无法在短时间内明确判断预后情况,为此,只能对患者进行长期随访,统计一定时期后的生存或死亡情况以判断诊疗效果。

这就是生存分析。

第一节 Life Tables过程14.1.1主要功能调用此过程时,系统将采用即寿命表分析法,完成对病例随访资料在任意指定时点的生存状况评价。

14.1.2实例操作[例14-1]用中药+化疗(中药组,16例)和单纯化疗(对照组,10例)两种疗法治疗白血病患者后,随访记录存活情况如下所示,试比较两组的生存率。

14.1.2.1 数据准备激活数据管理窗口,定义变量名:随访月数的变量名为TIME,是否死亡的变量名为DEATH,分组(即中药组与对照组)的变量名为GROUP。

输入原始数据:随访月数按原数值;是否死亡的,是为1,否为0;分组的,中药组为1,对照组为2。

14.1.2.2 统计分析激活Statistics菜单选Survival中的Life Tables...项,弹出Life Tables 对话框(图14.1)。

从对话框左侧的变量列表中选time,点击 钮使之进入time框;在Display Time Intervals栏中定义需要显示生存率的时点,本例要求从0个月显示至48个月,间隔为2个月,故在0 through框中输入48,在by 框中输入2。

选death,点击 钮使之进入Status框,点击Define Event...钮弹出Life Tables:Define Event for Status Variable对话框,在Single value栏中输入1,表明death = 1为发生死亡事件者;点击Continue钮返回Life Tables 对话框。

选group,点击 钮使之进入Factor框,点击Define Range...钮,弹出Life Tables:Define Range for Factor Variable对话框,定义分组的范围,在Mininum框中输入1,在Maxinum框中输入2,点击Continue钮返回Life Tables对话框。

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

SPSS学习笔记之——生存分析的Cox回归模型(比例风险模型)

一、生存分析基本概念1、事件(Event)指研究中规定的生存研究的终点,在研究开始之前就已经制定好。

根据研究性质的不同,事件可以是患者的死亡、疾病的复发、仪器的故障,也可以是下岗工人的再就业等等。

2、生存时间(Survival time)指从某一起点到事件发生所经过的时间。

生存是一个广义的概念,不仅仅指医学中的存活,也可以是机器出故障前的正常运行时间,或者下岗工人再就业前的待业时间等等。

有的时候甚至不是通用意义上的时间,比如汽车在出故障前的行驶里程,也可以作为生存时间来考虑。

3、删失(Sensoring)指由于所关心的事件没有被观测到或者无法观测到,以至于生存时间无法记录的情况。

常由两种情况导致:(1)失访;(2)在研究终止时,所关心的事件还未发生。

4、生存函数(Survival distribution function)又叫累积生存率,表达式为S(t)=P(T>t),其中T为生存时间,该函数的意义是生存时间大于时间点t的概率。

t=0时S(t)=1,随着t的增加S(t)递减(严格的说是不增),1-S(t)为累积分布函数,表示生存时间T不超过t的概率。

二、生存分析的方法1、生存分析的主要目的是估计生存函数,常用的方法有Kaplan-Meier法和寿命表法。

对于分组数据,在不考虑其他混杂因素的情况下,可以用这两种方法对生存函数进行组间比较。

2、如果考虑其他影响生存时间分布的因素,可以使用Cox回归模型(也叫比例风险模型),利用数学模型拟合生存分布与影响因子之间的关系,评价影响因子对生存函数分布的影响程度。

这里的前体是影响因素的作用不随时间改变,如果不满足这个条件,则应使用含有时间依存协变量的Cox回归模型。

下面用一个例子来说明SPSS中Cox回归模型的操作方法。

例题要研究胰腺癌术中放疗对患者生存时间的影响,收集了下面所示的数据:操作步骤:SPSS变量视图菜单选择:点击进入Cox主对话框,如下,将time选入“时间”框,将代表删失的censor变量选入“状态”框,其余分析变量选入“协变量”框。

SPSS做生存分析理论与教程

SPSS做生存分析理论与教程
生存分析
生存分析
• 生存曲线的制作
– 生存率的估计
• 寿命表法 • Kaplan-Meier法
• Log-rank检验
– 两条或多条生存曲线的比较
• Cox回归模型
• 例19-2 12例膀胱肿瘤小于3.0cm患者和16 例膀胱肿瘤大于或等于3.0cm患者的生存时 间(个月)如下,试估计两组生存率。
Save...
Options...
数据基本信息
完全数据的例数
删失数据的例数和百分比
生存表
平均生存期和中位生存期
平均生存期的估计值
中位生存期的估计值
生存期的分位数
log-rank检验结果
P值小于0.05,差异具 有统计学意义。两生存 曲线不同。
生上腺肿瘤的疗效,某研究者 随机将43例病人分成两组,甲组23例,乙组20例的生存 时间(月)如下所示:
• 计算二组的生存率并做显著性检验。
Cox回归模型
• 例19-4 30例膀胱肿瘤患者的随访记录见表 19-7,试进行膀胱肿瘤患者生存情况的影 响因素分析。
建立数据集
Cox回归模型
• Analyze --> Survival --> Cox Regression
生存时间变量
协变量
自变量筛选 前向选择:LR准则
练习2
• 用二种方法治疗某肿瘤,各做12例,各组的生存期 如下:( 单位为年 )
• A组: 0.5 0.8 1.5 2.0 2.0+ 2.4 2.8+ 3.2 3.2+ 3.5 5.5+ 5.8
• B组: 1.5 3.2 3.8 4.0 4.0+ 4.5 5.5+ 6.0 6.2+ 7.4 8.6+ 9.5

实战利用SPSS进行生存分析

实战利用SPSS进行生存分析

实战利用SPSS进行生存分析用SPSS软件进行生存分析给大家介绍3种常用方法寿命表法、Kaplan-Meier分析法、Cox回归分析一、寿命表分析适用于大数据示例:若要研究性别对于肺病生存率有无区别,收集数据下列信息time:生存时间(单位天)status:0=存活,1=死亡sex:1=男,2=女操作步骤按步骤将数据导入(lung数据集来自于R内置数据)选定寿命表分析方法对各选项进行设置(其中注意状态设置:选取表示事件已发生的值)设置完所有选项后确认得到结果(可进行导出)1.得到存活表:该表给出了男女对应时间内存活和死亡人数,并计算了存活率、风险比等统计量2.中位数生存时间:即生存率为50%时,生存时间的平均水平;可知:生存时间的平均水平女士高于男士3.生存函数:男士较女士累计生存率下降快二、Kaplan-Meier分析适用于小样本示例:若要研究药物治疗对卵巢癌生存率有无区别,收集数据下列信息futime:生存时间(单位天)fustat:0=存活,1=死亡rx:1=未治疗,2=治疗操作步骤:按步骤将数据导入(ovarian数据集来自于R内置数据)选定Kaplan-Meier分析法,并对选项进行设置设置结束后确认,得到结果(可进行导出)1.生存表的均值和中位数、百分位数:可以看出治疗与未治疗有均值、四分位数略有差异2.整体比较:检验结果p值>0.05,证明治疗组与非治疗组差异不显著3.存活函数:治疗组较非治疗组生存结果好,但从假设检验结果来看差异不明显三、Cox回归分析示例:若要研究结肠癌治疗方式对患者生存时间的影响,收集了下面所示的数据:time:生存时间(单位天)status:0=存活,1=死亡rx:治疗方式,Obs=观察,Lev=方式1,Lev+5FU=方式2obstruct:0=无阻塞的结肠肿瘤,1=有阻塞的结肠肿瘤perfor:0=无结肠穿孔,1=有结肠穿孔extent:传播程度:1 =黏膜下层,2 =肌肉,3 =浆膜,4 =相邻结构操作步骤:导入结肠癌colon数据(R中内置数据)选定cox回归分析参数设置:协变量依次导入,方法按分析所需进行选择点击'分类',协变量依次选入分类协变量点击'绘图',勾选生存函数,主要变量为rx,将rx变量选入单线框中,绘制生存曲线点击'选项',设置输出RR的95%置信区间。

SPSS数据分析—生存分析

SPSS数据分析—生存分析

SPSS数据分析—生存分析SPSS(统计分析软件)是一种常用的数据分析工具,可以进行各种统计分析,包括生存分析。

生存分析是一种用于研究时间相关性数据的统计方法,主要用于分析个体从其中一起始时间到其中一终止事件(通常是死亡或失效)的时间间隔。

生存分析的关键概念是生存函数和生存时间。

生存函数是一个描述个体在时间t下仍然存活的比例的函数,通常用S(t)表示。

生存时间是从个体入组(或开始)到终止事件发生的时间间隔。

SPSS可以进行生存分析的工作流程如下:1.导入数据:打开SPSS软件,导入包含所需数据的数据文件。

确保数据集包含需要的变量,如生存时间和事件状态(例如,是否死亡或失效)。

2.数据清理:检查数据集并进行必要的数据清理。

确保没有缺失值和异常值,以及确保数据是完整和准确的。

3. 运行生存分析:在SPSS软件中,选择适当的生存分析方法,如Kaplan-Meier(KM)法或Cox回归模型。

然后,输入所需的变量和参数,并运行生存分析。

- Kaplan-Meier(KM)法是一种非参数方法,用于估计生存函数。

它可以根据不同的参照组进行生存曲线的比较,并根据log-rank检验评估差异的统计显著性。

- Cox回归模型是一种半参数方法,用于估计生存时间与多个预测变量之间的关系。

它可以确定这些预测变量对生存时间的影响,并计算其风险比(hazard ratio)。

4.解释和报告结果:根据分析的结果,解释生存曲线和相关的统计显著性。

报告风险比和其统计显著性,并讨论其他发现和观察。

生存分析可以在许多领域中使用,如医学研究、流行病学、社会科学和金融研究。

它可以用于评估治疗方法的效果、分析因素对生存时间的影响、预测个体的生存概率等。

总之,SPSS是一种强大的工具,可以进行各种统计分析,包括生存分析。

使用SPSS进行生存分析,可以帮助研究人员从时间相关性数据中提取有关生存时间和生存概率的有用信息,并对数据进行进一步的解释和报告。

SPSS15-生存分析

SPSS15-生存分析

时间分段
结果解释
将数据按时间分段,以便更好地捕捉时间 依赖性风险因素对生存时间的影响。
解释模型中时间依赖性变量的系数和风险 比,以评估其对生存时间的影响。
竞争风险模型的应用
竞争风险
竞争风险是指在生存分析中,由于其他原因导致死亡或失访的情况。
模型选择
选择适当的竞争风险模型,如Fine和Gray模型或Prentice、Williams和Peterson模型。
非参数模型
无模型假设
非参数模型不对数据分布作任何假设,适用于各种类 型的生存时间数据。
适用范围
适用于生存时间与协变量之间关系未知或非常复杂的 情形。
优点
灵活性高,能够捕捉数据的复杂关系,但计算量大, 解释性相对较弱。
04 生存分析案例解析
乳腺癌生存数据解析
乳腺癌生存数据
乳腺癌是一种常见的恶性肿瘤,生存分析在乳腺癌的研究中具有重要意义。通过对乳腺癌患者的生存时间、影响因素 和预后评估等方面进行分析,有助于为临床治疗和患者管理提供依据。
适用范围
适用于生存时间与协变量之间存在非线性关系的情形。
优点
能够同时处理生存时间和协变量之间的关系,提供更全面的分析。
参数模型
模型假设
参数模型对数据分布有严格的假设,如Weibull模型和 Exponential模型。
适用范围
适用于生存时间与协变量之间存在线性关系的情形。
优点
模型简单易用,能够提供准确的生存函数估计。
中的“右删失”或“截尾数据”的情况。
适用范围
02
适用于医学、生物学、经济学和社会科学等领域,用于研究个
体或系统的寿命、疾病进展、产品寿命等问题。
Байду номын сангаас
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14.1.2.3 结果解释
在结果输出窗又口口中将看到如下统计数据:
共有26个观察对象进入入分析。系统先显示示中药组(group = 1)的生生存状况寿命表,按用用户指 定,从0月月起,隔2个月月直至至42个月月(原指定从0—48个月月,但因42个月月后,生生存概率已为0, 故42个月月后至至48个月月的生生存状况不再显示示),分别显示示进入入该时点例数(Number Entrng this Intrvl)、从该时点失去的例数(Number Wdrawn Durong Intrvl)、该时点暴露于死亡危险的例 数(Number Exposd to Risk)、该时点死亡的例数(Number of Termnl Events)、该时点死亡概 率(Propn Terminating)、该时点生生存概率(Propn Surviving)、该时点末生生存率(Propn Surv at End)、单位时点的累积概率(Cumul Probability Densty)、该时点风险比比例(Hazard Rate)、 生生存率的标准误(SE of Cumul Surviving)、单位时点累积概率的标准误(SE of Probability Densty)、风险比比例的标准误(SE of Hazard Rate)。如本例,用用中药+化疗的方方式治疗白白血血病 患者,至至8个月月时,死亡率为17.39%,生生存概率为82.61%,生生存率为66.38%,风险比比例 为9.52%。至至42个月月时,生生存概率和生生存率均为0,此时风险比比例为100%。中药组的50%生生存率 在19.44个月月。
生生物行行业最新招聘信息
上海、北京及广广州生生物技术相关行行业 最新的职位信息,尽在生生物招聘。
人人物 成功的秘诀
14.1.2.1 数据准备
激活数据管理窗又口口,定义变量名:随访月月数的变量名为TIME,是否死亡的变量名为DEATH, 分组(即中药组与对照组)的变量名为GROUP。输入入原始数据:随访月月数按原数值;是否死亡 的,是为1,否为0;分组的,中药组为1,对照组为2。
对照组同类结果的显示示,因在16个月月时生生存概率已为0,故仅从0月月起,隔2个月月至至16个月月 止止。分析显示示,单纯用用化疗,白白血血病患者的半数生生存率约在16个月月多一一点,比比中药组少三个 月月。
This subfile contains: 26 observations
Life Table
Start this During to Termnl Termi- Sur- Surv bility Hazard Sur- bility Hazard
Time Intrvl Intrvl Risk Events nating viving at End Densty Rate viving Densty Rate
中药组
对照组
随访月月数 10 2 12 13 18 6 19 26 9
是否死亡 否 是 是 否 否 是 是 否 是
随访月月数 2 13 7 11 6 1 11 3 17
是否死亡 是 否 是 是 否 否 否 否 否
聚焦
人人物 对话
快速链接
评论 人人物&企业
8

7

6

43

9

4

31

24

招聘/猎头
The median survival time for these data is 19.44
Life Table
Survival Variable TIME
for GROUP = 2
Number Number Number Number
Cumul SE of SE of
Intrvl Entrng Wdrawn Exposd of Propn Propn Propn Proba- Cumul Proba- SE of
搜索更多相关产品
图14.1 生生存资料的寿命表分析对话框
点击Options...钮弹出Life Tables: Options对话框,在Plot栏中选Survival项,要求绘制生生存率 曲线图;在Compare Levels of First Factor栏中选Overall项,要求作组间生生存状况的比比较。之后点 击Continue钮返回Life Tables对话框,再点击OK钮即完成分析。
14.1.1 主要功能
调用用此过程时,系统将采用用即寿命表分析法,完成对病例随访资料在任意指定时点的生生存状 况评价。
14.1.2 实例操作
[例14-1] 用用中药+化疗(中药组,16例)和单纯化疗(对照组,10例)两种疗法治疗白白血血病 患者后,随访记录存活情况如下所示示,试比比较两组的生生存率。
来源 本站原创 2004-7-12 21:11:00
SPSS教程第十十五课:生生存分析
生生物谷谷
在 临床诊疗工工作的评价中,慢性疾病的预后一一般不适合用用治愈率、病死率等指标来考核,
因为其无无法在短时间内明确判断预后情况,为此,只能对患者进行行长期随访,统计一一定时期后 的生生存或死亡情况以判断诊疗效果。这就是生生存分析。
趋势 生生物研究 生生物产业 生生物医药 人人物&企业 CHINA TODAY 张博士士信箱 专题 生生物制药 迷你站 分子子 细胞 微生生物 免疫 神经 发育遗传 进化生生态 基因组 蛋白白组 生生物信息 系统生生物学 结构生生物学 癌症 传染病 生生物医学 生生物工工程 您现在的位置: 生生物谷谷 > 生生物研究 > 生生物教程 > SPSS 10.0简明教程 > 正文文
Start this During to Termnl Termi- Sur- Surv bility Hazard Sur- bility Hazard
Time Intrvl Intrvl Risk Events nating viving at End Densty Rate viving Densty Rate
分类广广告
分子子生生物学相关产品
定量PCR仪 Eppendorf 荧光定量 PCR仪
实时定量PCR仪 ABI Stepone TM 实时定量 PCR仪,最新的软件系统, 界面面友好,操作简单
PCR产物纯化 各种厂厂家和各种规格的PCR 产物纯化试剂盒
定量PCR试剂 最全的定量PCR试剂
荧光定量PCR全套服务方方案 从引物设计到实验全程服务
个人人登录 免费注册 | 企业登Biblioteka 注册最新新闻最热新闻
推荐新闻
今日日
Nature:科学家揭开B型G蛋白白偶联受体真面面目目 BJPsych:90%的中国痴呆症病例未被发现 PLoS Genetics:遗传发育所在神经特异性连接 PLoS ONE:杨君兴等鲈鲤属系统发育与生生物地
第一一节 Life Tables过程
------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------ ------
.0 16.0 .0 16.0 .0 .0000 1.0000 1.0000 .0000 .0000 .0000 .0000 .0000 2.0 16.0 .0 16.0 1.0 .0625 .9375 .9375 .0313 .0323 .0605 .0303 .0322 4.0 15.0 1.0 14.5 .0 .0000 1.0000 .9375 .0000 .0000 .0605 .0000 .0000 6.0 14.0 .0 14.0 2.0 .1429 .8571 .8036 .0670 .0769 .1019 .0441 .0542 8.0 12.0 1.0 11.5 2.0 .1739 .8261 .6638 .0699 .0952 .1231 .0458 .0670 10.0 9.0 1.0 8.5 .0 .0000 1.0000 .6638 .0000 .0000 .1231 .0000 .0000 12.0 8.0 1.0 7.5 1.0 .1333 .8667 .5753 .0443 .0714 .1348 .0420 .0712 14.0 6.0 .0 6.0 .0 .0000 1.0000 .5753 .0000 .0000 .1348 .0000 .0000 16.0 6.0 .0 6.0 .0 .0000 1.0000 .5753 .0000 .0000 .1348 .0000 .0000 18.0 6.0 1.0 5.5 1.0 .1818 .8182 .4707 .0523 .1000 .1453 .0489 .0995 20.0 4.0 .0 4.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 22.0 4.0 .0 4.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 24.0 4.0 1.0 3.5 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 26.0 3.0 1.0 2.5 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 28.0 2.0 .0 2.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 30.0 2.0 1.0 1.5 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 32.0 1.0 .0 1.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 34.0 1.0 .0 1.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 36.0 1.0 .0 1.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 38.0 1.0 .0 1.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 40.0 1.0 .0 1.0 .0 .0000 1.0000 .4707 .0000 .0000 .1453 .0000 .0000 42.0 1.0 .0 1.0 1.0 1.0000 .0000 .0000 .2354 1.0000 .0000 .0727 .0000
相关文档
最新文档