结构力学(I)-结构静力分析篇6 矩阵位移法解析
结构力学-矩阵位移法-PPT
当p=l时才能相乘
a12 b11 a22 b21
a12 a22
共形
b11 a11 BA b21 a21
非共形
(2)不具有交换律,即 AB BA
6、转置矩阵 将一个阶矩阵的行和列依次互换,所得的阶矩 阵称之为原矩阵的转置矩阵,如:
任意矩阵与单位矩阵相乘仍等于原矩阵,即 AI =A IA =A
10、逆矩阵
在矩阵运算中,没有矩阵的直接除法,
除法运算由矩阵求逆来完成。例如,若
AB = C
则
B=A 1 C
-
此处A-1 称为矩阵A的逆矩阵。
一个矩阵的逆矩阵由以下关系式定义:A A 1 = A 1 A =I
矩阵求逆时必须满足两个条件: (1)矩阵是一个方阵。 (2)矩阵的行列式不为零,即矩阵是非奇异矩阵(行列 式为零的矩阵称为奇异矩阵)。
矩阵位移法(刚度法):
结点力
P
F
(物理条件)
结点位移
(几何条件)
(平衡条件)
杆端力
杆端位移
r11 z1 r12 z 2 L r1i zi R1p 0 r21 z1 r22 z 2 L r2i zi R2p 0 r31 z1 r32 z 2 L r3i zi R3p 0
结构力学
STRUCTURE MECHANICS
第十章
矩阵位移法
知识点:
• • • • 矩阵位移法的基本要点 常见单元单元刚度矩阵的建立 单元刚度矩阵的坐标变换 矩阵位移法计算连续梁和刚架
教学基本要求:
掌握矩阵位移法的基本要点;
理解各种常见单元杆端位移和杆端力的对应 关系,理解单刚矩阵的建立方法及过程,能正确 写出常见单元的单刚方程;理解坐标变化的意义 及方法。 掌握前处理法计算连续梁和不考虑轴线变形 的刚架,结合刚架理解后处理法的基本思想。
结构力学之矩阵位移法
第十二章 矩阵位移法【例12-1】 图 a 所示 连 续 梁 ,EI=常数,只 考 虑 杆 件 的 弯 曲 变 形 。
分别用位移法和矩阵位移法计算。
图12-1解:(1)位移法解•基本未知量和基本结构的确定用位移法解的基本结构如图c 所示。
这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。
•位移法基本方程的建立⎪⎭⎪⎬⎫=+θ+θ+θ=+θ+θ+θ=+θ+θ+θ000333323213123232221211313212111P P P R K K K R K K K R K K K 将上式写成矩阵形式⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000321321333231232221131211P P P R R R K K K K K K K K K•系数项和自由项 计算(须绘出单位弯矩图和荷载弯矩图)由图d ,结点力矩平衡条件∑=0M ,得 EI K 411=,l EI K 221=,031=K由图e ,结点力矩平衡条件∑=0M ,得l EI K 212=,l EI l EI l EI K 84422=+=,l EI K 232=由图f ,结点力矩平衡条件∑=0M ,得 013=K ,l EI K 223=,l EI EI EI K 84433=+=由图g ,结点力矩平衡条件∑=0M ,得81Pl R p -=,2Pl R P -=,03=P R将系数项和自由项代入位移法基本方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--+⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000118820282024321Pl l EI •解方程,得⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧θθθ14114162321EI Pl •由叠加法绘弯矩图,如图h 所示。
(2)矩阵位移法解•对单元和结点编号(图a ) 本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。
结构力学十三讲矩阵位移法
-6EI l2
4EI l
4
§13-3 单元刚度矩阵(整体座标系)
一、单元座标转换矩阵 Y1
X1
X1
Y1
MM21
e
x
M2 X2
正交矩阵 [T]-1 =[T]T
e e
e T T e
v1
y e
X 2
Y2
Fⓔ T T F ⓔ
ee
F T F ee
座标转换矩阵
5
二、整体座标系中旳单元刚度矩阵
[k] e = [T]T k e [T]
(4)
(6)
00
(5)
y
单元 局部码总码
单元 局部码总码
(1) 1 (2) 2 (3) 3 (4) 0 (5) 0 (6) 4
1
2
3 0
0
4
(1) 1
1
(2) 2
2
(3) 3 (4) 0
3 0
(5) 0
0
(6) 0
0
18
1 2
[k] 1 = 3
0 0 4
1 2
[k] 2= 3
0 0 0
123004 101 102 103 104 105 106 201 202 203 204 205 206 301 302 303 304 305 306 401 402 403 404 405 406 501 502 503 504 505 506 601 602 603 604 605 606 123000 11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51 52 53 54 55 56 61 62 63 64 65 66
结构力学:矩阵位移法
2 i2 i
3
k21 k31
=1 k22
k32
若 1 1,2 3 0
P1 P2 p3
k11 k21 k31
kij ---发生 j 1, 其它结点位
移为零位移时在 i结点所需
加的结点力.
k13
k23 k33
=1
结构刚度矩阵性质:对称矩阵
总刚的形成方法 ---“对号入座”
P3
k22112
k222
2 2
结构刚度矩阵中元素的物理意义
k11 k12 k13
k k21
k22
k23
k31 k32 k33
P1 k11 k12 k13 1
P2
k21
k22
k23
2
p3 k31 k32 k33 3
1 P1 1
1 i1 i
k11
=1
k12
P2
2
2
P3
3
k31 0 k32 k221 k33 k222
四.计算杆端力
P k 计算结点位移 Fe ke e 计算杆端力
1 P1 1
1 i1 i
P2
2
2
P3
3
2 i2 i
3
四.计算杆端力
6kN.m 3kN.m 3kN.m
P k 计算结点位移 Fe ke e 计算杆端力
i1 1
i2 2
1
2
1/ 2
3
7/2
3.解方程,求位移 17 /12
变形条件
P1
①
P2
②
P3
F11
F21
F12
F22
单元刚度方程
F1e
k1e11e
《结构力学》第十章矩阵位移法
《结构力学》第十章矩阵位移法矩阵位移法是结构力学中的一种重要分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
本文将分为四个部分来介绍矩阵位移法的基本原理和应用。
第一部分将介绍矩阵位移法的基本原理。
矩阵位移法基于结构的受力平衡方程和变形条件,建立了适用于不同类型结构的一般形式的位移函数。
通过对这些位移函数进行适当组合,可以得到一个较为简化的位移矩阵方程。
这个方程可以通过矩阵运算求解,从而得到结构的位移和应力分布。
第二部分将介绍矩阵位移法的应用。
矩阵位移法可以用于求解各种类型的结构,包括梁、柱、框架等。
具体应用时,首先需要确定结构的边界条件和受力情况,然后根据结构的几何形状和材料性质,建立相应的位移函数。
之后,将位移函数按照一定的规则组合起来,建立一个位移矩阵方程。
通过解这个方程,可以得到结构的位移和应力分布。
第三部分将介绍矩阵位移法的优点。
相比于传统的力方法,矩阵位移法具有计算简单、准确性高、适用范围广等优点。
这是因为矩阵位移法可以通过矩阵运算将结构的受力分析转化为代数运算,减少了繁琐的计算过程,并且可以应用于各种不规则结构。
第四部分将介绍矩阵位移法的局限性。
矩阵位移法虽然具有很多优点,但也有一些限制。
首先,矩阵位移法对结构的刚度矩阵的求取较为复杂,需要通过精确和谐振数法等途径进行求解。
其次,矩阵位移法不能用于解决非线性和动力问题。
总结起来,矩阵位移法是一种重要的结构力学分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
它具有计算简单、准确性高、适用范围广等优点,但也有一些局限性。
因此,在实际应用中需要根据具体情况选择合适的方法。
同时,矩阵位移法的进一步研究和发展也是一个非常重要的方向。
结构力学应用-矩阵位移法
3、集成总刚
(6)定位向量法:对号入座,同号相加 定位向量法:对号入座,
4.综合结点荷载
综合结点荷载 {F}={FD}+{FE} }――直接结点荷载 ①{FD}――直接结点荷载 }――等效结点荷载 ②{FE}――等效结点荷载 (7-1)局部坐标系单元固端力 (7-2)整体坐标系单元固端力 (7-3)单元等效结点荷载。 单元等效结点荷载。
等效原则: 等效原则: ——两种荷载对基本体系产生相同的结点位移。 两种荷载对基本体系产生相同的结点位移 ——两种荷载对基本体系产生相同的结点位移。
矩阵位移法的计算步骤及示例
矩阵位移法计算平面刚架 计算机计算――程序化) 程序化) (计算机计算 程序化
1. 编码、整理原始数据 编码、
(1)整体与局部坐标系 ) (2)结点位移编码 ) 单元编码 (3)原始数据: )原始数据: E 、A i、I i、l i 定位向量{λ} 定位向量 e, αi([ T ]) ])
几点补充说明
1、结点位移分量编号,定位向量 、结点位移分量编号,
——引入支承条件:已知位移约束的方向,编码为零。 引入支承条件:已知位移约束的方向,编码为零。 引入支承条件
2、铰结点处理: 铰结点处理: 铰结点处理
铰结的各杆杆端的转角均为基本未知量 ——分别编码(统一单元,程序简单) 分别编码(统一单元,程序简单) 分别编码
矩阵位移法
矩阵位移法——基本原理与位移法相同 基本原理与位移法相同 矩阵位移法 *数学工具 —— 矩阵运算
1、矩阵知识 矩阵: (1)矩阵:A 方阵: 方阵: 阶方阵A相应的行列式 (2)行列式:n阶方阵 相应的行列式 )行列式: 阶方阵 相应的行列式D 若D=0,A为奇异矩阵 (3)矩阵运算 相等:加减:数乘: 相等:加减:数乘: l aik 乘法: 乘法:Cmn=Aml*Bln,则 cij =
《结构力学课件》矩 阵 位 移 法
将(17—21)及(17—25) T F 式代入上式得: e
K
T
e
T e
e
F
T
K
T e
e 另 [T]T[ K ] [I]=[K]e 则 用结分点块式表示为:
{F}e=[K]e{}e
e Fi e F j e Kii e K ji e e Kij i e Ke jj j
• 注:1) F , 为结构坐标的杆端力和杆端位移。 • 2) Kij e 表示单元e 的j端三个位移分别产生单位位移时在i 端各力 • 分量分别产生的力。 • 3) Kii , Kij , K ji , K jj 分别为单元在结构整体坐标中刚度。
e e
返回 下一张 上一张 小结图17-4来自返回 下一张 上一张 小结
• 17.1.6 引入支承条件,求结点位移
• 已知上例支承条件 1 =0,连同已获得的[K],以及各结点 荷载值(M1、M2、及M3=0)一起代入基本方程(7—6)式中,得:
4i1 2i 1 0 2i1 4i1 4i 2 2i 2 0 0 2i 2 2 4i 2 3 M1 M 2 0
{
矩阵位移法是以位移法为力学原理,应用矩阵理论,以电子 计算机为工具的结构分析方法。 有限单元法包含两个基本环节:一是单元分析;一是整体分析。
在矩阵位移法中:单元分析的任务是建立单元刚度方程,形 成单元刚度矩阵——讨论任意坐标系中单元刚度方程的通用形式; 整体分析的任务是将单元及合成整体,由单元刚度矩阵按照 刚度集成规则形成整体刚度矩阵,建立整体结构的位移法基本方 程,从而求解。 直接由单元刚度矩阵导出整体刚度矩阵的集成规则,是矩阵 位移法的核心内容。
结构力学基础矩阵位移法基本概念、计算程序和例题讲解
序和例题讲解
§9-1 矩阵位移法基本概念 §9-2 单元劲度矩阵 §9-3 可动结点劲度矩阵 §9-4 可动结点等效荷载列阵 §9-5 单元杆端力和支座反力 §9-6 例题 §9-7 平面刚架计算程序
§9—1 矩阵位移法的基本概念
一、坐标系和符号规定 图示连续梁:
4.求 K
(1)计算机各单元的方向余弦和杆长:
(2)求 kmi
(3)求ki
单元(1):Cx=0 Cy=1
杆长:l 同理:
(4)求 按照“对号入座“原则,由ki形成k哪
例如: 同理:
5.求: 对于桁架,一般只有结点荷
载,于是
得 6.求结点位移
7.求杆端力Fmi
8.求支座反力
例 设 EI=常数,EA=常数, EI=20EA,试用矩阵位移法分析
5
6
1 2
88.889 0.0
0.0 5.268
0.0 11.852
-88.889 0.0
0.0 -5.268
0.0 11.852
1 2
k②
EA l1
3 4
0.0 88.889
5 0.0
11.852 0.0
5.268
35.556 0.0
11.852
0.0 88.889
0.0
11.852 0.0
返回
§9—3 可动结点劲度矩阵
一、形成可动结点劲度矩阵的步骤
步骤: 1.对结构进行结点编号、单元标号、自由度编号: 2.确定单元杆端自由度序号(考虑约束条件); 3.计算单元在局部坐标系中的劲度矩阵kmi 4.计算单元转换矩阵Ti 5.形成单元在整体坐标系中的劲度矩阵ki TiTkmiTi
结构力学课件 结构力学课件矩阵位移法nm
k 1 3 k 2 3 k 3 3 k 4 3 k 5 3 k 6 3
k 1 4 k 2 4 k 3 4 k 4 4 k 5 4 k 6 4
1 , k k 1
0 0 0 0 0 1
α=90°
k
e
T
0 1 T 0 0 0 0
T
k T
e
第十章 矩阵位移法
扬 州 大 学 水 利 学 院
§10-4 整体分析
本节的整体分析是在单元分析的基础上,综合考虑静力、几何和物理三方面
6 EI l
2
i i
uj
12 EI l
3
vj vj
6 EI l
2
j
Mi X
6 EI l
2
4 EI l EA l
6 EI l
2
2 EI l
j
j
EA l
3
ui
Yj M
12 EI l
2
vi
6 EI l
2
i
12 EI l
2 3
vj
6 EI l
2
j
6 EI l
j
vi
2 EI l
i
6 EI l
vj
4 EI l
j
第十章 矩阵位移法
扬 州 大 学 水 利 学 院
F 1 e F 2 F 3 F 4 F 5 F 6
EA l 0 0 EA l 0 0
F
ke
结构力学(I)-结构静力分析篇6 矩阵位移法
用数字描述体系的位置,单元的属性。
10 / 105
第六章
例如
单元 FP
矩阵位移法
3(5,6)FP
2
1
2
2
结点
1
1(1,2) 单元方向 1
1
2(3,4)
2
1,2,3 ----结构结点编码(总码) (1,2,3) ----结点位移编码
1 2 ----杆端结点编码(局码)
1 2 ----单元编码
11 / 105
9 / 105
第六章
矩阵位移法
六、结构的离散化工作
将一个在荷载作用下的连续结构剖分成若干 个各自独立的单元,单元之间是由结点连接,用 此计算模型模拟原结构的受力和变形特性。 模型和原结构是有差别的,这个差别可以通 过单元的适当选取给予降低。 主要工作:单元的划分;体系的数字化。
直杆体系按自然选取杆件的汇交点、截面的 变化点、支撑点或荷载作用点作为结点,将结构 划分成一系列只在结点相连的单元集合。
EA l e
矩阵位移法
0
6 EI l2 4 EI l
0
12 EI l3 6 EI l2
EA l
0 12l EI 3 6lEI 2 0
12 EI l3 6 EI l2
0 0
EA l
0 12l EI 3
6 EI l2
0 6lEI 2
2 EI l
0 0
0 1 6 EI l2 2 2 EI 3 l 0 4 6lEI 5 2 4 EI 6 l
单元刚度方程
F k
e e
e
结构力学课件矩阵位移法整体分析-先处理法
Global analysis
第八章 矩阵位移法 8.5 先处理法
后处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
点力列阵; 3. 建立局部坐标系下单元刚度矩阵,坐标变换,建立整体坐标
4(0,0,7) x
O
(2)建立结点位移列阵和结点力列阵
y
FP1 2(1,2,3) FP2 3(4,5,6)
②
①
③
1(0,0,0) O
4(0,0,7)
FP1
0
1
2
F
0 0
,
3 4
FP
2
5
0
6
0
7
x
(3)建立整体坐标系下单元刚度矩阵
k e
ke TT k eT
k (3) 46
k (2) 56
k (3) 56
k (2) 66
k (3) 66
0 1
0
2
0 k (3)
47
3 4
k
(3) 57
5
k
(3) 67
6
k
(3) 77
7
先处理法的计算步骤
1. 结点、单元标码,并选择整体坐标系和局部坐标系; 2. 结点位移分量编码,建立整体坐标系下的结点位移列阵和结
l 6EI
l2
4 0
0
0
4EI
0
l
②单元
y 3(1,0,3)
2(1,0,2)
②
4(1,0,4)
①
③
1(0,0,0)
5(0,0,0) x
结构力学-矩阵位移法
以上杆端力和杆端线位移与相应的坐标轴正 方向一致为正,相反为负。
M1e,M 2e,1e,2e,M1e,M 2e,1e ,2e
以上杆端力矩和杆端转角均以顺时针方向为 正,逆时针方向为负。
10
3. 单元坐标转换矩阵
③
4
④
7
⑤
⑥
1
36
曲杆可用多段直杆近似代替(以直代曲)。
进行结点编号时,要尽量使单元两端结点编号 的差值最小。
4
三、单元杆端力和杆端位移的坐标变换
1.坐标系
结构整体分析 —整体坐标系xy
x
2
②
4
y
①③
④
单元分析—局部坐标系 x y 1
3
单元始端指向末端的方向就
是 x 轴的正方向
1
x
坐标轴遵循右手法则,即
Fx1e
M
e 1
1
M
e 1
e
y
x
2
y
x
单元杆端力
x
2
②
4
y
①③
④
1
3
y v1e 1
1
u1e
u1e
v1e
1e
1e
e
y
x
2
x
2
单元杆端位移
7
Fxe1 Fye1
uv11ee
F
e
MFxe12e
e
u12ee
Fye2
v2e
M
e 2
e 2
Fxe1 Fye1
uv11ee
点,单元与单元、单元与支座均通
结构力学 矩阵位移法
§9-2节 单元刚度矩阵(局部坐标系)
一.一般单元的刚度方程和刚度矩阵
1.单元两端采用局部编码1、2
1
e
2.六个杆端位移组成杆端位移列向量。
v1
1
u1
EAI L
3.六个杆端力组成杆端力列向量。
y
2
2 vu22 x
e
1
2
e
u1 v1
e
3
1
F1
e
F2
e
F x1 Fy1
单元刚度矩阵中的每个元素都代表单元
杆端单位位移引起的杆端力称之为单元
刚度系数。其中
k
表示第j个杆端单位位移
ij
引起的第i个杆端力。
⑵单元刚度矩阵为对称矩阵。 kij k ji
⑶一般单元刚度矩阵为奇异矩阵 k e 0
三、特殊单元刚度方程和刚度矩阵
⑴连续梁中的受弯杆件单元 ⑵桁架结构中杆件单元
⑴连续梁中的受弯杆件单元
忽略轴变时单元的刚度矩阵
12EI
l3 6EI
k
e
l2
12E
l3 6EI
I
l2
6EI
l2 4EI
l 6EI
l2 2EI
l
12EI l3
6EI l2
12EI
l3 6EI l2
6EI
e
l2 2EI
l
6EI l2
4EI
l
§9-3节 单元刚度矩阵(整体坐标系)
一、单元坐标转换矩阵
⑶根据所选基本未知量的不同,结构矩阵分析 包括:
§9-1节 位移法概述
矩阵力法
结构矩阵分析
一般刚度法
矩阵位移法
直接刚度法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FP 结点
1,2,3 ----结构结点编码(总码) (1,2,3) ----结点位移编码
1 2 ----杆端结点编码(局码)
1 2 ----单元编码
1
1
3(5,6)FP
2 2
2
1
1(1,2)
2(3,4)
单元方向 1 2
11 / 105
第六章 矩阵位移法 §6-2 单元刚度方程
建立单元的结点力和结点位移之间关系的过 程称单元分析,形成的方程称单元刚度方程。
6EI l2 2 EI l
12EI l3
6EI l2 12 EI l3
6EI l2
6 EI l2 2 EI l
6EI l2 4 EI l
1 2 3 4
e
刚度方程
18 / 105
第六章 矩阵位移法
12 EI
l3 6EI
k
e
l2
12EI l3
6 EI l2
位移法 是先求结点位移,再换算成力,该法的计 算自动化和通用性强,目前广为采用。
6 / 105
第六章 矩阵位移法
二、基本假设和基本原理
线弹性、小变形。满足叠加原理、功能原理
三、结构矩阵分析的基本思路
化整为零
(单元分析)
集零为整
(结点力平衡、位移协调)
7 / 105
第六章 矩阵位移法
四、拟解决的问题
6EI l2
1
4EI l
2
6EI l2
3
2EI l
4
F3e
12EI l3
1
6EI l2
2
12EI l3
3
6EI l2
4Hale Waihona Puke F4e6EI l2
1
2EI l
2
6EI l2
3
4EI l
4
F1 e
F2
F3
F4
12 EI
l3 6EI l2
12EI l3
6 EI l2
6 EI l2 4 EI l
不同类型的单元通常有不同的单元刚度方程 形式,但总的思想不变。
12 / 105
第六章 矩阵位移法
6-2-1 平面桁架单元刚度方程
局部坐标系下平面杆单元分析
y
1 EA e
u1
2x u2
F1 1 EA e
2 F2
F1
EA l
u1
EA l
u2
F2
EA l
u1
EA l
u2
单元方向: 1 2
杆端位移:
e
uu12
M1
M2
M3
1
1
i1 2
2
i2
3
l
l
15 / 105
第六章 矩阵位移法
1
e 2
1
2
F2
F1 1 EI e 2
F1
F2
EI l
4 2
2 4
1 2
Fe k e e
F1 4i11 2i1 2 F2 2i11 4i1 2
k
e
EI l
4 2
2 4
16 / 105
第六章 矩阵位移法
6-2-3 不计轴向变形的平面弯曲单元
离 散 化:确定座标、单元编码、结点编码(总 体码和局部码)、位移编码(总体码和局部码) 单元分析:研究单元的力学特性,建立单元杆端 力和杆端位移的关系。 整体分析:研究整体的平衡条件、平衡方程的组 成规律和求解方法。 编制程序:根据矩阵位移法的分析原理,绘制程 序运行框图并选择一种计算机语言给予实现,又 称为程序设计。
机算 分析过程公式紧凑、形式统一; 方法 要求 计算过程规格化、程序化、自动化。
4 / 105
第六章 矩阵位移法
根据计算中选取基本未知量的不同,结构矩阵分析 方法可分为:
位移法(刚度法) —— 以结点位移为基本未知量,建 立结点平衡方程,通过计算结点位移反推杆件内力
力 法(柔度法) —— 以杆端力为基本未知量,建立位 移协调方程,直接计算杆件内力
杆端内力:F e
F1
F2
13 / 105
第六章 矩阵位移法
F1
F2
EA l
1 1
1
1
uu12
Fe k e e
单元刚度方程
k
e
EA l
1 1
1
1
单元刚度矩阵
局部坐标系下的单刚方程
14 / 105
第六章 矩阵位移法
6-2-2 连续梁单元刚度方程
对于细长杆,由于轴向刚度一般远大于弯曲刚度, 在小变形假设下横向荷载不引起轴向位移。所以 对于连续梁来说结点只有一个广义位移(杆端转 角)和一个广义力(杆端弯矩)。
混合法 —— 以部分杆端力和部分结点位移为基本未 知量,建立位移协调方程和平衡方程,通过叠加计算 杆件内力。
位移法与力法之不同就在于选取的基 本未知量不同,因此计算次序不同
5 / 105
第六章 矩阵位移法
力法
结构结点力 杆件杆端力 杆件结点位移 结构结点位移
位移法
力 法 需要选择基本体系和多余约束。所以较多 地依赖于结构的具体情况,不宜实现计算机计算的 自动化,但其优点是计算出的结果就是力;
结构力学
<I>
1 / 105
2 / 105
第六章 矩阵位移法 §6-1 概述
矩阵位移法是以结构力学原理为基础, 以结点位移为基本未知量,借助矩阵进行 分析,并用计算机解决各种杆系结构受力、 变形等计算的方法。
3 / 105
第六章 矩阵位移法
一、方法的选择
建立在手算基础上的超静定结构计算方 法(力法、位移法、渐进法等)。当基本未知量 较多时机算是很好的手段。
F4
单元方向: 1 2
F1
4
几何量: I , A,l
2
1 F2
1
e
F3 3 物理量:
E
杆端力:
2
F e (F1 ,F2 ,F3 ,F4 )T
杆端位移:
e (1 ,2 ,3 ,4 )T
17 / 105
第六章 矩阵位移法
F1e
12EI l3
1
6EI l2
2
12EI l3
3
6EI l2
4
F2e
模型和原结构是有差别的,这个差别可以通 过单元的适当选取给予降低。
主要工作:单元的划分;体系的数字化。
直杆体系按自然选取杆件的汇交点、截面的 变化点、支撑点或荷载作用点作为结点,将结构 划分成一系列只在结点相连的单元集合。
用数字描述体系的位置,单元的属性。
10 / 105
第六章 矩阵位移法
例如
单元
6 EI l2 4 EI l
6EI l2 2 EI l
12EI l3
6EI l2 12 EI l3
6EI l2
6 EI
l 2 2 EI l
4
6 EI l2
EI l
19 / 105
第六章 矩阵位移法
8 / 105
第六章 矩阵位移法
五、正负号规定(采用右手法则)
杆端内力规定当与坐标轴正方向一致时为正; 结点内力规定当与坐标轴正方向相反时为正; 结点外力规定当与坐标轴正方向一致时为正; 结点位移规定当与坐标轴正方向一致时为正。
9 / 105
第六章 矩阵位移法
六、结构的离散化工作
将一个在荷载作用下的连续结构剖分成若干 个各自独立的单元,单元之间是由结点连接,用 此计算模型模拟原结构的受力和变形特性。