【高中数学】高中数学知识点:异面直线所成的角
2020年新高考数学核心知识点25.1 空间向量方法--空间的角(精讲精析篇)(学生版)
专题25.1 空间向量方法--空间的角(精讲精析篇)提纲挈领点点突破热门考点01 异面直线所成的角1.两条异面直线所成的角①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.②范围:两异面直线所成角θ的取值范围是(0,2π.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos|cos|||||||a ba bθϕ⋅==⋅r rr r.【典例1】(2018·全国高考真题(理))在长方体1111ABCD A B C D-中,1AB BC==,13AA则异面直线1AD与1DB所成角的余弦值为( )A.15B5C5D2【典例2】(2019·广西高考模拟(理))在直三棱柱111ABC A B C-中,3,3,32AC BC AB===14AA=,则异面直线1A C与1BC所成角的余弦值为__________.【总结提升】向量法求两异面直线所成角的步骤(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v1,v2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角.热门考点02 直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【典例3】(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【典例4】(2020·天水市第一中学高三月考(理))如图,在三棱柱ABC A B C '''-中,已知CC '⊥平面ABC ,90ACB ∠=o ,3BC =,4AC CC ='=.(1) 求证:AC A B '⊥';(2) 求直线CC '与平面ABC '所成角的正弦值. 【规律方法】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.热门考点03 二面角1.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图2、3,12,n n u r u u r分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).【典例5】(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【典例6】(2017·北京高考真题(理))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD P 平面MAC ,6PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 【规律方法】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.热门考点04 空间角有关的探索性问题【典例7】(2019·浙江高二期中)如图所示的几何体中,PD 垂直于梯形ABCD 所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,12,12PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【典例8】(2019·河北名校联盟模拟)如图所示,在梯形ABCD 中,AB ∥CD,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE =2BF =2,平面BFED ⊥平面ABCD.(1)求证:AD⊥平面BFED.(2)在线段EF上是否存在一点P,使得平面P AB与平面ADE所成的锐二面角的余弦值为5728?若存在,求出点P的位置;若不存在,说明理由.【总结提升】与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.热门考点05 利用向量求空间距离1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则222212121||()()()ABd AB a a b b c c ==-+-+-u u u r.2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【典例9】(2019·安徽高考模拟(理))在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF的距离为( )A.3λB.2C.2λ D.5 【典例10】设正方体的棱长为2,则点到平面的距离是( )A. B. C. D.【典例11】(2018·四川省广安石笋中学校高考模拟(理))如图,在棱长为2的正方体中,M是线段AB 上的动点.证明:平面;若点M 是AB 中点,求二面角的余弦值;判断点M 到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.巩固提升1.(2019·四川高二期中(文))已知正方体1111ABCD A B C D 中,E ,F 分别为1BB ,1CC 的中点,那么异面直线AE ,1D F 所成角的余弦值为( ) A .45B .35C .23D .572.(2019·福建高二月考)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记11D PD B=λ.当∠APC 为钝角时,λ的取值范围是________.3.(2019·浙江高三期中)如图,已知三棱台111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=o ,30BAC ∠=o ,11114AA CC BC AC ====,,E F 分别是11,ACBC 的中点.(1)证明:BC EF ⊥(2)求直线EB 与平面11BCC B 所成角的正弦值.4.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.(2019·首都师范大学附属中学高二期中)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(1)若点F 为PD 上一点且13PF PD =,证明:CF P 平面PAB .(2)求二面角B PD A --的大小.6.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.7.(2020·江苏淮阴中学高三期中)直三棱柱111ABC A B C -中, AB AC ⊥, 2AB =, 4AC =,12AA =, BD DC λ=u u u r u u u r .(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.8.(2017·江苏高考真题) 如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.9. (2019·江苏高三期中)如图,正三棱柱111ABC A B C -的所有棱长均为2,点E 、F 分别在棱1AA 、1BB 上移动,且1AE AA λ=u u u r u u u r ,1(1)BF BB λ=-u u u r u u u r .(1)若12λ=,求异面直线CE 与1C F 所成角的余弦值; (2)若二面角A EF C --的大小为θ,且25sin θ=,求λ的值. 10.(2019·福建高二月考)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,棱长为2,M ,N 分别为A 1B ,AC 的中点.(1)证明:MN //B 1C ;(2)求A 1B 与平面A 1B 1CD 所成角的大小.11.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 12.(2018·上海交大附中高二月考)如图,在三棱柱111ABC A B C -中,11AAC C 边长为8的正方形,6AB =,110BC A B ==(1)求证:1AA ⊥平面ABC ;(2)求二面角111A BC B --的余弦值;(3)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BD BC 的值. 13.(2019·湖北高三期中(理))如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,222AD AB BC ===,2PA =,点M 满足2MD PM =u u u u r u u u u r.(1)求证://PB 平面MAC ;(2)求直线PC 与平面MAC 所成角的正弦值.14.(2019·河北唐山一中高三期中(理))如图,在三棱柱111ABC A B C -中,122AA AB ==,13BAA π∠=,D 为1AA 的中点,点C 在平面11ABB A 内的射影在线段BD 上.(1)求证:1B D ⊥平面CBD ;(2)若BCD ∆是正三角形,求二面角1C BD C --的余弦值.15.(2019·宁夏银川一中高三月考(理))如图,在四棱锥S ABCD -中,侧棱SA ⊥底面ABCD ,底面ABCD 是直角梯形,AD ∥BC ,AB AD ⊥,且2SA AB BC ===,1AD =,M 是棱SB 的中点 .(Ⅰ)求证:AM ∥平面SCD ;(Ⅱ)求平面SCD 与平面SAB 所成锐二面角的余弦值;(Ⅲ)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.16.(2019·安徽高三期末(文))如图,在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=o V ,AD CD =,PO ⊥底面ABCD .()1求证:AC⊥底面PBD;()2若PBCV是边长为2的等边三角形,求O点到平面PBC的距离.。
高中数学两条异面直线所成的角
两条异面直线所成的角一、素质教育目标(一)知识教学点1.两异面直线所成角的定义及两异面直线互相垂直的概念.2.两异面直线的公垂线和距离的概念及两异面直线所成角及距离的求法.(二)能力训练点1.利用转化的思想,化归的方法掌握两异面直线所成角的定义及取值范围,并体现了定义的合理性.2.利用类比的方法掌握两异面直线的公垂线和距离等概念,应用在证题中体现了严格的逻辑思维,并会求两条异面直线所成角与距离.(三)德育渗透点进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.二、教学重点、难点、疑点及解决方法1.教学重点:两异面直线所成角的定义;两异面直线的公垂线及距离的概念;两异面直线所成角和距离的求法.2.教学难点:两异面直线所成角及距离的求法.3.教学疑点:因为两条异面直线既不相交,但又有所成的角,这对于初学立体几何的学生来说是难以理解的.讲解时,应首先使学生明了学习异面直线所成角的概念的必要性.三、课时安排1课时.四、教与学的过程设计(一)复习提问引入课题师:上新课前,我们先来回忆:平面内两条相交直线一般通过什么来反映它们之间的相互位置关系?生:通过它们的夹角.如图1-46,a、b的位置关系与a′、b′的位置关系是不一样的,a、b的夹角比a′、b′的夹角来的小.师:那么两条异面直线是否也能用它们所成的角来表示它们之间相互位置的不同状况.例如要表示大桥上火车行驶方向与桥下轮船航行方向间的关系,就要用到两条异面直线所成角的概念.(二)异面直线所成的角师:怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图1-47,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.师:针对这个定义,我们来思考两个问题.问题1:这样定义两条异而直线所成的角,是否合理?对空间中的任一点O 有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′,过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等.即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上.问题2:这个定义与平面内两相交直线所成角是否有矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.师:在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直(出示模型:正方体).例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面.(三)两条异面直线的距离师:(出示模型)观察模型,思考问题:a与b,a′与b所成角相等,但是否就表示它们之间的相互位置也一样呢?生:不是.它们之间的远近距离不一样,从而得到两条异面直线的相互位置除了用它们所成的角表示,还要用它们之间的距离表示.师:那么如何表示两条异面直线之间的距离呢?我们来回忆在平面几何中,两条平行线间的位置关系是用什么来表示的?生:用两平行线间的距离来表示.师:对.如图1-50,要知道它们的距离,先要定义它们的公垂线,如图1-50:a∥b,a′∥b′,c⊥a,c′⊥a′,则a、b与a′、b′的公垂线分别为c、c′,且线段AB、A′B′的长度分别是a、b与a′、b′之间的距离.对两条异面直线的距离,我们可以应用类似的方法先定义它们的公垂线.定义:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.师:根据定义,思考问题.问题1:和两条异面直线都垂直的直线有多少条?答:无数条.因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.问题2:两条异面直线的公垂线有几条?答:有且只有一条(出示正方体骨架模型),能和AA′、 B′C′都垂直相交的只有A′B′一条;能和AB与面A′C′内过点A′的直线都垂直相交的直线只有一条AA′.师:有了两条异面直线公垂线的概念,我们就可以定义两条异面生成的距离.定义:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.如图1-52中的线段AB的长度就是异面直线a、b间的距离.下面,我们来完成练习和例题.(四)练习(1)图中哪些棱所在的直线与直线BA′例设图1-53中的正方体的棱长为a,成异面直线?(2)求直线BA′和CC′所成的角的大小.(3)求异面直线BC和AA′的距离.解:(l)∵A′平面BC′,而点B,直线CC′都在平面BC′∴直线BA′与CC′是异面直线.同理,直线C′D′、D′D、DC、AD、B′C′都和直线BA′成异面直线.(2)∵CC′∥BB′,∴BA′和BB′所成的锐角就是BA′和CC′所成的角.∵=∠A′BB′=45°,∴BA′和CC′所成的角是45°.(3)∵AB⊥AA′,AB∩AA′=A,又∵AB⊥BC,AB∩BC=B,∴AB是BC和AA′的公垂线段.∵AB=a,∴BC和AA′的距离是a.说明:本题是判定异面直线,求异面直线所成角与距离的综合题,解题时要注意书写规范.【练习】(P.16练习1、3.)1.(1)两条直线互相垂直,它们一定相交吗?答:不一定,还可能异面.(2)垂直于同一直线的两条直线,有几种位置关系?答:三种:相交,平行,异面.3.画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直线.解:(五)总结本节课我们学习了两条异面直线所成的角,以及两条异面直线间的距离和有关概念.并学会如何求两条异面直线所成角及距离,懂得将其转化为平面几何问题来解决.五、作业P.17-18中9、10.。
考点18 异面直线所成的角-庖丁解题2019学年高一数学人教版(必修2)(解析版)
原创精品资源学科网独家享有版权,侵权必究!
1
异面直线所成的角
1.定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角或夹角.
2.异面直线所成的角θ的取值范围:(090]︒︒,
3.当θ=o 90时,a 与b 互相垂直,记作a b ⊥.
【例】设P 是直线l 外一定点,过点P 且与l 成30°角的异面直线( )
A .有无数条
B .有两条
C .至多有两条
D .有一条
【答案】A
【规律总结】异面直线所成的角的大小与O 点的位置无关,即O 点位置不同时,这一角的大小是不会改变的.
1.如图所示,在长方体1111ABCD A B C D -中,AB 11BC CC ==,则异面直线11AC BB 与所成角的大。
【高中数学】求异面直线所成的角
【高中数学】求异面直线所成的角求异面直线所成的角,一般有两种,一种是几何法,这是人教版(A)版本倡导的传统的,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。
还有一种是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是人教版(B)倡导的方法,下面举例说明两种方法的应用。
例:长方体ABCD-A1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的角。
解法1:平移法设A1C1与B1D1交于O,取B1B中点E,连接OE,因为OE//D1B高三,所以∠C1OE或其补角就是异面直线A1C1与BD1所成的角△C1OE中所以异面直线图1解法2:补形法在长方体ABCD?DA1B1C1D1的面BC1上补上一个同样大小的长方体,将AC平移到BE,则∠D1BE或其补角就是异面直线A1C1与BD1所成的角,在△BD1E中,BD1=3,所以异面直线A1C1与BD1所成的角为图2解法3:利用公式、 2,则,,所以图3解法4:向量几何法:为空间一组基向量所以异面直线A1C1与BD1所成的角为图4解法5:向量代数法:<以D为坐标原点,DC、DA、DD1分别为x、y、z轴,建立空间直角坐标系,则A(0,1,0)、C(2,0,0),B(2,1,0)、D1(0,0,2),所以异面直线A1C1与BD1所成的角为图5解法6:利用公式定理:四面体A?DBCD两相对棱AC、BD间的夹角图6解:连结BC1、A1B在四面体,易求得图7由定理得:所以感谢您的阅读,祝您生活愉快。
高中数学线面角与线线角例题、习题-学生
线面角与线线角专练(小练习一)【知识网络】1、异面直线所成的角:(1)范围:(0,]2πθ∈;(2)求法;2、直线和平面所成的角:(1)定义:(2)范围:[0,90];(3)求法;【典型例题】例1:(1)在正方体1111ABCD A BC D -中,下列几种说法正确的是 ( )A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1BC 成60角(2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( )A 、2个B 、4个C 、6个D 、8个(3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1,2则这个棱柱的侧 面对角线E 1D 与BC 1所成的角是 ( )A .90ºB .60ºC .45ºD .30º(4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。
(5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___.例2:.如图:已知直三棱柱ABC —A 1B 1C 1,AB =AC ,F 为棱BB 1上一点,BF ∶FB 1=2∶1,BF =BC =2a 。
(I )若D 为BC 的中点,E 为AD 上不同于A 、D 的任意一点,证明EF ⊥FC 1;(II )试问:若AB =2a ,在线段AD 上的E点能否使EF 与平面BB 1C 1C 成60°角,为什么?证明你的结论。
例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面PAB ⊥底面ABCD.(Ⅰ)证明:BC ⊥侧面PAB;(Ⅱ)证明: 侧面PAD ⊥侧面PAB;(Ⅲ)求侧棱PC 与底面ABCD 所成角的大小; A B C DPA B C H S M 线面角与线线角专练(小练习二)例4:设△ABC 内接于⊙O ,其中AB 为⊙O 的直径,PA ⊥平面ABC 。
高中数学:异面直线所成的角求法(汇总大全)
异面直线所成的角一、平移法:常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
直角平移法:1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小.解:设BD 的中点G ,连接FG ,EG 。
在△EFG 中 EF =3FG =EG =1∴∠EGF =120° ∴AD 与BC 成60°的角。
2.正∆ABC 的边长为a ,S 为∆ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC和AB 的中点.求异面直线SA 和EF 所成角. 正确答案:45°3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA=2π,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN ,则QN ∥SM∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN =a 25 NQ =21SM =42a BQ =a 414∴COS ∠QNB =5102222=⋅-+NQ BN BQ NQ BN4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC =CA =CC 1,求BM 与AN 所成的角.解:连接MN ,作NG ∥BM 交BC 于G ,连接AG , 易证∠GNA 是BM 与AN 所成的角.设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6, cos ∠GNA =1030562556=⨯⨯-+。
高中数学 空间图形的基本关系与公理 1_4_2 公理4(平行公理)与异面直线所成的角课件
目标导航
预习引导
2.等角定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或 互补.
预习交流 2
如果两个角的两条边分别对应平行且方向相同 ,那么这两个角的 关系如何?如果有一组对应边方向相同,另一组对应边方向相反,那么这 两个角的关系如何? 提示:相等;互补.
目标导航
预习引导
3.空间四边形 四个顶点不在同一平面内的四边形叫作空间四边形.
第 2 课时
公理 4(平行公理)与异面直线所成的角
目标导航
预习引导
学习目标
1.记住并会应用公理 4. 2.理解等角定理的条件和结论. 3.知道什么是空间四边形. 4.知道什么是异面直线所成的角,会求简单的异面直线所成的角. 重点:公理 4 及其应用以及异面直线所成角的求法. 难点:对异面直线所成的角的理解和求法. 疑点:怎样求异面直线所成的角?
= ,请回答并证明当空间四边形 ABCD 的四条边及点
2 3
G,H 满足什么条件时,四边形 EFGH,
(1)为平行四边形? (2)为菱形?
问题导学
当堂检测
思路分析:由
������������ ������������
=
������������ ������������
= ,可想到证明 EF∥AC;为使四边形 EFGH
2 3
2 3
理由:由(1)知,若
=
������������ ������������
= ,
3 5 2 5 2 3
2 3
则四边形 EFGH 为平行四边形,且 EF= AC,EH= BD.若 AC= BD, 则 EF= AC= BD=EH. ∴ 平行四边形 EFGH 为菱形.
3 5 2 5
异面直线所成角求法总结加分析
异面直线所成角求法总结加分析异面直线之间的角有三种情况:垂直角、斜面角和平行角。
下面将对这三种角的概念、性质和求法进行总结和分析。
一、垂直角:垂直角是指两条异面直线相交时,形成的对立的角,其角度为90度。
垂直角的性质如下:1.对于两条异面直线来说,如果它们是垂直的,则它们所成的角度必定是90度。
2.两条垂直的直线称为互相垂直。
3.垂直角的两边是相互垂直的,一边减去90度后得到另一边所成的角度。
求法:已知两条异面直线,求它们的垂直角可以使用以下方法:1.根据两条直线的方向向量,计算它们的点积。
若点积为0,则两条直线是垂直的。
2.若两条直线的方程式已知,可以将两条方程式相乘后化简,得到一个二次方程。
如果该二次方程的判别式为0,则两条直线是垂直的。
二、斜面角:斜面角是指两条异面直线相交时,形成的不是对立的角,其角度不等于90度。
斜面角的性质如下:1.对于两条异面直线来说,如果它们不是垂直的,则它们所成的角度不等于90度。
2.斜面角的度数可以通过几何或三角函数求解。
求法:已知两条异面直线,求它们的斜面角可以使用以下方法:1.根据两条直线的方向向量,计算它们的夹角。
可以使用向量的点积或夹角公式求解。
2.若两条直线的方程式已知,可以将两条方程式中的方向向量代入夹角公式中求解。
三、平行角:平行角是指两条异面直线之间的对应角,如果两个对应角的度数相等,则这两条异面直线是平行的,平行角的性质如下:1.对于两条异面直线来说,如果它们是平行的,则它们所成的对应角度相等。
2.平行角的两边分别平行于两条异面直线。
求法:已知两条异面直线,求它们的平行角可以使用以下方法:1.根据两条直线的方向向量,计算它们的夹角。
如果夹角为0度,则两条直线是平行的。
2.若两条直线的方程式已知,可以将两条方程式中的方向向量代入夹角公式中求解。
综上所述,垂直角是指两条异面直线相交时形成的90度角;斜面角是指两条异面直线相交时形成的非90度角;平行角是指两条异面直线之间对应角的度数相等。
异面直线所成的角公式
异面直线所成的角公式设两条异面直线为L1和L2,分别用向量v1和v2表示。
假设L1过点P1,在方向向量为a1的直线上,L2过点P2,在方向向量为a2的直线上。
首先,我们需要找到两条直线的一个公共点,以确定二者的夹角。
这个点可以通过求解线性方程组来得到。
设P为两条直线的一个公共点,则有以下方程组:P = P1 + ta1, P = P2 + sa2其中,t和s为参数,可以通过解这个方程组得到。
然后,我们可以通过向量的点积来计算两条直线的夹角。
向量的点积定义为:v1 · v2 = ,v1,,v2,cosθ其中,v1,和,v2,分别表示向量v1和v2的模长,θ表示两条直线的夹角。
可以将向量的点积用两条直线上的向量和公共点表达出来。
设向量v1和v2分别由L1和L2上的两点表示,即:v1=P-P1v2=P-P2将这两个向量代入点积公式中,并化简得到:(v1 · v2) = (P - P1) · (P - P2) = (ta1 · a2)再将点积公式代入另一个表达式:v1,,v2,cosθ = ,v1,,v2,(v1 · v2) / (,v1,,v2,) = (v1 · v2) / (,v1,,v2,)综上所述,两条异面直线的夹角可以通过以上公式计算。
需要注意的是,当两条直线平行时,夹角为零或π,这时点积为零。
另外,可以通过向量的夹角公式来计算两条直线的夹角。
向量的夹角公式为:cosθ = (v1 · v2) / (,v1,,v2,)由于两条异面直线上的向量没有交点,所以无法直接计算两条直线的夹角。
但可以通过求取两个直线上的平行向量的夹角来得到近似的夹角。
当直线为光滑曲线或曲面时,可以通过取曲线上的两个切向量来近似计算得到夹角。
总结起来,异面直线所成的角可以通过以下两种方法计算:1.通过向量的点积和模长计算角度的余弦值,再通过反余弦函数求得夹角的值。
异面直线所成的角的两种求法
异面直线所成的角的两种求法,求异面直线所成的角是初学立几的同学遇到的第一个难点。
难在何处? 下面介绍两种求法,与大家共磋商。
一.传统求法--------找、作、证、求解。
求异面直线所成的角,关键是平移点的选择及平移面的确定。
平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。
平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。
例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3,求AB 和CD 所成的角.解 由三角形中位线的性质知,HG∥AB,HE∥CD,∴ ∠EHG 就是异面直线AB 和CD 所成的角.∵ EFGH 是平行四边形,HG =21AB =62, HE =21,CD =23, ∴ S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123.∴ sin∠EHG=22,故∠EHG=45°. ∴ AB 和CD 所成的角为45°注:本例两异面直线所成角在图中已给,只需指出即可。
例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角。
(如图) 解:设G 是AC 中点,连接DG 、FG 。
因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG=21 BC ,FG∥AD,且FG=21AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求。
由BC=AD 知EG=GF=21AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。
人教A版高中数学必修二《异面直线所成的角》教学设计
《异面直线所成的角》教学设计[教学目的]:知识与技能:①理解并掌握异面直线所成的角的概念及初步运用.②掌握在简单几何载体中找(作)出两条异面直线所成角的方法及求解步骤过程与方法:①进一步培养学生的空间想象能力和分析、解决问题的能力②培养学生获取数学知识的能力,数学交流表达的能力和自主学习的内在发展能力.③培养把空间问题转化为平面问题的化归思想的运用能力情感态度与价值观:①通过让学生小组合作学习,培养学生学习的主动性和合作意识②通过让学生体验成功,享受自主学习的乐趣,培养学生学习数学的自信心,体现数学语言的严谨性.在学法上,引导学生采用自主探究与互相协作相结合的学习方式.让每一个学生都能参与研究,并最终学会学习.[教学重点和难点]:教学重点:(1)异面直线所成角的概念(2)异面直线所成角的计算.教学难点:异面直线所成角的概念的理解,异面直线所成角的计算[教学过程]:一、新课引入1.空间中两条直线的位置关系有哪几种?2.不同的异面直线有不同的相对位置关系,用什么几何量可以反映异面直线之间的相对位置关系呢?这节课我们共同来探讨其中的一个方面.(板书课题:异面直线所成的角)二、讲授新课(一)异面直线所成的角的定义知识探究(一):异面直线所成的角【思考1】两条相交直线的相对位置关系,是通过什么几何量来反映的?【思考2】两条异面直线之间有一个相对倾斜度。
设想也用一个角来反映异面直线的相对倾斜度。
但不能直接度量,你有什么办法解决这个矛盾?【思考3】若将两异面直线分别平行移动,它们的相对倾斜度是否会发生变化?【思考4】把两条异面直线分别平移,使之在某处相交得到两条相交直线,我们用这两条相交直线所夹的锐角(或直角)来反映异面直线的相对倾斜程度,并称之为异面直线所成的角.你能给“异面直线所成的角”下个定义吗?异面直线所成的角定义:对于两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a , b ′∥b ,则 a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)【思考5】若点O 的位置不同,则直线a ′与b ′的夹角大小发生变化吗?为什么?点O 宜选在何处?知识探究(二):两条直线垂直【思考】我们规定两条平行直线的夹角为0°,那么两条异面直线所成的角的取值范围是什么? (0,]︒︒90注意:如果两条异面直线所成的角是90°,则称这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .(二)异面直线所成角的求法师:同学们,我们理解了两条异面直线所成角的定义,那么在实际问题中你会不会求两条异面直线所成的角呢?请看例题。
正四棱锥异面直线所成角
正四棱锥异面直线所成角
正四棱锥异面直线所成角是指正四棱锥中,不在同一平面上且不平行也不相交的两条直线所成的角。
这个角的大小取决于两条异面直线的方向向量或基向量之间的夹角。
在正四棱锥中,两条异面直线的方向向量分别为a和b。
这些向量之间的关系可以通过角度来表示。
当这两条异面直线是斜对边时,所成的角就是90 度(π/2弧度);当它们是相邻边时,所成的角就是 45 度(π/4弧度)。
异面直线所成角的计算公式为:
θ = arccos(abs(a·b) / (||a|| ×||b||))
其中,θ是异面直线所成角,a·b 是向量a和b的点积,||a|| 和 ||b|| 分别是向量a和b的模长。
在具体问题中,需要根据正四棱锥的几何特性和异面直线的位置关系来确定所成角的大小。
例如,在计算正四棱锥的体积或表面积时,需要用到异面直线所成角的信息。
新版高中数学北师大版必修2课件1.4.2等角定理与异面直线所成的角
-7-
第2课时 等角定理与异面直线所成的角
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
一题多解
探究一等角定理的应用
【例1】 如图所示,在正方体ABCD-A1B1C1D1中,M,M1分别是棱 AD和A1D1的中点.求证:
-12-
第2课时 等角定理与异面直线所成的角
首页
Z H 自主预习 IZHUYUXI
合作学习
EZUOXUEXI
D当堂检测 ANGTANG JIANCE
探究一
探究二
一题多解
解:(1)所在直线与BC'是异面直线的棱
有:AA',DD',A'B',DC,AD,A'D'.
(2)因为AD'∥BC',所以AD'与B'C所成的角就是BC'与B'C所成的角.
探究一
探究二
一题多解
解法1(直接平移法)如图所示.
连接A1C1,B1D1交于点O,取DD1的中点G, 连接GA1,GC1,OG,则OG∥B1D,EF∥A1C1,故∠GOA1或其补角就是 异面直线DB1与EF所成的角. ∵GA1=GC1,O为A1C1的中点,∴GO⊥A1C1. ∴异面直线DB1与EF所成的角为90°.
D当堂检测 ANGTANG JIANCE
2.异面直线所成的角
如图所示,过空间任意一点P分别引两条异面直线a,b的平行线 l1,l2(a∥l1,b∥l2),这两条相交直线所成的锐角(或直角)就是异面直线 a,b所成的角.如果两条异面直线所成的角是直角,我们称这两条直 线互相垂直.记作:a⊥b.
高一必修2数学空间两直线的位置关系知识点梳理
高一必修2数学空间两直线的位置关系知识点梳理(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一必修2数学空间两直线的位置关系知识点梳理空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
两异面直线所成的角课件-高三数学一轮复习专题
cos | cosm, n | | m n |
| m || n |
m n'
m'
n
α
P
4.三余弦定理
已知平面M 外有一直线L ,L在平面内的射影是l ,
L
平面M 内有一直线m .记L与l 所成的角为
l与m 所成的角为 ,L与m 所成的角为
则 cos cos cos
BE BP (0 1)
122 1 0
解之得 1
4
BE 1 BP 5
4
4
A
选C
O xD
AO
x
E C
C By
D
By
思考题3:在四棱锥 P ABCD 中,PA 底面ABCD ,底面ABCD 是平行四边形,ABC
600 , AB 1 , PA AD 2 ,点E 在线段PC 上.若异面直线AE 与 BD 所成角的
PE 所成角的余弦值为
A. 10
10
解:取正方形ABCD 的中心O
连接OE ,OP 在PEB 中,易知PE 5
在RtPOE 中cos PEO 1 5
设BD 与PE 所成角为
由三余弦定理得
B. 5 5
C. 6 6
D. 11 11
P
6
D
C
cos cosPEOcosEOB
1 2 10 5 2 10
D. 5 5
设AE 与OC 所成的角为 由cos cos EAB cos COB
得 cos EAB 7
sin AEB sin(EAB ABE) 16 5 53
53 sin EAB 2
53
A 由 AB BE sin AEB sin EAB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高中数学】高中数学知识点:异面直线所成的角异面直线所成角的定义:
直线a和B是具有不同平面的直线。
如果它们通过空间中的任意点O并分别引导直线a′和B′B,则直线a′和B′形成的锐角(或直角)称为直线a和B与不同平面形成的角,如下图所示。
两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们
就说这两条异面直线互相垂直。
在不同平面上直线形成的角度定义中,空间中的点O是可选的,与点O的位置无关。
求异面直线所成角的步骤:
a、通过定义构造角度,一个可以固定,另一个可以平移,或者两个可以同时平移到
特定位置,并且可以在特定位置选择顶点。
b、证明作出的角即为所求角;
c、使用三角形来寻找角度。
特别提醒:
(1)两条直线在不同平面上形成的角度与点O(平移后两条直线的交点)的选择无
关
(2)两异面直线所成角θ的取值范围是0
<θ≤90
.
(3)判断空间中两条直线是不同平面直线的方法① 判断定理:平面外a点与平面
内B点之间的连线与平面内的直线,但B点是不同的平面直线;② 相反的证明:不可能
证明两条直线是共面的
线线角的求法:
(1)定义方法:使用“平移变换”使其成为两条相交直线形成的角度。
当不同平面
上的直线垂直时,使用直线平面垂直度的定义或三垂线定理和逆定理来确定角度为90
.
(2)向量法:设两条直线所成的角为θ(锐角),直线l
一
和l
二
的方向向量分别为
高中数学相关知识点:直线与平面的夹角
直线与平面所成的角的定义:
① 直线和平面形成三个角:
a.斜线和平面所成的角:一条直线与平面α相交,但不和α垂直,这条直线叫做平面α的斜线.斜线与α的交点叫做斜足,过斜线上斜足以外的点向平面引垂线,过垂足与斜足的直线叫做斜线在平面α内的射影,平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.
b、垂直线与平面之间的角度:如果直线与平面垂直,则它们形成的角度为直角。
c.一条直线和平面平行,或在平面内,则它们所成的角为0
零
.
② 取值范围:0
≤ θ≤90
.
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
最小角度定理:
斜线和它在平面内的射影所成的角(即线面角),是斜线和这个平面内的所有直线所
成角中最小的角。
求直线与平面夹角的方法:
(1)找角:求直线与平面所成角的一般过程:①通过射影转化法,作出直线与平面所
成的角;②在三角形中求角的大小.
(2)向量法:设PA为平面α斜线,
,向量n为平面α的法向量,设pa与平面α所成的角为θ,则
相关的
高中数学
知识点:二面角
半平面的定义:
一条直线把一个平面分成两部分,每一部分都被称为半平面
二面角的定义:
从一条直线开始由两个半平面组成的图形称为二面角,这条直线称为二面角的边,这
两个半平面称为二面角的面。
二面角的平面角:
以二面角边上的任意点为顶点,使两条光线垂直于两个面的边。
这两条光线形成的角
称为二面角的平面角。
平面角度的大小可以通过平面的大小来测量。
多少度是二面角的平
面角,也就是说,多少度是二面角。
二面角的取值范围为[0180°]。
直二面角:
平面角是直角的二面角,称为直二面角。
如果两个相交平面形成的二面角是直二面角,则两个平面垂直;相反,如果两个平面垂直,则产生的二面角为直二面角。
二面角的平面角具有下列性质:
a、二面角的边缘垂直于其平面角所在的平面,即L⊥ 飞机AOB
b.从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必
在平面角的另一边(或其反向延长线)上.
c、二面角所在的平面垂直于二面角的两面,即平面AOB⊥ α、飞机AOB⊥ α.
求二面角的方法:
(1)定义方法:通过二面角的平面角计算;找出或制作二面角的平面角;符合其定
义的证明;通过求解三角形,计算出二面角的平面角。
上述过程可概括为“一项工作(发现)、两项证明和三项计算”
(2)三垂线法:已知二面角其中一个面内一点到另一个面的垂线,用三垂线定理或其
逆定理作出平面角.
(3)垂直面法:当已知二面角中从一点到两个平面的垂直线时,该平面与穿过两条
垂直线的两个半平面相交形成的角度即为平面角。
因此,可以看出,二面角的平面角所在
的平面垂直于边缘
(4)射影法:利用面积射影定理求二面角的大小;
其中s是平面图形在一个二面角平面上的面积,s'是平面图形在另一个平面上投影图
形的面积,α是二面角的大小
(5)向量法:设二面角
的平面角是θ。
①如果
那个
②设向量m、n分别为平面α和平面β的法向量
是否相等或互补取决于具体数字。
对二面角定义的理解:
根据这个定义,两个平面相交成四个二面角,其中两个相对的二面角大小相等。
如果
四个二面角中的一个是直二面角,那么四个二面角就是直二面角。
此时,两个平面相互垂直。
根据这个定义,要证明两个平面相互垂直,或者要证明一个二面角是一个直的二面角,只需证明它的平面角是一个直角,两个平面相交即可。
如果相交的二面角不是直的二面角,则必须有一对尖锐的二面角和一对钝的二面角。
在未来,两个平面形成的角度指的是一对
尖锐的二面角。
注意两个平面形成的角度与二面角之间的差异。