一元二次方程解法与应用
一元二次方程的解法及其应用

一元二次方程的解法及其应用一元二次方程是指只含有一个未知数的二次方程,其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知实数且a ≠ 0。
解法:一元二次方程的解法主要有两种:因式分解法和求根公式法。
1. 因式分解法:当一元二次方程的形式可以直接因式分解时,使用因式分解法可以快速求得其解。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x + 2)(x + 3) = 0。
根据零乘法,当一个乘积等于零时,其中一个或多个因子必须为零。
因此,我们得到x + 2 = 0或x + 3 = 0,从而解得x = -2或x = -3。
这两个解是方程的根,即方程的解集为{-2, -3}。
2. 求根公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,可以使用求根公式法求得其解。
根据求根公式:x = (-b ± √(b^2 - 4ac)) / (2a),我们可以直接计算出方程的解。
例如,对于方程2x^2 + 5x - 3 = 0,根据求根公式,我们有x = (-5 ±√(5^2 - 4*2*(-3))) / (2*2)。
计算得x = (-5 ± √(25 + 24)) / 4,进一步化简得x = (-5 ± √49) / 4,即x = (-5 ± 7) / 4。
因此,方程的解为x = (-5 + 7) / 4或x = (-5 - 7) / 4,简化得x = 1/2或x = -3/2。
解集为{1/2, -3/2}。
应用:一元二次方程的解法在数学中有着广泛的应用。
以下是一些常见的应用场景:1. 几何问题:一元二次方程的解法可以应用于几何问题中,例如求解二次函数的零点,即方程y = ax^2 + bx + c = 0的解,可以帮助我们确定函数的图像与x轴的交点,从而求得抛物线的顶点、焦点等信息。
2. 物理问题:在物理学中,一元二次方程的解法可以用于解决与运动和力有关的问题。
数学第讲一元二次方程及应用

❖ 3、(5x-4)2 -(4-5x)=0 ( 分解因式 法)
❖ 4、 x2-4x-10=0
( 配方 法)
❖ 5、 3x2-4x-5=0
( 公式 法)
❖ 6、 x2+6x-1=0
( 配方 法)
❖ 7、 y2- y-1=0
( 公式 法)
小结:选择方法的顺序是: 直接开平方法 →分解因式法 → 配方法 → 公式法
【解析】由题意得 x1+x2=3,x1x2=-2,所以 x21+3x1x2+x22=x21+2x1x2+x22+x1x2=(x1+x2)2 +x1x2=33+(-2)=9-2=7.
【答案】7
(2011 中考预测题)阅读材料:设一元二次方
程 ax2+bx+c=0(a≠0)的两根为 x1、x2,则
两根与方程系数之间有如下关系:x1+x2=-
b ≠0)有两个相等的实数根,即 x1=x2=-2a;
3.b2-4ac<0⇔一元二次方程 ax2+bx+c=0(a
≠0)没有实数根;
一元二次方程根的判别式:
△=b2-4ac>0 △=b2-4ac=0 △=b2-4ac<0
有两个不相等实数根 有两个相等实数根 方程无实数解
(2010·上海)已知一元二次方程 x2+x-1=0,下列判断正确的是( ) A.该方程有两个相等的实数根 B.该方程有两个不相等的实数根 C.该方程无实数根 D.该方程根的情况不确定
一元二次方程的应用
考点三:一元二次方程根的判别式
关于 x 的一元二次方程 ax2+bx+c=0(a≠
0)的根的判别式为 b2-4ac.
1.b2-4ac>0⇔一元二次方程 ax2+bx+c=0(a
≠ 0) 有 两 个 不 相 等 的 实 数 根 , 则 x1,2 =
一元二次方程的解法及其实际应用

。
例 3 已知 关 于 x 的 一元 二 次 方 程 ax2 bx c 0a 0 的 系 数 满 足 a c b , 则 此 方 程 必 有 一 根
为
。
针对练习:
★1、已知方程 x2 kx 10 0 的一根是 2,则 k 为
,另一根是 kx 2 0 的一个解与方程 x 1 3 的解相同。⑴求 k 的值; ⑵方程的另一个 x 1
。
变式 3:若 x2 xy y 14 , y 2 xy x 28 ,则 x+y 的值为
。
例 3、方程 x2 x 6 0 的解为( )
A. x1 3,x 2 2 B. x1 3,x 2 2 C. x1 3,x 2 3
例 4、已知 2x 2 3xy 2 y 2 0 ,则 x y 的值为
例2、 已知 x、y 为实数,求代数式 x 2 y 2 2x 4 y 7 的最小值。
例3、 已知 x2 y 2 4x 6 y 13 0,x、y 为实数,求 x y 的值。
针对练习:
★★1、试用配方法说明 10x2 7x 4 的值恒小于 0。
★★2、已知 x2 1 x 1 4 0,则 x 1
.
x2
x
x
类型四、公式法
⑴条件: a 0,且b2 4ac 0
⑵公式: x b b2 4ac , a 0,且b2 4ac 0 2a
类型五、 “降次思想”的应用
⑴求代数式的值;
⑵解二元二次方程组。
典型例题:
例1、 已知 x2 3x 2 0 ,求代数式 x 13 x 2 1 的值。
④ x2 y2 (x y)( x y)( x y) ⑤方程 (3x 1)2 7 0 可变形为 (3x 1 7 )(3x 1 7) 0
一元二次方程解决问题的各种形式

一元二次方程解决问题的各种形式一元二次方程解决问题的各种形式一元二次方程是中学数学学习中的重要内容,它不仅在数学中有着广泛的应用,还能帮助我们解决实际生活中的问题。
在本文中,我们将从多个不同的角度探讨一元二次方程解决问题的各种形式,帮助读者更全面地理解这一重要的数学概念。
1. 一元二次方程的基本形式一元二次方程是指只含有一个未知数的二次方程,通常写作ax²+bx+c=0,其中a、b、c分别是常数且a≠0。
解一元二次方程的方法有很多种,如配方法、公式法、完全平方公式等。
我们先来看一个简单的例子,通过配方法来解一元二次方程。
我们要解方程x²+6x+5=0,我们可以通过配方法将其写成(x+1)(x+5)=0,进而得出方程的解为x=-1或x=-5。
这是解一元二次方程的基本形式,但实际问题往往不止这一种形式。
2. 几何解法除了代数方法外,一元二次方程还可以通过几何方法来解决实际问题。
一条电线和一根铁管构成一个角,已知铁管的长度比电线的长度多5米,且电线和铁管的夹角是45度。
我们可以建立一个关于铁管长度的一元二次方程,并通过几何解法求出铁管的长度。
这种几何解法可以帮助我们更直观地理解一元二次方程在实际问题中的应用。
3. 时间、速度与距离的问题在物理和工程学科中,一元二次方程经常用于描述时间、速度与距离之间的关系。
一个运动员以8m/s的速度沿着一条笔直的跑道奔跑,30秒后他跑了240米的路程。
我们可以建立一个关于时间和距离的一元二次方程,通过分析这个方程来解决实际问题。
这种应用形式使得一元二次方程成为了解决实际问题的重要工具。
4. 经济与商业问题一元二次方程也被广泛地应用于经济学和商业领域。
某公司生产一种产品,生产成本和销售数量之间存在着一定的关系。
我们可以建立一个关于销售数量的一元二次方程,通过求解这个方程来找到最优的生产数量,使得利润最大化。
这种经济与商业问题的应用形式,让一元二次方程成为了决策分析中的有力工具。
一元二次方程与不等式的解法

一元二次方程与不等式的解法一元二次方程是指形式为ax^2 + bx + c = 0的方程,其中a、b、c为实数且a≠ 0。
而不等式是指形式为ax^2 + bx + c > 0或ax^2 + bx + c ≤ 0的不等关系,其中a、b、c为实数且a≠ 0。
本文将探讨一元二次方程与不等式的解法,并分析其应用场景。
一、一元二次方程的求解方法一元二次方程的解法主要有图像法、配方法、公式法和因式分解法等,在不同的情况下可以选择相应的方法进行求解。
1. 图像法图像法主要通过绘制函数y = ax^2 + bx + c的图像,通过观察函数与x轴的交点来确定方程的解。
当图像与x轴相交于两个点时,方程有两个实根;当图像与x轴相交于一个点时,方程有一个实根;当图像与x轴不相交时,方程无实根。
2. 配方法配方法是通过将一元二次方程的形式转化为一个完全平方的形式,并借助平方根的性质来求解。
具体步骤如下:- 首先,将方程的三项按照平方根的部分进行配方,即将bx项除以2并平方。
- 其次,将方程两边的式子按照平方差公式进行整理,并将两项的平方根合并。
- 最后,通过开平方根运算,得到方程的解。
3. 公式法公式法是通过一元二次方程的根与系数之间的关系,直接利用求根公式来求解方程。
对于一元二次方程ax^2 + bx + c = 0,其根的求解公式为:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个相反的根。
4. 因式分解法因式分解法主要适用于一元二次方程可以进行因式分解的情况,即方程的三项均可以被因式分解为两个一次项的乘积。
通过将方程进行因式分解,得到每个因式等于零的条件,并解得方程的根。
二、不等式的解法不等式的解法主要有图像法、代数法和数线法等,根据不同的不等式形式选择相应的方法进行求解。
1. 图像法图像法同样通过绘制不等式对应的函数曲线,观察函数曲线与坐标轴的关系来确定不等式的解。
一元二次方程的解法及实际应用

一元二次方程的解法及实际应用一、引言在数学中,一元二次方程是一种常见的形式,它可以用来解决很多实际生活中的问题。
本文将介绍一元二次方程的解法,并探讨一些实际应用。
二、一元二次方程的解法1. 标准形式一元二次方程的标准形式为:ax² + bx + c = 0。
其中,a、b、c分别代表方程中的系数,且a ≠ 0。
2. 利用“求根公式”解方程一元二次方程可通过求根公式来解决。
求根公式为:x = (-b ± √(b² - 4ac)) / 2a。
- 若b² - 4ac > 0,方程有两个不同实数根;- 若b² - 4ac = 0,方程有一个实数根,且为重根;- 若b² - 4ac < 0,方程无实数根,但可以有复数根。
三、实际应用1. 抛体运动在物理学中,抛体运动问题可以通过一元二次方程来建模和求解。
例如,当我们抛出一个物体时,可以通过解一元二次方程来计算物体的落地时间、最高高度等。
2. 金融领域一元二次方程在金融领域中也有实际应用。
例如,在债券定价中,可以使用一元二次方程来计算债券的到期回报率;在利润预测模型中,可以通过一元二次方程来估计销售量与利润之间的关系。
3. 工程建模在工程领域中,一元二次方程经常用于建立工程模型和解决实际问题。
例如,用于预测水位变化情况、建筑物的稳定性分析等。
4. 生活中的应用一元二次方程还广泛应用于我们的日常生活中,例如:- 菜价预测:可以使用一元二次方程拟合历史数据,预测未来的价格变动趋势;- 汽车刹车距离计算:根据实验数据构建一元二次方程,通过计算得到刹车距离;- 光学仪器矫正:利用一元二次方程来计算镜片的度数以及矫正度数;- 音乐振动学:通过一元二次方程来计算乐器的音调和共振频率。
四、结论一元二次方程作为数学中常见的形式,具有广泛的实际应用领域。
掌握一元二次方程的解法有助于我们在解决实际问题时提供更准确的结果。
一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
中考总复习数学第3节 一元二次方程及其应用

边的长是方程 x2-8x+12=0 的解,则这个三角形的周
长是 17 .
3. (2020·无锡)解方程:x2+x-1=0.
解:x1=-1+2
5,x2=-1-2
5 .
4. (2020·荆州)阅读下列“问题”与“提示”后,将 解方程的过程补充完整,求出 x 的值.
【问题】解方程:x2+2x+4 x2+2x-5=0. 【提示】可以用“换元法”解方程. 解:设 x2+2x=t(t≥0),则有 x2+2x=t2, 原方程可化为:t2+4t-5=0. 【续解】
-4ac > 0.即可得到关于 a 的不等式,从而求得 a 的 范围.(2)将 x=1 代入方程 x2+2x+a-2=0 得到 a
的值,再根据根与系数的关系求出另一根.
【自主作答】(1)b2-4ac=22-4×1×(a-2)=12- 4a>0,解得 a<3.
(2)设方程的另一根为 x1,由解的定义及根与系数的 1+2+a-2=0, a=-1,
关系,得 1×x1=a-2, 解得 x1=-3,则 a 的值是 -1,该方程的另一根为-3.
类型3:一元二次方程的应用 ►例3沅江市近年来大力发展芦笋产业,某芦笋生产 企业在两年内的销售额从 20 万元增加到 80 万元.设这 两年的销售额的年平均增长率为 x,根据题意可列方程为 () A.20(1+2x)=80 B.2×20(1+x)=80 C.20(1+x2)=80 D.20(1+x)2=80
数学 中考总复习
第3节 一元二次方程及其应用
类型1:一元二次方程的解法 ►例1分别用两种不同的方法解下列一元二次方程: (1)x2+6x=1; (2)(x-3)2+4x(x-3)=0.
分析:公式法是解一元二次方程通用的方法,在运
一元二次方程应用题解题方法和技巧

一元二次方程应用题解题方法和技巧解决一元二次方程应用题的过程中,先弄清楚题目的实际意义,然后设下不明确的数量,并用算式来表示出与其有关的其他量。
最后构成方程式,解出未知量,再经过实际检验即可。
首先,理解和分析题目是解答一元二次方程最关键的部分。
我们必须明确问题的陈述,明确每个已知量和未知量的关系,以便为建立方程式打下基础。
带入方程并解方程将比较简单,关键在于选择正确的变量和组成方程。
选择变量是解答一元二次方程应用题的重要步骤,我们应该选择一个我们认为最能帮助我们解决问题的变量,然后以它为基础构建方程。
关于如何选择变量,众说纷纭,最主要的建议是尽量选择与问题中其他量有直接关系的量。
其他的变量可以用这个变量表示出来。
设定好变量之后,就可根据题目中的信息编制一元二次方程了。
在编制方程时,必须确保方程准确完整的反映了题目中的所有信息。
所有的已知信息都应正确地反映在方程中,任何遗漏或错误都可能导致最终得到错误的答案。
求解方程是解答一元二次方程的最后一个步骤。
一旦我们构建了方程,就需要求解这个方程。
一元二次方程的求解,可以通过使用公式法或是完全平方法来完成。
完成解决一元二次方程后,需要对答案进行验证。
一般来讲,我们只需将所求得的解带入原方程,验证是否满足方程。
如果满足,那么解是正确的。
否则,可能需要重新解决方程。
总结一下,解决一元二次方程应用题的步骤包括理解和分析题目,选择变量,编制方程,求解方程以及验证答案。
每一个步骤都需要我们仔细的推敲和计算,确保我们能够正确的解决一元二次方程应用题,掌握其解题方法和技巧。
一元二次方程的解法(直接开平方、因式分解)

直接开平方与因式分解的比较
直接开平方
适用于方程有重根或可以通过移项整理成平方项系数为正数的情况。计算简单, 但适用范围有限。
因式分解
适用于所有一元二次方程,但需要一定的技巧和经验,对于复杂的一元二次方 程可能较难操作。
不同解法的适用范围
直接开平方法
引力问题
在引力问题中,一元二次方程可以 用来描述万有引力定律,如求解天 体之间的引力等。
在实际生活中的应用
经济问题
一元二次方程在经济中有着广泛 的应用,例如求解最优价格、最
大利润等。
金融问题
在金融领域中,一元二次方程可 以用来描述复利、保险等问题。
交通问题
在交通领域中,一元二次方程可 以用来描述车辆行驶的轨迹、速
避免错误
在因式分解过程中,需要 注意符号和运算的准确性, 避免出现错误。
检验
因式分解后需要进行检验, 确保分解结果是正确的。
03 一元二次方程解法的应用
在数学中的应用
代数问题
一元二次方程是代数中常见的基本方 程,通过解一元二次方程可以解决代 数问题,如求解未知数、证明不等式 等。
几何问题
函数与导数
在配方过程中,要保 证等式的平衡和等价 变换。
开平方时要注意正负 号的取舍,根据方程 的系数和判别式的符 号确定。
02 一元二次方程的因式分解
定义与性质
定义
因式分解是将一个多项式表示为 几个整式的积的形式。
性质
因式分解是整式乘法的逆运算, 即如果多项式等于几个整式的积 ,则这些整式是多项式的因式。
因式分解的步骤
01
02
03
提取公因式
将多项式中的公因子提取 出来,形成几个整式的积。
专题08一元二次方程及其应用(知识点总结例题讲解)-2021届中考数学一轮复习

中考数学专题 08 一元二次方程及其应用(知识点总结+例题讲解)一、一元二次方程有关概念:1.一元二次方程定义:只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的整式方程,叫做一元二次方程;2.一般形式:ax2+bx+c=0;(其中 a、b、c 为常数,a≠0)(1)其中 ax2、bx、c 分别叫做二次项、一次项和常数项;(2)a、b 分别称为二次项系数和一次项系数;(3)二次项系数:a≠0;(当 a=0 时,不含有二次项,即不是一元二次方程)3.一元二次方程必须具备三个条件:(1)必须是整式方程(等号两边都是整式);(2)必须只含有 1 个未知数;(3)所含未知数的最高次数是 2;4.一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解;一元二次方程的解也叫做一元二次方程的根。
【例题1】(2020 秋•奉贤区期末)下列各方程中,一定是一元二次方程的是()A.1 + 1 −2 = 0 B.ax2+bx+c=0x2 xC.(x﹣2)2=2(x﹣2)D.x2+2y=3【答案】C【解析】利用一元二次方程定义进行解答即可.解:A、含有分式,不是一元二次方程,故此选项不符合题意;B、当 a=0 时,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;= D 、含有两个未知数,不是一元二次方程,故此选项不符合题意;故选:C .【变式练习 1】(2020 秋•丹阳市期末)关于 x 的方程(m+1)x 2+2mx ﹣3=0 是一元二次方程,则( )A .m≠±1B .m =1C .m≠1D .m≠﹣1【答案】D【解析】根据一元二次方程定义可得 m+1≠0,再解可得答案. 解:由题意得:m+1≠0,解得:m≠﹣1;故选:D .【例题 2】(2020 秋•郫都区期末)若 x =m 是方程 x 2+x ﹣1=0 的根,则 m 2+m+2020 的值为()A .2022B .2021C .2019D .2018【答案】B【解析】把 x =m 代入已知方程,可以求得 m 2+m =1,然后整体代入所求的代数式求值即可.解:∵x=m 是方程 x 2+x ﹣1=0 的根,∴m 2+m ﹣1=0,∴m 2+m =1,∴m 2+m+2020=1+2020=2021.故选:B .【变式练习 2】设 m 是方程 x 2﹣3x+1=0 的一个实数根,则m 4+m 2+18 . m 2【答案】8【解析】利用一元二次方程的解的意义得到 m 2﹣3m+1=0,两边除以 m 得到 m + 1=3,m再把原式变形得到原式=m 2+1+ 1m 2=(m + 1 )2﹣2+1,然后利用整体代入的方法计算. m解:∵m 是方程 x 2﹣3x+1=0 的一个实数根,∴m 2﹣3m+1=0,∴m + 1 =3,∴原式=m 2+1+ 1 =(m + 1)2﹣2+1=9﹣2+1=8.mm 2mq b 4ac ≥0 二、一元二次方程的解法:1.解一元二次方程的基本思想:转化思想,即把一元二次方程转化为一元一次方程来求解;2.常用方法:(1)直接开平方法:适用形式:x 2=p(p≥0),(x+n)2=p 或(mx+n)2=p(p≥0)的方程;(2)配方法:套用公式 a 2+2ab+b 2=(a+b)2;a 2-2ab+b 2=(a-b)2将一元二次方程ax 2+bx+c=0(a≠0)配方为(x+m)2=n 的形式,再用直接开平方法求解; 配方法解一元二次方程的一般步骤是: ①将已知方程化为一般形式;②化二次项系数为 1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式; 变形为(x+p)2=q 的形式:如果 q≥0,方程的根是 x=-p± ;如果 q <0,方程无实根;(3)公式法:利用求根公式 x = -b ±∆ = 2 -)解一元二次方程 ax 2+bx+c=0(a≠0); 2a(4)因式分解法:将一元二次方程通过分解因式变为(x-a)(x-b)=0 的形式;进而得到 x-a=0 或 x-b=0 来求解; 3.方法选择技巧:(1)若一元二次方程缺少常数项,且方程的右边为 0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为 1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解。
一元二次方程分式方程的解法及应用知识讲解(提高)含答案

1,2=0;当m<0时,方程没有实数解.中考总复习:一元二次方程、分式方程的解法及应用—知识讲解(提高)【考纲要求】1.理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程;2.会解分式方程,解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.【知识网络】【考点梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.它的一般形式为ax2+bx+c=0(a≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成x2=m的形式,当m>0时,方程的解为x=±m;当m=0时,方程的解x(2)配方法:通过配方把一元二次方程 ax 2 + bx + c = 0 变形为 x + ⎪ =如果一元二次方程 ax 2 + bx + c = 0 (a ≠0)的两个根是 x 、x ,那么 x + x = - ,x ⋅ x = c .aa⎛ ⎝ b ⎫2 b 2 - 4ac 2a ⎭ 4a 2的形式,再利用直接开平方法求得方程的解.( 3 ) 公 式 法 : 对 于 一 元 二 次 方 程 ax 2 + bx + c = 0 , 当 b 2 - 4ac ≥ 0 时 , 它 的 解 为x = -b ± b 2 - 4ac 2a.(4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.要点诠释:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一 般方法.易错知识辨析:(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中 a ≠ 0 .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化 1.(4)用直接开平方的方法时要记得取正、负.3.一元二次方程根的判别式一元二次方程根的判别式为 ∆ = b 2 - 4ac .△>0 ⇔ 方程有两个不相等的实数根; △=0 ⇔ 方程有两个相等的实数根; △<0 ⇔ 方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.要点诠释:△≥0 ⇔ 方程有实数根.4.一元二次方程根与系数的关系b 121 212要点诠释:(1)对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0. (2)解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分 解法,再考虑用公式法.(3)一元二次方程 a x 2 + bx + c = 0 (a ≠0)的根的判别式正反都成立.利用其可以①不解方程判定方程根的情况;②根据参系数的性质确定根的范围;③解与根有关的证明题.(4)一元二次方程根与系数的应用很多:①已知方程的一根,不解方程求另一根及参数系数;②已 知方程,求含有两根对称式的代数式的值及有关未知数系数;③已知方程两根,求作以方程两根或其代 数式为根的一元二次方程.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.要点诠释:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,使能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.要点诠释:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【典型例题】类型一、一元二次方程1.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y,那么原方程可化为y2-5y+4=0……①,解得y=1,y=4,12当y=1时,x2-1=1,∴x2=2,∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5,故原方程的解为x=2,1x=-2,x=5,x=-5.234解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用________法达到了解方程的目的,体现了转化的数学思想;(2)请利用以上知识解方程x4-x2-6=0.2【思路点拨】此题考查了学生学以致用的能力,解题的关键是掌握换元思想. 【答案与解析】(1)换元法;(2)设 x 2 = y ,那么原方程可化为 y 2 - y - 6 = 0解得 y = 3 ; y = -21 2当 y = 3 时, x 2 = 3 ;∴ x = ± 3当 y = -2 时, x 2 = -2 不符合题意,舍去.所以原方程的解为 x = 3 , x = - 3 .1 2【总结升华】应用换元法解方程,体现了转化的数学思想.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用 高清 ID 号: 405754 关联的位置名称(播放点名称):例 3】【变式】设 m 是实数,求关于 x 的方程 x 2 - mx - 3x + m + 2 = 0 的根. 【答案】x 1=1,x 2=m+2.2.已知关于 x 的一元二次方程 ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,ab 2求的值.(a - 2) 2 + b 2 - 4【思路点拨】由于这个方程有两个相等的实数根,因此⊿=b 2 - 4a = 0 ,可得出 a 、b 之间的关系,ab 2然后将化简后,用含 b 的代数式表示 a ,即可求出这个分式的值.(a - 2) 2 + b 2 - 4【答案与解析】∵ ax 2 + bx + 1 = 0(a ≠ 0) 有两个相等的实数根,∴⊿= b 2 - 4ac = 0 ,即 b 2 - 4a = 0 .ab 2ab 2ab 2 ab 2∵ = = =(a - 2) 2 + b 2 - 4 a 2 - 4a + 4 + b 2 - 4 a 2 - 4a + b 2 a 2∵ a ≠ 0 ,∴ ab 2 b 2 =a a= 4【总结升华】本题需要综合运用分式和一元二次方程来解决问题,考查学生综合运用多个知识点解决问题的能解得,x=3+522力,属于中等难度的试题,具有一定的区分度.举一反三:【变式】关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围.(2)请选择一个k的负整数值,并求出方程的根.【答案】(1)方程有两个不相等的实数根,∴(-3)2-4(-k)>0.即4k>-9,解得,k>-9 4.(2)若k是负整数,k只能为-1或-2.如果k=-1,原方程为x2-3x+1=0.3-5,x=.12(如果k=-2,原方程为x2-3x+2=0,解得,x=1,x=2.)12类型二、分式方程3.解方程:【思路点拨】把原方程右边化为【答案与解析】代入原方程求解较为简单.原方程变为经检验,【总结升华】是原方程的根.时,x 2 - 6x + 5 = -因为, ,所以最简公分母为:,若采用去分母的通常方法,运算量较大,可采用上面的方法较好.举一反三:【变式 1】解方程:【答案】原方程化为方程两边通分,得化简得 解得经检验:是原方程的根.【变式 2】 解方程:7 31 4- =-x 2 - 6x - 4 x 2 - 6x + 5 x 2 - 6x + 9【答案】设k = x 2 - 6x + 5,则原方程可化为:731 4 -=-k - 9kk + 4去分母化简得:20k 2 - 147k - 1116 = 0∴(k - 12)(20k + 93) = 0∴k = 12 ,k = -9320当k = 12时,x 2 - 6x - 7 = 0(x - 7)(x + 1) = 0解之得:x = -1,x = 712当k = - 93 9320 2020x 2 - 120x + 193 = 0解此方程此方程无解.经检验:x = -1,x = 7是原分式方程的根.124.m为何值时,关于x的方程会产生增根?【思路点拨】先把原方程化为整式方程,使分母为0的根是增根,代入整式方程求出m的值.【答案与解析】方程两边都乘以整理,得,得【总结升华】分式方程的增根,一定是使最简公分母为零的根.举一反三:【变式】当m为何值时,方程会产生增根()A.2B.-1C.3D.-3【答案】分式方程,去分母得,将增根代入,得m=3.所以,当m=3时,原分式方程会产生增根.故选C.类型三、一元二次方程、分式方程的应用5.要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天.现在甲、乙两人合作2天后,再由乙单独做,正好按期完成.问规定日期是多少天?【思路点拨】设规定日期是x天,则甲的工作效率为【答案与解析】设规定日期为x天根据题意,得解得经检验是原方程的根答:规定日期是6天.,乙的工作效率为,工作总量为1.由题意得1000【总结升华】工程问题涉及的量有三个,即每天的工作量、工作的天数、工作的总量.它们之间的基本关系是:工作总量=每天的工作量×工作的天数.举一反三:【高清课程名称:一元二次方程、分式方程的解法及应用高清ID号:405754关联的位置名称(播放点名称):例4-例5】【变式】据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.【答案】设一片国槐树叶一年的平均滞尘量为x毫克,550=,2x-40x解得:x=22,经检验:x=22是原分式方程的解,且符合题意.答:一片国槐树叶一年的平均滞尘量为22毫克.6.某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队工程费共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队工程费共9500元,甲、丙两队合做5天完成全部工程的,厂家需付甲、丙两队工程费共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.【思路点拨】第一问是工程问题,工程问题中有三个量:工作总量,工作效率,工作时间,这三个量之间的关系是:工作总量=工作效率×工作时间第二问只要求出每天应各付甲、乙、丙各队多少钱,并由第一问求出甲、乙、丙各队单独完成这项工作所需的天数,即可求出在规定时间内单独完成此项工程哪个队花钱最少.【答案与解析】⑴设甲队单独做需天完成,乙队单独做需天完成,丙队单独做需天完成,依题意,得①×+②×+③×,得++=.④④-①×,得=,即z=30,④-②×,得=,即x=10,④-③×,得=,即y=15.经检验,x=10,y=15,z=30是原方程组的解.⑵设甲队做一天厂家需付元,乙队做一天厂家需付元,丙队做一天厂家需付元,根据题意,得由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.此工程由甲队单独完成需花钱元;此工程由乙队单独完成需花钱元.所以,由甲队单独完成此工程花钱最少.【总结升华】这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队单独完成这项工程所需时间分别为天,天,天,可列出分式方程组.在求解时,把整式方程组来解.,,分别看成一个整体,就可把分式方程组转化为。
一元二次方程的解法及应用

一元二次方程的解法及应用一元二次方程是数学中常见的一种方程形式,具有许多重要的解法和应用。
本文将介绍一元二次方程的解法,并探讨其在实际生活中的应用。
一元二次方程的标准形式为:ax^2 + bx + c = 0,其中a、b、c 为已知常数,且a≠0。
解一元二次方程的经典方法是使用求根公式,即二次方程的根公式。
根据根公式,一元二次方程的解可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / 2a其中,“±”表示两个解,即正负两个根。
在求解过程中,首先计算方程中的判别式Δ = b^2 - 4ac,然后根据Δ的正负情况来确定方程的解的性质。
如果Δ > 0,方程有两个实数解;如果Δ = 0,方程有两个相等的实数解;如果Δ < 0,方程无实数解,但可以有复数解。
除了根公式,求解一元二次方程还可以使用配方法、因式分解法等。
这些方法在特定情况下可以更加简便有效地求解方程。
例如,当方程可以进行因式分解时,可以直接将方程写成两个一次因式相乘的形式,然后令每个因式为零,求解得到方程的解。
配方法则通过将方程变形为一个完全平方的形式,进而求解方程。
一元二次方程的解法在实际生活中有着广泛的应用。
其中,最常见的应用之一是在物理学中的运动学问题中。
例如,当我们需要计算一个物体从静止开始运动的加速度、速度或位置时,往往需要建立起相应的运动方程,这样就可以转化为一元二次方程进行求解。
通过解方程,我们可以得到物体的运动规律和相关的物理量。
一元二次方程还广泛应用于工程学、经济学等领域。
在工程学中,一元二次方程可以用于建模和求解各种问题,如电路分析、结构力学、流体力学等。
在经济学中,一元二次方程可以用于描述供求关系、市场价格等经济现象,从而进行经济预测和决策分析。
除了以上的应用,一元二次方程还可以用于解决一些日常生活中的问题。
例如,我们可以利用一元二次方程来优化地设计园艺花坛的形状和面积,使其美观且占用空间最小。
一元二次方程及其解法应用

活动1
问题1 如图,有一块矩形铁皮,长100 cm,宽50 cm. 在它的四个角分别切去一个正方形,然后将四周突出 的部分折起,就能制作一个无盖方盒.如果要制作的 无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去 多大的正方形?(课件:制作盒子)
例 已知:关于x的方程 (2m-1)x2-(m-1)x=5m
3、说明多项式 x2 2mx 2m2 1 的值恒大于0
x m2 m2 1
4、先用配方法说明:不论x取何值,代数式 x2 5x 7 值总大于0,再求出当x取何值时,代数式 x2 5x 7 的值
最小?最小值是多少?
随堂练习 1 解下列方程. 1.x2 – 2 = 0;
2.x2 -3x- 1 =0 ;
根,你能求出a的值吗?
根的作用: 可以使等号成立.
活动3
巩固练习
1.你能根据所学过的知识解出下列方程的解吗?
(1) x2 36 0;
(2) 4x2 9 0 .
形如 ax2 c 0(a≠0,c ≠ 0)的 一元二次方程的解法:
ax2 c.
x2 c .
a
当ac<0时 , x
c.
3
拓展与提高:
2、解方程: (x 1)2 4(x 2)2
练习 (1) (x 1)2 36(1 2x)2 0 (2) 4(3x 1)2 9(3x 1)2 0
用配方法解一元二次方程的步骤:
移项:把常数项移到方程的右边; 配方:方程两边都加上一次项系数
一半的平方;
开方:根据平方根意义,方程两边开平方; 求解:解一元一次方程; 定解:写出原方程的解.
❖ (2)方程3 X2+2X=1的常数项是1,方程 3 X2-2X+6=0的一次项系数是2,这种说法对 吗?
小学数学认识一元二次方程

小学数学认识一元二次方程一元二次方程是小学数学中较为复杂的一个概念,需要对数学概念有一定的了解才能理解和解决。
一元二次方程包含一个未知数和其次方的方程,通常写作ax^2 + bx + c = 0,其中a、b、c为已知系数,a不等于0。
本文将介绍一元二次方程的基本概念、解法以及应用。
一、基本概念在学习一元二次方程之前,我们需要了解一些基本概念。
1.1 平方数:一个数的平方,例如1、4、9、16等。
1.2 二次方程:方程中含有未知数的平方项的方程,例如x^2 + 2x + 1 = 0就是一个二次方程。
1.3 一元二次方程:方程中只有一个未知数的平方项的方程,例如3x^2 - 2x + 1 = 0就是一个一元二次方程。
二、解法解一元二次方程通常有以下两种方法:因式分解法和求根公式法。
2.1 因式分解法:对于一些特殊的一元二次方程,可以通过因式分解的方法得到方程的解。
例如,对于方程x^2 - 4x + 3 = 0,我们可以将其分解为(x - 3)(x - 1) = 0,从而得到x的解为x = 3或x = 1。
2.2 求根公式法:对于一般的一元二次方程,我们可以使用求根公式来求解。
求根公式为x = (-b ± √(b^2 - 4ac)) / (2a)。
例如,对于方程2x^2 + 5x + 2 = 0,我们可以代入a = 2,b = 5,c = 2,然后计算得到x的解为x = -1/2或x = -2。
三、应用一元二次方程在现实生活中有着广泛的应用。
3.1 抛物线运动:抛出的物体在空中的运动轨迹可以用一元二次方程来表示。
例如,投掷一颗子弹的运动轨迹可以表示成y = -5x^2 + 10x + 3的形式,其中y为高度,x为时间。
3.2 建模和预测:一元二次方程可以用来对一些现实问题进行建模和预测。
例如,根据某商品的销售数据,可以建立销售量和价格之间的一元二次方程,从而预测不同价格下的销售量。
3.3 几何问题:一元二次方程也可以用来解决几何问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程解法与应用
【知识要点】
1. 一元二次方程你知道有哪些常用解法?
2. 还记得如何用配方法解方程吗?
3. 因式分解法解方程的理论依据是什么?
4. 如何解决实际应用中的增长率和经营问题 【典型例题】
#例1判断下列方程是不是一元二次方程:
(1)x 2 y 1
(5) a 1 x 2 k 1 ( a 、k 是常数)
#例3.用适当的方法解下列方程:
2
(1) x 1 5 (6) x 1 x 2 x 1 x 2 2x 1 x 1
#例2.当m 为何值时,方程 3mx 2 2mx 5x 2
m 是关于x 的
.次方程?
(3) xy 1
(4)2x x 2
3
2
(2) 81 x 2 16
再用水加满,这时容器里的溶液含纯酒精
32升,求每次倒出溶液的升数.
(3) x 2 4x 5 0 (4) x 2 2ax a 2 0
例4 .用配方法解下列方程
2
(1)
2x 5x 1
(2)
4x 2
8x 1
(3) x 2 px q 0( p 2
4q 0)
(4)
y 2 y 1 y y 1 0
例6.容器盛满纯酒精 50升,第一次倒出一部分纯酒精后用水加满,第二次又倒出同样多的酒精溶液,例5. 用适当的方法解方程
(1) 3x 2 5x 4x(x
3)
(x 2)(x 3)
(3) x 2 3x 2x .6
(4) (2y 1)2 3(1 2y)
例7某书店老板去批发市场购买某种图书,第一次购用100元,按该书定价2.8元现售,很快售完•由于该书畅销,第二次购书时,每本的批发价已比第一次高0.5元,用去了150元,所购数量比第一次多4
10本•当这批书售出4时,出现滞销,便以定价的5折售完剩余的图书,试问该老板第二次售书是赔钱5
了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
3 i
例8.已知a ,求a4 5a3 6a2 5a 4
J3 1
*例9.已知方程x2 bx c 0及x2 ex b 0分别各有两个整数根x1, x2及x1, x2,且
x1x2 0, x1 x20 • (1)求证:x10, x20,x10, x2 0 ; (2)求证:b 1 e b 1 ; (3)求b,e 所有可能的值.
再用水加满,这时容器里的溶液含纯酒精32升,求每次倒出溶液的升数.
*例10.小强有5张人民币,面值合计20元。
(1)_______________________________ 小强的 5 张人民币的面值分另U是___ 元, ______ 元,元,元, _______________________________ 元.
(2)小强到水果店,称了x斤苹果(x是整数),按标价应付y元,正好等于小强那五张人民币中的两张面
值之和。
这时果筐里还剩6斤苹果。
店主便对小强说:“如果你把这剩下的也都买去,那么连同刚才已经称的,一共就付10元钱吧。
”小强一算,这样相当于每斤比原标价减少了0.5元。
本着互利原则,便答应了,试求x和y。
【大展身手】
一、选择题(每小题4分,共20分)
# 1.下列方程中,关于x的一元二次方程是()
1 1
A. 3 x 1 2 2 x 1
B.右―20
x x
2 2 2
C. ax bx c 0
D. x 2x x 1
# 2、已知3是关于x的方程-x22a 1 0的一个解,则2a的值是()
A.11
B.12
C.13
D.14
# 3、用配方法解下列方程时,配方有错误的是(
二、填空题(每空3分,共30分)
# 1、若方程 mx 2 3x 4 3x 2是关于x 的一元二次方程,则 m 的取值范围是 .
# 2、认真观察下列方程,指出使用何种方法解比较适当:
(1) 4x 2 16x 5,应选用 ________ 法;
(2) 2(x 2)(x 1) (x 2)(x 4),应选用 ________ 法;
(3)
2x 2 3x 3
0,选用 __________ 法.
# 3、已知代数式7x(x 5) 10与代数式9x 9的值互为相反数,则 x = .
# 4.方程x 2 2x 3
0的解是 __ __________________ ;
5•如果(2a 2b 1)(2a 2b 1)
63,那么 a b 的值为 ________________ ;
6•已知关于x 的一元二次方程(2m 1)x 2 3mx 5 0有一根是x= — 1,则m = ____________________ 7•设x 2 3x y ,那么方程x 4 6x 3 x 2 24x 20 0可化为关于y 的方程是 _______________________________ &方程(x 2 3)2 12 8(x 2 3)的实数根是 _____________________________ 。
三、解下列方程(每小题6分,共36分) 1 •(配方法)x 2 4x 12
2
.(公式法)3x 2 5(2x 1) 0
3 •(因式分解法)3(x 5)2 2(5 x)
2 2
A. x -2x -99=0 化为(x -1) =100 2 2
B.x +8x +9=0 化为(x +4) =25
C.2 12-7 t -4=0 化为(t 7)2
81
4
16
D.3y 2
_4y _2=0 化为(y
2 2
10 )
3
9
# 4•方程x 3
4x 0的解是( —2, 2 B 、0, — 2 C 、0, 2
0,— 2, 2
# 5.
用配方法将二次三项式 a 2
4a 5变形,结果是(
A. (a 2)2 1
B. (a 2)2 1
C. (a 2)2
1
D. (a
2)2 1
6 .
2X y 1
x 2 3x 2y 10 0
五•应用题(每小题 7分,共14分)
1 •某百货商场服装柜在销售中发现: “宝乐”牌童装平均每天可售出 20件,每件赢利40元,为了迎接六 一国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加赢利,减少库存.经市场调查发现:如 果每件童装每降价 4元,那么平均每天就可多售出 8件•要想每天在销售这种童装上赢利
1200元,那么
每件童装应降价多少元?
2 •表示我国农村居民的小康生活水平实现程度:某贫困县地处西部,农村人口约 50万.2002年农村小
康生活的综合实现程度才达到 68%即没有达到小康程度的人口约为(
1-68%)X 50万=16万.
解答下列问题:
x 2
13
2 2
x y 16 x y 2
(1)假设该县计划在2002年的基础上,到2004年底使没有达到小康程度的16万农村人口降至10.24万,那么平均每年降低的百分率是多少?
(2)如果该计划实现, 2004年底该县农村小康进程接近上图哪一年的水平(假设该县人口两年内不变?)
【附加题】
1.解方程
(1) 169x2 39x 2 0
* 3•有一特殊材料制成的质量为30克的泥块,现把它切开为大、小两块,将较大的泥块放在一架不等
臂天平的左盘中,称得质量为27克;又将较小泥块放在该天平的右盘中,称得质量为8克。
若只考虑该天平的臂长不等,其他因素忽略不计,请你根据杠杆平衡原理,求出较大泥块和较小泥块的质量。
2
2.当x为何整数时,代数式9x 23x 2的值恰为两个连续正偶数的乘积?。