用多普勒效应测速的原理及应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用多普勒效应测速的原理及应用
肖健(北京工业大学实验学院电子信息工程系)
摘要:阐述用实验分析多普勒测速效应的原理及具体应用方法。实验中用水波代替了原本的声波,通过波纹的疏密清晰的反映了多普勒效应。
关键词:多普勒效应;速度;
由于波源或观察者相对于介质有相对运动时,观察者所接收到的波频率有所变化的现象就叫做多普勒效应.这种现象是奥地利物理学家多普勒(1803~1853)于1842年首先发现的,因此以他的名字命名。
1 多普勒效应验证方法
我们可以用水波代替声波(都是机械波),做如下演示实验.在盛有清水的大水槽中,以一端粘有直径约为8mm的石蜡球的细弹簧作为弹簧单振子,使单振子与水面接触,若使单振子沿竖直方向周期性地上下击打水面,这时,水面上就形成向四周传播的周期性同心圆波.若将振动着的单振子在水面上向右平移、便可看到从振源中心到右槽壁间的波纹变密、波长缩短,右壁接收圆波的频率变大,而振源中心到左槽壁的波纹变疏,波长增大,左槽壁接收圆波的频率变小,该实验仪器结构简单,易于取材,制作简便,便于操作,直观性强,可信度高,具有较好的实验效果.实验结果表明,单振子(振源)本身的频率并没有改变,而是水槽壁(接收者)接收的水波的频率发生了变化。
2 测速原理
多普勒测速仪是利用波的多普勒效应这一原理制成的,其原理是用波照射运动着的物体,运动物体反射或散射波,由于存在多普勒效应,反射或散射波将产生多普勒频移,利用产生频移的波与本振波进行混频再经过适当的电子电路处理即可得到运动物体的运动速度. 我们假设多普勒测速仪静止,运动物体的运动速度为v,运动物体的运动方向与多普勒测速仪的测速方向在同一直线上.如图1
图一
3 声波测速
为了得到多普勒测速仪所接收到的由于存在多普勒效应而频移的声波频率与运动物体运动速度之间的关系,我们分两步进行讨论.
第一步,多普勒测速仪发射声波,运动物体接收到其所发射的声波.在这个过程中,多普勒测速仪作为波源是静止的,而运动物体作为波接收器以速度v运动.设多普勒测速仪所发射的声波频率为f,运动物体所接收到的声波频率为f′,声波的传播速度为v0,则由图1得
(1)
第二步,运动物体反射或散射声波,多普勒测速仪接收到其所反射或散射的声波.在这个过程中,运动物体作为波源以速度v运动,而多普勒测速仪作为波接收器静止.设多普勒测速仪接收到的声波频率为f″,由第一步我们知道,运动物体所反射或散射的声波频率为f′,于是由图1得
(2)
把(1)式代入(2)式得
(3)
由(3)式得
(4)
(4)式即为被测物体的运动速度v与多普勒测速仪所发射的声波频率f、多普勒测速仪所接收到的由于存在多普勒效应而频移的声波频率f″以及声波的传播速度v0之间的关系。
4 声波多普勒效应的理论分析
结合教材的阐述,我们还知道,当波源与观察者有相对运动时,如果二者相互接近,观察者接收到波的频率增大;如果二者远离,观察者接收到波的频率减小.对于这种变化关系,下面笔者由浅入深地分三种情况针对声波做如下讨论.首先,设声源速度为vS,接收者速度为vB,v表示声波在介质中的传播速度,当声源向接收者运动时,vS取正值,而背离接收者运动时,vS取负值;当观察者向声源运动时,vB取正值,而背离声源运动时,vB取负值,波速v总取正值.1.声源不动,观察者以速度vB相对于介质运动,即vS =0、vB≠0时如观察者向着声源运动,则vB>0.因观察者以速度vB迎向声源运动,相当于波以速度v+vB通过接收者.单位时间内接收到的波数就是接收到的频率,即ν′=(v+vB)/λ=(v+vB)/(vT)=[(v+vB)/v]ν=[1+(vB/v)]
ν.①该式表明:当观察者向声源运动时,接收到的频率ν′为声源频率的[1+(vB/v)]倍;当观察者背离声源运动时,vB<0,则ν′<ν,即观察者接收到的频率ν′小于声源的振动频率ν.读者可自行分析当vB=-v时,会发生什么情况? 2.观察者不动,声源以速度vS相对于介质运动,即vB=0,vS≠0时。如声源向着观察者运动,这时vS>0.假定vS<v,因为声速仅决定于介质的性质,与声源的运动与否无关.所以在一个周期T内声源在S点发出的振动向前传播的距离等于波长λ.如声源不动,则波形。但若声源运动,则在一个周期的时间内声源在波的传播方向上通过一段路程vST而达到S′点,结果整个波形。中点S′、B′间的虚线所示.由于声源做匀速运动,所以,波形无畸弯.只是波长变小,其值为λ′==λ-vST=vT-vST=(v-vS)(1/ν).所以观察者在单位时间内接收到的波数为ν′=v/λ′=[v/(v-vS)]ν.②该式表明:当声源向着观察者运动时,观察者接收的频率是声源频率的v/(v-vS)倍.如声源背离观察者运动,则vS<0,所以有ν′<ν,即观察者接收到的频率比声源频率降低了.现在我们就不难明白前述火车相对观察者运动时音调变化的本质原因了.从以上所讨论的两种情况中,我们不难看出,无论是接收者相对介质运动还是声源相对介质运动,接收者接收到波的频率的变化情况虽然一样,但两种变化的本质机理却不同.前者是由相对波速的变化引起,而后者是由波长的变化引起.根据以上两种情况的讨论,我们可以很容易证明,当观察者和声源同时相对介质运动,即vB≠0、vS≠0时,观察者接收到声波的频率为ν′=(v+vB)/[(v-vS)/ν]=[(v+vB)/(v-vS)]ν.③该式也可以说是以上两种讨论的综合,如果在vS和vB两个量中有一个为零时,就可得出上面的①、②式分别所表示的两种情况.
5 多普勒效应的应用
交通警察向行进中的车辆发射频率已知的超声波同时测量反射波的频率,根据反射波的频率变化的多少就能知道车辆的速度。装有多普勒测速仪的监视器有时就装在路的上方,在测速的同时把车辆牌号拍摄下来,并把测得的速度自动打印在照片上。
测速雷达系列产品在世界发达国家的应用状况:世界发达国家的测速装备比较完善。针对不同的地区、地势及环境,他们都配有相应的测速产品。无论固定测量还是移动测量、手动测量还是自动测量,都有一定的普及度。例如在高速公路上,既有固定地点进行速度监测,也有许多巡逻车穿梭于公路间进行移动测量。再如在学校附近的路段,大多数都安装了速度显示牌,时时对过往车辆进行监测并对其提醒,从而保证学生的安全。雷达为利用无线电回波以探测目标方向和距离的一种装置。雷达为英文Radar一字之译音,该字系由Radio Detection And Ranging一语中诸字前缀缩写而成,为无线电探向与测距之意。全世界开始熟悉雷达是在1940年的不列颠空战中,七百架载有雷达的英国战斗机,击败两千架来袭的德国轰炸机,因而改写了历史。二次大战后,雷达开始有许多和平用途。在天气预测方面,它能用来侦测暴风雨;在飞机轮船航行安全方面,它可帮助领港人员及机场航管人员更有效地完成他们的任务。
雷达工作原理与声波之反射情形极类似,差别只在于其所使用之波为一频率极高之无线电波,而非声波。雷达之发射机相当于喊叫声之声带,发出类似喊叫声之电脉冲(Pulse),雷达之指向天线犹如喊话筒,使电脉冲之能量,能集中某一方向发射。接收机之作用则与人耳相仿,用以接收雷达发射机所发出电脉冲之回波。
测速雷达主要系利用都卜勒效应(Doppler Effect)原理:当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射