因式分解最牛最全的方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解
一、提公因式法.:ma+mb+mc=m(a+b+c)
二、运用公式法.
在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
(1) (a+b)(a-b) = a 2-b 2 a 2-b 2=(a+b)(a-b);
(2) (a ±b)2 = a 2±2ab+b 2 a 2±2ab+b 2=(a ±b)2;
(3) (a+b)(a 2-ab+b 2) =a 3+b 3 a 3+b 3=(a+b)(a 2-ab+b 2);
(4) (a-b)(a 2+ab+b 2) = a 3-b 3 a 3-b 3=(a-b)(a 2+ab+b 2).
下面再补充两个常用的公式:
(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;
(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);
例.已知a b c ,,是ABC ∆的三边,且222
a b c ab bc ca ++=++,
则ABC ∆的形状是( )
A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形 解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==
三、分组分解法.
(一)分组后能直接提公因式
例1、分解因式:bn bm an am +++
分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++
=)()(n m b n m a +++ 每组之间还有公因式! =))((b a n m ++
例2、分解因式:bx by ay ax -+-5102
解法一:第一、二项为一组; 解法二:第一、四项为一组;
第三、四项为一组。 第二、三项为一组。
解:原式=)5()102(bx by ay ax -+- 原式
=)510()2(by ay bx ax +-+-
=)5()5(2y x b y x a --- =)2(5)2(b a y b a x --- =)2)(5(b a y x -- =)5)(2(y x b a --
(二)分组后能直接运用公式
例3、分解因式:ay ax y x ++-2
2
分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
解:原式=)()(22ay ax y x ++-
=)())((y x a y x y x ++-+
=))((a y x y x +-+
例4: 分解因式:2
222c b ab a -+-
解:原式=222)2(c b ab a -+-
=22)(c b a --
=))((c b a c b a +---
四、十字相乘法.
(一)二次项系数为1的二次三项式
直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。 特点:(1)二次项系数是1;
(2)常数项是两个数的乘积;
(3)一次项系数是常数项的两因数的和。
思考:十字相乘有什么基本规律?
例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .
解析:凡是能十字相乘的二次三项 式ax 2+bx+c ,都要求24b ac ∆=- >0而且是一个完全平方数。
于是98a ∆=-为完全平方数,1a =
例5、分解因式:652
++x x
分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=5。 1 2
解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5
用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例6、分解因式:672
+-x x
解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1
=)6)(1(--x x 1 -6
(-1)+(-6)= -7
(二)二次项系数不为1的二次三项式——c bx ax ++2
条件:(1)21a a a = 1a 1c
(2)21c c c = 2a 2c
(3)1221c a c a b += 1221c a c a b +=
分解结果:c bx ax ++2=))((2211c x a c x a ++
例7、分解因式:101132+-x x
分析: 1 -2 3 -5
(-6)+(-5)= -11
解:101132+-x x =)53)(2(--x x
(三)二次项系数为1的齐次多项式
例8、分解因式:2
21288b ab a --
分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。
1 8b
1 -16b
8b+(-16b)= -8b
解:221288b ab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+
(四)二次项系数不为1的齐次多项式
22672y xy x +- 2322+-xy y x
1 -2y 把xy 看作一个整体 1 -1
2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3
解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy
五、换元法
例13、分解因式(1)2005)12005(200522---x x
(2)2)6)(3)(2)(1(x x x x x +++++
解:(1)设2005=a ,则原式=a x a ax ---)1(22
=))(1(a x ax -+
=)2005)(12005(-+x x
(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。
原式=222)65)(67(x x x x x +++++
设A x x =++652,则x A x x 2672+=++
∴原式=2
)2(x A x A ++=222x Ax A ++ =2)(x A +=2
2)66(++x x