数量遗传学(作物遗传育种专业)
徐云碧-从分子数量遗传学到分子植物育种
国际上最早的水稻QTL论文之一
博士论文的总结报告 Xu, Yun-Bi, Zong-Tan Shen, Ji-Chen Xu, Ying Chen and LiHuang Zhu. 1993. Mapping quantitative trait loci via restriction fragment length polymorphism markers in rice. Rice Genetics Newsletter 10:135-138.
1
Molecular Quantitative Genetics in China (1990-1994)
数量性状遗传改良的希望和曙光
Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. E. Lincoln and S. D. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721-726. Received 8 July 1988 Accepted 9 September 1988 Google 被引用次数:1155 (8:25am, Aug 24, 2011) Lander, E. S. and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199. Manuscript received August 2, 1988 Accepted for publication October 6, 1988 Google被引用次数:3614 (8:28am, Aug 24, 2011)
统计遗传学和数量遗传学
统计遗传学和数量遗传学统计遗传学(Statistical Genetics)是研究基因在群体中的分布和遗传变异的学科。
它利用统计学方法来分析基因与表型之间的关系,探索遗传和环境对个体表型变异的贡献。
统计遗传学主要关注以下内容:1.基因频率和基因型分布:通过对群体中基因频率和基因型分布进行统计分析,研究基因在群体中的分布规律和遗传动力学。
2.遗传连锁和基因关联:研究基因间的连锁关系和基因关联,了解遗传效应和基因相互作用对表型变异的影响。
3.遗传参数的估计:通过统计方法来估计遗传参数,如遗传方差、遗传相关性等,从而量化基因与表型之间的关系。
4.基因组关联分析:以全基因组信息为基础,通过对大规模基因型和表型数据的分析,寻找基因与复杂性状之间的关联,并揭示与疾病风险相关的基因位点。
数量遗传学(Quantitative Genetics)是研究连续性性状遗传规律的学科。
它通过量化表型变异,并将其归因于遗传和环境因素的相互作用,研究性状的遗传机制和遗传参数的估计。
数量遗传学主要关注以下内容:1.基因型与表型之间的关系:对连续性性状进行测量,并通过统计分析研究基因型和表型之间的关系。
2.遗传方差分析:利用统计模型和遗传方差分析方法,估计遗传和环境因素对性状变异的贡献。
3.遗传相关性和遗传进化:研究性状之间的遗传相关性和遗传进化,探讨性状演化和群体遗传结构的影响。
4.遗传参数的估计:通过统计方法和家族研究,估计遗传参数,如遗传方差、遗传相关性和遗传可塑性等。
统计遗传学和数量遗传学都是遗传学的分支领域,它们通过统计和数学方法来揭示基因与性状之间的关系,拓展了对遗传变异和遗传机制的理解。
这些研究对于人类和动植物的遗传性状研究、疾病遗传学以及选择育种等领域具有重要的意义。
作物遗传育种专业硕士研究生培养方案专业代码:090102一、培养目标
作物遗传育种专业硕士研究生培养方案专业代码:090102一、培养目标认真学习掌握马列主义、毛泽东思想、邓小平理论和“三个代表”重要思想,热爱祖国,具有集体主义精神以及追求真理和献身于科学教育事业的敬业精神和科学道德。
掌握作物遗传育种学科,包括作物育种学、细胞遗传学、数量遗传学、分子遗传学等领域坚实的基础理论和系统的专业知识;在所研究的方向范围内了解本学科发展的现状和趋势;具备田间、实验室的现代实验方法和技能;掌握一门外国语,能阅读本专业的外文资料,具有一定写作能力和口头表达能力;通过学位论文工作,在本学科的理论或专门技术上取得创新性成果或新进展;具有从事科学研究、大学教学或独立担负专门技术工作的能力。
二、学期与学制(一)学制:实行2-3年弹性学制,在职硕士研究生不得少于3年;对于提前修完学分,特别优秀的研究生可提前进行论文答辩,通过者可以提前毕业;对于不能按时修完学分或不能按时通过论文答辩的研究生可推迟毕业。
但在校年限(含休学、保留学籍)硕士生不得超过5 年。
(二)学期设置:每学年为两学期,每学期分两个阶段组织教学。
三、研究方向1. 作物品质改良2. 物理新技术在作物遗传育种中的应用3. 作物杂种优势理论与应用4. 作物分子育种5. 种子科学与技术四、课程设置与学分分布见附表2五、教学大纲和参考书目见附件4六、学位论文(一)至少用一年半时间从事科学研究和学位论文工作。
(二)学位论文应尽可能结合科研任务,选择对经济建设或学科发展具有重要意义或理论意义的课题,最迟必须在第三学期结束前在学科组作论文开题报告,就研究生对所选课题领域的国内外研究现状及完成学位论文的研究方法、研究手段、工作进度、预期成果等进行讲议和审核。
导师及其指导小组应加强对研究生论文写作的指导、督促和检查。
注重培养研究生“团结、勤奋、求实、创新”的优良学风。
(三)中期考核期间,应组织本专业和相关学科的专家,全面审查其取得学分情况,学位论文工作及取得的成果,提出修改和补充意见。
数量遗传学
质量性状:指由一对或对基因控制,在个体间能够明显区分,呈不连续性变异的性状。
数量性状:由微效多基因控制,在群体中不能明显区分,呈连续性变异的性状。
门阈性状:由微效多基因控制的,在群体中呈不连续分布的性状,一般能够明显地区分其表现形式。
数量遗传学:指用数理统计方法和数学分析方法研究数量性状遗传和变异规律的科学。
选择:在人类和自然干预下,某一群体的基因在世代传递的过程中,某种基因型个体的比例所发生的变化现象,称作选择。
适应度:比较群体中各种基因型(以个体平均留种子女数为标准)生存适应力的相对指标。
适应度就是特定基因型的留种率和群体最佳基因型留种率之比值。
选择系数:1减去适应度就是该基因型的选择系数。
留种率+淘汰率=1遗传漂变:如果群体规模较小,下一代的实际基因频率都可能由于抽样误差而偏离理论上应有的频率。
始祖效应:当来自大群体的一个小样本在特定环境中成为一个新的封闭群体,其基因库仅包括亲本群体中遗传变异的一小部分,并在新环境中承受新进化压力的作用,因而最终可能与亲本群分体。
这种过程在体现的般规律,称为始祖效应。
瓶颈效应:当大群体经历一个规模缩小阶段之后,以及在漂变中改变了基因库(通常是变异性减少)又重新扩大时,基因频率发生的变化。
同型交配:如果把同型交配严格地定义为同基因型交配,那么近交和同质选配都只有部分的同型交配,只有极端的近交方式——自交才是完全同型交配。
群体遗传学:专门研究群体的遗传结构及其变化规律的遗传学分支学科。
群体:是指一个种、一个变种、一个品种或一个其它类群所有成员的总和。
孟德尔群体:在个体间有相系交配的可能性,并随着世代进行基因交流的有性繁殖群体。
基因库:以各种基因型携带着各种基因的许多个体所组成的群体。
亚群:由于各种原因的交配限制,可能导致基因频率分布不均匀的现象,形成若干遗传特性有一定差异的群落通常称为亚群。
随机资本:在一个有性系列的生物群体中,任何一个雌性式雄性的个体与其任何一个相反性别的个体交配的机率是相同的。
《数量遗传学》复习资料
《数量遗传学》复习资料第一章绪论1.数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。
2.性状:生物体的形态、结构和生理生化特征与特性的统称。
如毛色、角型、产奶量、日增重等。
根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。
3.⑴1908年:英国数学家(哈迪)和德国医学家(温伯格)提出遗传的平衡定律,奠定了群体遗传学的基础。
⑵1918年:英国统计学家(费舍尔)发表《根据孟德尔遗传假说的亲属间相关研究》,系统地论述了数量遗传学的研究对象和方法,成为数量遗传学诞生的标志。
⑶1908年:瑞典遗传学家(尼尔森-埃勒) 提出多基因学说,用每对微效基因的孟德尔式分离来解释数量性状的遗传机制,奠定了数量遗传学的基石。
4.数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。
5.质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。
6.阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。
7.数量性状的特点:(1)必须进行度量,要用数值表示,而不是简单地用文字区分;(2)要用生物统计的方法进行分析和归纳;(3)要以群体为研究对象;组成群体某一性状的表型值呈正态分布。
8.决定数量性状的基因不一定都是为数众多的微效基因。
有许多数量性状受主基因或大效基因控制。
9.数量遗传学的研究内容:(1)数量性状的数学模型和遗传参数估计;(2)选择的理论和方法;(3)交配系统的遗传效应分析;(4)育种规划理论。
第二章数量遗传学基础1.数量性状的表型值,即观察值,是由遗传与环境共同作用的结果,即P = G + E + IGE其中,P为表型值,G为基因型值,E为环境偏差,IGE为遗传与环境效应间的互作。
通常,假定遗传与环境间不存在互作,即IGE=0,则有:P = G + E2.基因型值G是由基因的加性效应(A)、显性效应(D)和上位互作效应(I)共同作用的结果。
植物数量遗传学(2015)-第1章 绪论
第一章 绪论
二、数量遗传的形成与发展 1、数量遗传学早期积累
※ W. L. Johannsen(1903)的纯系学说将变异区分为 遗传的变异与非遗传的变异,提出了基因型和表现型的 概念,这为理解连续性变异也是遗传性状提供了依据 。 ※ Nilsson-Ehle(1909)根据小麦粒色的遗传提出了数 量性状的多因子假设,这一假设为E. M.East(1911) 玉米穗长和E. M. East(1913)烟草花冠长度的遗传试 验所证实。通过多因子假设将数量性状的遗传纳入到孟 德尔遗传的轨道。
第一章 绪论
一、数量性状与数量遗传 2、数量遗传学
传统数量遗传学:以微效多基因假说为前提,采用数量 统计方法对表型测量数据进行分析,建立了一系列的数 量遗传理论与方法: 基因的加性与显性、效应与方差、亲属间协方差、世代 平均值分析、遗传交配设计与遗传方差成分估计、遗传 率分析、选择及其响应、遗传相关分析、交配效应与配 合力分析等 微效多基因假说:数量性状是受位于染色体上的基因所 控制,遗传服从孟德尔规律,这些基因数量多、效应微 小、效应大小相等,易受环境影响。
植物数量遗传学
吉林农业大学农学院 张君
参考书籍
1、孔繁玲主编,植物数量遗传学,中国农业大学
出版社,2006.6。 2、朱军主编,遗传模型分析方法,中国农业出版 社,1997.2 3、植物数量性状遗传体系,科学出版社,2003.1 4、徐云碧、朱立煌著,分子数量遗传学,中国农 业出版社,1994.12 5、翟虎渠、王建康编著,应用数量遗传(第二 版),中国农业科学技术出版社,2007.3
第一章 绪论
二、数量遗传的形成与发展 3、数量遗传学的建立和发展
出版的数量遗传学专著有: ※ Mather(1949)出版了《Biometrical Genetics》,该书后来在Jinks 的参与下出版了第二版(1971)和第三版(1982) ※ Kearsey和Pooni《The Genetical Analysis of Quantitative Traits》 (1996) ※ Falconer (1960)出版了《Introduction to Quantitative Genetics》, 该书于1981、1989、1996年分别出了第二、三、四版 ※ Lynch和Walsh《 Genetics and Analysis of QuantitativeTraits 》 (1998) ※朱军,1997。遗传模型分析方法。中国农业出版社,北京 ※盖钧镒,章元明,王建康,2003。植物数量性状遗传体系(现代遗传学 丛书)。科学出版社,北京
作物QTL分析的原理与方法
作物QTL定位方法与技术作物QTL定位的方法主要有传统连锁分析、基因芯片 技术和深度学习等。连锁分析通过群体遗传学手段,鉴定两个或多个基因位点 间的连锁关系,进而确定控制性状的QTL。基因芯片技术利用基因组wide的标 记分布,对大量基因位点进行同时检测,高效地定位QTL。深度学习则利用神 经网络等算法,自动化学习和识别数据中的特征,实现对QTL的精准定位。
四、自然群体
自然群体是指在没有人为干预下自然形成的群体,如野生种、地方品种、自然 变异群体等。这些群体通常具有丰富的遗传变异和复杂的遗传结构,对于研究 作物的适应性、抗逆性和产量等性状的遗传基础非常有用。此外,自然群体还 可以用于发现和克隆稀有或特殊的QTL。
五、基于基因组的作图群体
随着基因组学技术的发展,基于基因组的作图群体越来越受到重视。这种群体 可以通过重测序技术获得大量的SNP(单核苷酸多态性)标记,并利用这些标 记构建高密度的遗传图谱。这种图谱可以用于精细定位和克隆QTL,以及研究 基因组中的结构变异和非编码区基因组。
2、QTL分析的具体步骤
(1)数据采集:收集作物的基因型和表型数据。基因型数据可以通过高通量 测序技术获得,而表型数据则可以通过田间试验和室内分析等方法获得。
(2)作图:利用作图软件将基因型和表型数据组装成图,以展示它们之间的 关系。常用的作图软件包括QTL Cartographer、QTL IciMapping等。
原理
1、QTL的概念及定义
QTL是指作物基因组中控制数量性状的基因座位,它们可以通过影响表型变异 来影响作物的农艺性状。QTL通常分为两类:主效QTL和微效QTL。主效QTL是 指对表型变异起主要作用的QTL,而微效QTL则是指对表型变异起较小作用的 QTL。
遗传学:朱军第三版:第13章 数量遗传
对性状表现的效果较微,但各对基因遗传方式仍然服 从孟德尔遗传规律;
同时还认为:
1.各基因的效应相等;
2.各个等位基因表现为不完全显性或无显性,或表现 为增效和减效作用;
3.各基因的作用是累加的。
33/149
P314 由于F1可以产生等数R和r的雌配子和雄配子,当某性 状由一对基因决定时F1可以产生同等数目的雄配子和雌配子, 即:
上图为四个品种(Gl-G4)在3个环境(El-E3)中的产量表现。 不存在GE互作时,4个品种在3种环境中的表现同步提高。 当存在GE互作时,4个品种在各环境中的表现不同。
14/149
品种3和4在环境1中有较高的产量表现,在环境3中却表现较差。 品种1和2在环境1中产量较低,但环境3中却表现良好。 ∴品种3和4:环境1中产量性状基因表现优于其它品种; 品种1和2:产量基因则适宜在环境3中表达。 15/149
数量性状表现的连续性体现在:
20/149
1918年R. A. Fisher发表“根据孟德尔遗传假设对亲 子间相关性的研究”论文统计方法与遗传分析方法 结合 创立了数量遗传学。 1925年著《研究工作者统计方法》一书(Statistical Methods for Research Workers),为数量遗传学研究提供 了有效的分析方法。首次提出方差分析(ANOVA)方法, 为数量遗传学发展奠定了基础。
1/149
生物界中还存在另一类遗传性状,其表现型变异是 连续的(continuous),界限不清楚,不易分类,用数字 描述 数量性状(quantitative trait) 。 例如,人的身高、动物体重、植株生育期、果实大 小,产量高低等。
通过对表现型变异的分析推断群体的遗传变异借 助数量统计的分析方法,可以有效地分析数量性状的遗 传规律。
作物遗传育种,考研
作物遗传育种作物遗传育种是研究作物遗传改良及种子生产的理论、方法与技术的科学。
太奇考研网对作物遗传育种相关信息做出如下汇总:作物遗传育种专业介绍1、学科简介作物遗传育种是作物学之下的一个二级学科硕士点,作物遗传育种是研究作物遗传改良及种子生产的理论、方法与技术的科学。
2、培养目标1)学习、掌握马列主义、毛泽东思想、邓小平理论和“三个代表”重要思想,逐步树立马克思主义的世界观、人生观和价值观,具有坚定正确的政治方向,坚持四项基本原则;热爱祖国,献身农业;遵纪守法,品德优良,具有严谨求实的科学态度和科学道德;服从国家需要,全心全意为社会主义现代化服务。
2)作物学的硕士学位获得者应掌握坚实的作物学的基础理论和系统的专门知识,拓宽有关作物遗传学、育种学、作物栽培学和耕作学的理论知识和实践技能。
了解本专业或所从事研究方向的国内外发展动态;具有生产现场指导和解决本专业有关问题的能力;熟练掌握本专业或本研究方向的田间、实验室的综合实验技能和计算机应用能力;掌握一门外国语,在本学科范围内能较熟练地阅读、翻译和写作;通过论文工作在本学科的理论或专业技术上取得新进展;具有严谨求实的治学态度、理论联系实际的工作作风和诚挚的协作精神;能胜任本学科的教学、科研、推广及管理工作。
各招生单位研究方向和考试科目等不尽相同,在此以中国农业大学为例:3、研究方向01作物种质资源创新02作物育种原理与方法03作物杂种优势机理及利用04作物分子育种及细胞工程05作物基因组学4、硕士研究生入学考试科目①101思想政治理论②201英语一③314 数学(农)或315化学(农)④414植物生理学与生物化学课程设置(以四川农业大学为例)1 、学位课马克思主义理论课、外国语、细胞遗传学、数量遗传学、分子遗传学、高级作物育种学2 、必修课研究班讨论、生物化学及实验技术、农业生物技术专题3、选修课群体遗传学及其应用、高级生物统计及试验设计、高级种子学、电子显微镜技术、植物胚胎学、细胞生物学、计算机技术、农业生态学、小麦族系统学、多元统计分析、近代仪器分析技术、植物显微技术、第二外国语、专业外语。
作物遗传育种学课程教学大纲
作物遗传育种学课程教学大纲(Genetics and Plant Breeding)课程编号:081122课程性质:专业选修课适用专业:农业先修课程:植物学、植物生理学后续课程:种子工程学总学分:4.5,其中实验学分0.5教学目的与要求:作物遗传育种学包括遗传学和育种学两部分。
遗传学是研究生物在繁殖过程中遗传和变异的内在和外在表现及规律的科学。
作物育种学是研究选育优良品种的理论与方法的科学。
作物育种学以遗传学作为主要理论基础。
通过作物遗传育种学的学习,使学生在了解和掌握遗传变异规律及其原因的基础上,理解和掌握主要农作物新品种选育的基本原理和方法。
在整个教学过程中,根据教学的总体进程,结合田间农作物生长发育情况,通过实践性教学,掌握主要农作物新品种选育的基本方法和实际操作技能。
基本要求是:1、遗传学部分介绍遗传学的基本原理及主要遗传学分支学科的基本理论。
通过遗传学教学,使学生了解和掌握遗传学基本现象和基本规律,并培养学生分析、推理等解决实际问题的能力,为作物育种学和有关分支遗传学的学习奠定理论基础。
2、育种学部分要求了解制定育种目标的原则,作物的繁殖方式与育种方法的关系,掌握品种资源的搜集、研究与利用、引种的基本规律、选择育种、杂交育种、杂种优势利用、抗病虫育种、生物技术育种的原理和方法。
在实践教学中,掌握主要农作物的有性杂交(自交)技术、育种程序及选种方法。
教学内容与安排(第一部分)教学内容与安排(第二部分)第一部分作物遗传学(32学时)绪论(1学时)一、遗传学研究的对象和任务二、遗传学的发展三、遗传学在科学和生产发展中的应用本章重点:遗传学的研究对象、发展简史以及在科学和生产中的作用本章难点:无第一章遗传的细胞学基础(3学时)第一节细胞的主要结构和功能一、细胞膜二、细胞质三、细胞核第二节染色体一、染色体的形态二、染色体的结构三、染色体的数目第三节细胞分裂与染色体行为一、有丝分裂与染色体行为二、减数分裂与染色体行为三、有丝分裂与减数分裂的区别第四节高等动物与植物的繁殖一、生物的繁殖方式二、雌雄配子的形成三、授粉、受精与种子的形成四、直感现象本章重点:①有丝分裂、减数分裂的过程及各时期的特点;②雌雄配子的形成和双受精本章难点:①有丝分裂、减数分裂的过程及各时期的特点;②雌雄配子的形成和双受精第二章孟德尔遗传定律(4学时)第一节孟德尔的实验材料和方法一、孟德尔的实验材料二、孟德尔的实验方法第二节分离规律一、孟德尔的豌豆杂交试验二、分离现象的解释三、分离规律的验证四、显隐性的相对性第三节自由组合定律一、两对相对性状遗传二、自由组合定律的实质及其解释三、自由组合定律的验证四、多对相对性状的遗传第四节基因互作一、互补作用二、积加作用三、重叠作用四、抑制作用五、上位作用本章重点:1、分离规律和独立分配规律的实质及其异同点;2、孟德尔定律的验证方法;3、基因互作本章难点:1、分离规律和独立分配规律的实质及其异同点;2、基因互作第三章连锁遗传(4学时)第一节连锁遗传的表现第二节连锁遗传一、连锁遗传的解释二、连锁遗传的验证第三节交换值及其测定一、交换值二、交换值的测定第四节基因定位与连锁遗传图一、两点测验二、三点测验三、干扰与符合四、连锁遗传图第五节性别决定与性连锁一、性别的决定二、性连锁本章重点:1、连锁遗传规律及其与分离规律和独立分配规律的异同点;2、基因定位的原理及方法;3、性连锁本章难点:基因定位的原理及方法第四章数量性状遗传(2学时)第一节数量性状的特征第二节数量性状遗传的多基因假说第三节遗传率一、遗传率的概念二、广义遗传率的估算方法三、狭义遗传率的估算方法本章重点:1、质量性状与数量的区别及联系;2、遗传率的估算本章难点:遗传率的估算第五章细胞质遗传(2学时)第一节细胞质遗传的概念和特征一、细胞质遗传的概念二、细胞质遗传的特征三、母性影响第二节植物雄性不育的遗传一、雄性不育的特征二、雄性不育的应用本章重点:1、细胞质遗传的概念及特点;2、各种雄性不育的遗传特点及其应用本章难点:1、各种雄性不育的遗传特点及其应用;2、母性影响和细胞质遗传的区别第六章近亲繁殖与杂种优势(2学时)第一节近亲繁殖及其遗传效应一、近亲繁殖的概念二、近亲繁殖的遗传效应第二节纯系学说第三节杂种优势一、杂种优势的概念二、杂种优势的遗传机制本章重点:1、自交与回交的遗传效应及其异同点;2、杂种优势;3、杂种优势及其与超亲遗传的异同点本章难点:1、自交与回交的遗传效应及其异同点;2、杂种优势与超亲遗传的异同点第七章基因突变和染色体变异(4学时)第一节基因突变一、基因突变的概念二、基因突变的一般特征三、基因突变的鉴定第二节染色体结构变异一、缺失二、重复三、倒位四、易位第三节染色体数目变异一、染色体数目及变异类型二、整倍体的类别及其遗传三、非整倍体的类别及其遗传本章重点:1、基因突变的一般特征及基因突变的鉴定;2、染色体结构变异和数目变异的类型及遗传效应;3、染色体数目变异中几种主要类型的联会和分离特点。
数量遗传学综述
数量遗传学的发展历程摘要:数量遗传学经过近百年的发展,形成了一整套理论体系。
本文以数量遗传学的诞生、发展、现状为线索,阐述了该学科诞生的背景及所得到的启示、体会,介绍了数量遗传学发展历程的三次结合,分析了它的研究现状和发展前景。
关键词:数量遗传学数量性状发展历程1865年,孟德尔(G·Mendel)根据豌豆杂交试验,表了论文《植物杂交试验》,提出了遗传因子分离重组的假设,形成了孟德尔理论,标志着经典遗传的诞生。
19世纪末,孟德尔遗传学与数学相结合成了群体遗传学(population genetics)。
20世纪年代,Fisher在关于方差组分剖分的论文[1]中将体遗传学进一步与生物统计学相结合,奠定了数遗传学(quantitative genetics)的基础。
数量遗学是以数量性状(quantitative trait)为研究对的遗传学分支学科[2],它作为育种的理论基础已发展了近百年。
而将数量遗传学的理论应用于动育种则应归功于Lush(1945)在其划时代的著作物育种方案》(Animal Breeding Plan)中的系统述[3]。
在中国,1958年吴仲贤教授翻译的出版了英K·Mather 的第一版《生统遗传学》(Biometricalnetics),对我国动植物数量遗传学的发展起到了键性的推动作用。
在基因组学时代,随着对数量状基因型的识别,人们通过对经典数量遗传学模的修改完善,数量遗传学为分析表型信息和基因信息构建筑了合理框架,数量遗传学将会比过去挥更大的作用[4]。
在畜牧业生产中,与生产性能有的大多数经济性状属于数量性状。
因此,研究数量性状的遗传规律具有重要的实践意义。
1数量遗传学诞生的背景数量遗传学的诞生可以追溯到Fisher(1918)关于方差组分剖分的论文[1],它作为育种的理论基础已经发展了近1O0年,而数量性状的遗传研究可追溯到19世纪。
1885年,Galton[5]报道了205对父母与其930个后裔的身高关系。
数量遗传学基础
远不会超出0.5。 • 杂合子频率是两个纯合子频率乘积平方根2
倍, 即H=2√(DR)
数量遗传学基础
第6页
哈代 - 温伯格定律应用
• 计算基因频率
– 共显性及不完全显性
• 基因型与表型一致
– 完全显性
• 杂合子与显性纯合子表型相同;隐性纯合子基因型 与表型一致。
能够度量 呈连续变异 易受环境影响 多基因控制
数量遗传学基础
第13页
表9-1 质量性状与数量性状比较
质量性状
数量性状
性状主要类型 遗传基础
变异表现方式 考查方式 环境影响 研究水平 研究方法
品种特征、外貌特征 少数主基因控制 遗传关系简单 间断型 描述 不敏感 家庭
系谱分析、概率论
生产、生长性状 微效多基因 复杂 连续型 度量 敏感 群体
数量遗传学基础
第24页
设有n组数据,每组有k个数据:
组别 第一组 第二组 X..
……. … 第n组
变量取值 X11 X12 … X21 X22 …
…
…
Xn1 Xn2 …
组均数 总均数
X 1k
X1..
X 2k
X2.
…
…
X nk.
Xn.
数量遗传学基础
第25页
三、重复率预计
重复率就是以个体分组, 以个体度量值 为组内组员, 计算得到组内相关系数。这 时组间方差就是个体间方差, 组内方差就 是个体内度量间方差。
• 随机交配、平衡群体
数量遗传学基础
第1页
基因频率与基因型频率之间关系
• 设群体某一基因座位上存在两个等位基因A和a, 各自基因频率分别设为p和q; 群体内个体在该基 因座位上含有三种基因型,即AA, Aa, aa,各自 概率分别设为D.H、R; 则存在以下等式:
遗传学第八章数量遗传课件.ppt
F3的表现型方差:
33 VF3 4VA16VDVE
F4代的表现型方差:
77 VFr 8VA64VDVE
随着自交代数的增加,群体基因型方差中的可固
定遗传变异加性效应方差比重逐渐加大,而 不可固定的显性效应方差比重逐渐减小。
4. 回交世代的方差
B1群体: F1P 1 A aAA
其群体遗传组成: 1 AA 1 Aa 22
15
6
1
红粒有效基 6R 5R 4R 3R 2R 1R 0R 因数
红粒:白粒
63:1
小麦籽粒颜色生化基础:红粒基因R编码一种红色素合成 酶。R基因份数越多,酶和色素的量也就越多,籽粒的颜 色就越深。
当某性状由1对基因决定时,由于F1能够产生 具有等数R和等数r的雌配子和雄配子,所以
F1产生的雌配子与雄配子都各为,
两个方差加在一起 1 a 2 1 d 2 1 a 1 d a 2 1 d 2 1 a 1 d a 2 1 d 2 44 244 222
11 VB 1VB22VA2VD2VE
第四节 遗传率的估算及其应用
一、遗传率的概念
1、广义遗传率 遗传方差占总方差(表型方差)的比值
hB2
遗传方差 总方差
100 %
VG 100% VG VE
2、狭义遗传率:基因加性方差占总方差的比值
V P V A V D V I V E
h
2 N
基因加性方差 总方差
100 %
V A 100% VP
V A
VA VD VI
VE
100 %
二、遗传率的估算
•广义遗传率的估算
VE1 4VP11 2VF11 4VP2
第一节 数量性状的特征
育种考试题
思考题1、数量性状QTL定位及应用存在的主要瓶颈有哪些?如何有效地克服?举实例说明。
瓶颈:(1)QTL定位不精准,QTL效应和数目夸大估计,存在QTL环境互作。
(2) QTL作图群体与育种群体的脱节:由于QTL表达存在很强的遗传背景效应,作图群体定位结果难以直接应用于育种群体;(3)无法获得优异等位基因:绝大多数的QTL定位都是以来自两个亲本组合的分离群体为基础的。
对某一QTL位点上的两个等位基因间的比较,只知较好,不知最好,因而不能鉴别出用于MAS的最佳有利等位基因.克服方法:(1)AB-QTL定位策略(2)回交和分子标记技术相结合(吉粳88抗旱目标性状选择导入系定位)利用高代回交群体的目标性状选择导入系进行基因QTL定位,可以有效消除QTL 之间以及QTL 与背景遗传效应间的互作,定位的成果能够直接用于遗传育种实践,从而将基因研究紧密结合起来.2、设计一套绿色性状(高产、抗旱、氮高效利用和抗病,从中任选3种性状)基因/QTL发掘和聚合的育种技术路线,并简要阐述其研究方案。
(参考以下方案)1 举例说明如何应用比较基因组学方法发掘和验证基因特异性标记。
比较基因组学:在基因组图谱和序列分析的基础上,对已知基因和基因的结构进行比较,了解基因的功能,表达调控机制和物种进化过程的学科。
如利用模式之物拟南芥在其功能研究深入方面与玉米等作物进行比较,从而发掘基因特异性标记。
2分子育种存在的主要问题有哪些?(1)与育种目标密切相关性状的标记数量少(2)分子标记与目标基因距离远, 选择准确性差, 标记在其它材料中无法应用(3)重标记发掘, 轻标记优化与应用(4)缺乏标记服务平台, 成本高(5)分子标记研究与主流育种项目结合不紧密1、棉花育种主要方法有哪些?是举例说明选择育种的特点,过程以及局限性。
(1)主要育种方法:选择育种,杂交育种,远缘杂交育种,杂种优势利用,诱变育种,生物技术育种。
(2)选择育种是从现有品种(系)中,选择优良变异个体(单株或单铃),经后裔鉴定、比较而育成新品种的方法。
第七章 数量遗传学 基础
这一点在育种中很重要,所以A又叫做育 种值。
3.环境离差的剖分
E = Eg + Es Eg:一般环境效应 Es:特殊环境效应
一般环境效应又称永久性的环境效应, 能长期甚至是终身影响个体的表型值; 特殊环境效应又称暂时性的环境效应, 只影响个体某个阶段的表型值。
这样 P= G + E = A+D+I+Eg+Es =A+R P:表型值 A:育种值 R:剩余值
这是一对无显隐性关系(共显性)基因控制 的性状,子1代为中间性,子2代以1:2:1的表型 比例分离。
第二类杂交试验:
P F1 F2 红色籽粒 x 白色籽粒
中等红色 15红色 :1白色
经仔细观察,红色中还存在不同等级。
1/16深红:4/16次深红:6/16中等红:4/16浅红:1/16白
第三类杂交试验:
3、显性离差 d= 12-10=2g
2.基因型值的平均数 有了基因型值,再与基因型频率 结合起来就可以计算群体基因型值的 平均数。
设在随机交配的群体中基因A和a 的频率分别为p和q,且p+q=1。则AA、 Aa和aa三种基因型的频率分别为p2、 2pq和q2。群体平均数可由表13算出。
表8-1 群体基因型值平均数的估计
二、对数量性状的新认识
控制数量性状的基因除了微效基因,也 可以有主效基因(Major gene); 决定数量性状的基因有加性效应,也有 显性效应和上位效应,更多的情况是几 种基因效应同时存在; 应用现代生物技术和统计方法,可以对 控制数量性状的基因从整体到局部进行 研究,如QTL。
第三节
数量性状遗传分析的统计学方法
由 μ= α(p-q)+2pqd 可以看出,任何 基因座上的基因,对群体平均数的贡 献可以分为两部分:
数量遗传学
• 这时上述模型可简化为:P=G+E----数量性状的 数学模型
二 数量性状的数学模型
• 在一般情况下,由于环境效应偏差是以离均差表示的,个 体随机环境效应对各观察值的影响有大有小、有正有负, 总和可抵消为0.即假设有:
• 因此.在同一固定环境条件下可得到
三 基因效应及其剖分
• 数量性状的数学模型在实际育种工作中仍是有欠缺的,这 是由于基因实际上存在三种不同的效应: • 即基因加性效应(A) • 等位基因间的显性效应(D) • 非等位基因间的上位效应(I)。 G(遗传效应值)=A+D+I
• 从育种学角度出发,重要的是能够真实遗传的育种值(基 因加性效应值)A这一部分,而D和I带有一定的随机性, 一般均将它们归并到环境偏差E中,通称之为剩余值,记 为R,即有: R=D十I十E • 因此,模型可进一步化为 P=A+R
描述数量性状遗传规律有三个最基本的遗传参数: 重复率、遗传力和遗传相关
• 重复率: • 用来衡量一个数量性状在同一个体多次度量值之间的相 关程度。Fra bibliotek• • • •
V(G)基因型方差 V(Ep)持久环境效应方差 V(P)总环境效应方差 V(E1)暂时性的环境效应方差
遗传力
• 广义遗传力就是指数量性状基因型方差占表型方差的比例。 • 通过广义遗传力的估计,可以了解一个性状受遗传效应影 响有多大,受环境效应影响多大。
数量性状基因座
• 英文全名:Quantitative Trait Locus
• 英文缩写:QTL • 概念:指控制数量性状的基因在染色体(或基因组)中所 在的座位。通过检测染色体上某个座位表现出对数量性状 表现型的作用的大小,可以探知QTL的存在。检测到的一 个QTL既可能只包含一个数量性状基因,也可能包含若干 个数量性状基因,与人们的检测能力有关。
作物数量遗传学基础一、数t性状的遗传方式与分析
基 因型平均 效应 值 ( ) 牙
基因 型效应值() x
基因型频率 <) f
B,
a
d
一召
在多基因情况下, 如有m对杂合基因 (l, 2鸡、 Aa Aa , 2l ..A a .. m .. 矽,并假设这些基因不相互连锁,而且各对 基因间无相互作用时,则 ,a 提供的基因型方差为 4: ,
1 )所谓基因型效应值是指在这个模式中, 该基因型的性 状值与两个 纯合亲本的性状值平均数的 差值。
. 43 .
型在群体 中具有不 同的频 率,因此计算 平均效应应将 各基因型效应 值按不 同的 频率作加权平 均。 从 表 11 - 得知 F ,代基 因型 频率 ( 体中某基 因型 的个体 数与 群 总个体数之比 )基 因型 效应值及 其平均值 。 、
红
RRRr R R rr Rr 22 Rr z ,,2 , ,22 ,R r 2 , ,r2 lr 深 红 中 红 中 红 浅 红
只 rR R RrR r r , ,, I 2 ,,22 , 凡凡 r rrRr ,, z¥ 浅 红
r R , 2
因多,单个基因对某性状表现的效应小,故称微效基 因。这些微效基因对某性状的影响具有累加作用,即 性状表现的程度与控制它的基因数目相对应,控制数
1 R 0 R
红
弓 1
极 深红 : 深红 : 中红 : 浅红 :白色
1 42 : 4 : 6 : 4
由此可见,理论推出的结果与实验所得的结果是一致 的, 这就说明数量性状的遗传是受微效多基因( 此例是 两对) 控制的。至于基因间的关系, 如等位羞因 R 和 : ,间一般无显、 , 隐性之别。这里, 豆基因 (, , 的 R 或R) 效应使小麦籽粒颇色变红,其变红的程度随合子内R 基因的累积量而定, 这种微效基因就称为加性墓因; 不 仅加性等位基因的效应是可加的,非等位基因间加性 基因的效应亦是可加的,随合子内 R x基因累积 R f的增加, 其籽粒的红色深度也相应增加。 一般来说, F 分离世代( 在 , 群体里具有多种基因 型的世代) 表现型的类型和比例与二项式 ( 十b0 中, 。 ) 展开时各项系数相当。这里二 代表基因的个数,a b , 分别代表各对基因中每个基因在一个个体内出现的机 率, a 即 二b.12 /,上述例子, 由二对 ( 个) 4 基因控 制的数量性状, 应用二项式展开, 它们的 F 代的表现 = 型类别及其出现的频率如下; (/+124 16 16 16 41+11 12 1)_11+41+61+ 16 16 (R (R (R (R (幻 4 ) ) 2 ) 1) 0 3 因此,傲效多墓因假说的要点可归结如下:数量 性状的遗传基础是一系列基因, 其基因数目越多,2 F代 的变异幅度就越广泛,并且这类基因大多无显隐性区 别,各个基因对表现型影响大多很小,其作用是累加 的。此外, 参与控制某一个数量性状的基因越多, 这个 性状的表现越易受环境条件的千扰,因而使表现型出 现了在一定范围内的连续变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量遗传学:一门研究生物数量性状变异的遗传规律的学科。
数量遗传学运用统计分析方法,将表现型分解为遗传效应和环境效应分量(components),并进一步剖析遗传变异中的基因效应。
Multiple Gene Hypothesis:
•数量性状受微效多基因控制
•多基因间不存在显隐关系
•多基因的效应相等,具有累加作用
•多基因对外界环境变化比较敏感
•存在主基因与修饰基因
群体:具有性繁殖且经常异交的生物个体的集团,或者是一群可繁殖后代的生物个体的集团(孟德尔群体)。
群体的遗传组成:体基因型的数目或各种基因的频率以及由之形成的基因型数量分布。
基因型频率(genotype frequency):特定基因型在群体内出现的概率.
基因频率(gene frequency):特定位点上一种等位基因占该位点全部等位基因的比率,或
该等位基因在群体内出现的概率。
Hardy-Weinberg Law:在理想状态下,各等位基因的频率和等位基因的基因型频率在遗传中是稳定不变的,即保持着基因平衡。
•理想群体•个体随机交配•没有选择压•基因型比例逐代保持不变•基因频率与基因型频率存在简单关系。
某种基因的基因频率=某种基因的纯合体频率+1/2杂合体频率
平衡群体的基因型频率取决于群体的基因频率,而与起始群体的基因型频率无关。
连锁不平衡:两个以上位点间基因型频率的不平衡状态,似乎由位点间连锁关系引起的。
连锁平衡:对于那些重组后位点或者基因型的频率等于预期的群体。
影响群体基因频率的因素:
•非随机交配(non-random mating)
–近亲交配
–聚类交配(assortative mating) (e.g. human)
–反聚类交配(disassortative mating)(e.g.self-sterility system)
•系统性过程(systematic process)
–基因频率定向变化:Migration, Mutation, Selection
–基因频率随机变化:Random drift in small population
适应度:基因型能成活繁殖后代的相对能力。
选择系数:在选择作用下某基因型的后代数目比最适基因型减少的比例。
遗传漂变:于有限群体中抽样误差而产生的基因频率的非定向改变。
回交方式比自交获得重组(交换)的概率更高
平均效应:指一群均携带该基因的配子和来源于群体中的配子随机交配所产生的基因型,其平均值与群体的平均离差。
基因效应:一群体中,以群体平均数为原点,基因型值与原点的离均差值,或基因的替代效
应。
个体的育种值等于其所携带的基因的平均效应之和加性,单位点上纯合体的差异;
显性,单位点上杂合体的离差。
•不分离世代的方差可作为环境方差
•各种分离世代的遗传方差是根据各世代基因型组成及其平均数遗传组成决定的
–家系平均数方差
–家系的平均方差
•环境变异可能来源于家系内或家系间
遗传模型的统计学要求:•群体表现型值的分布作正态分布•遗传效应可加•误差方差和平均数独立,无相关性•数量遗传试验应考虑遗传交配设计和环境误差。
Some Statistical Considerations:
•环境设计(控制环境的影响)
–试验误差的估计
–试验应有重复和随机化排列(随机区组
•遗传设计(估计遗传方差)
–设计应安排亲本等作非遗传变异的估计
–遗传方差组成的估计
–模型易于分析和解释
–便于统计分析
–(方差成份转化为亲属间协方差)
遗传交配设计的类型:
•单因素遗传设计
•双亲杂交类型设计(F2子代自交或随机交配)
•双因素类型设计(NC I, NCII)
•回交系统设计(NCIII, TTC)
•双列杂交设计
近交系数:度量个体内某个基因位点上两个等位基因来源于共同祖先的某个基因的概率或群体中一个随机个体携带的两个基因同源的概率。
随机交配群体的近交系数为0,自花授粉作
物的近交系数为1。
半同胞家系:一个母本与若干父本交配,则该母本所产生的家系间的关系属半同胞关系。
半同胞的协方差等于半同胞家系平均数的方差
全同胞家系:一个母本与一个父本交配所产生的若干子代个体组成的家系。
全同胞的协方差等于全同胞家系的平均数的方差。
双亲杂交类型遗传设计:1.从F2群体中随机抽出n个个体,进行配对杂交,获得1/2n杂交后代家系;2.供试材料必须进行个体随机;3.不考虑基因型与环境互作;4.方差分析将总变异分解为家系内与家系间的变异。
双因素巢式遗传设计:1. 从两纯系杂交产生的F2群体中随机选出一个父本,再随机选若干个体与该父本交配的母本组;2.有多少个父本,就有多少个母本组,但每个母本只交配一次;
3.将家系间的变异分解为共同亲本组和母本组。
三重测交:是将P1、P2和F1作为测验种,与它们的F2代中随机选出的n个个体交配,组
成3n子代家系。
特点:1.估计各遗传参数前,可测定上位性的存在与否;2.较双列杂交容纳更多样本;3.家系均值间的三种正交比较进行方差分析。
完全双列杂交:在含有n个纯合品系间进行各种杂交组合,产生n2个家系的交配方式。
其特点:可以测定上位性、检验加-显性模型、样本容量不宜大、不需要连续世代。
模型检验:
1、方差分析
各列的Wr+Vr相等,无显性效应;Wr:行列协方差Vr:行列方差
各列的Wr-Vr相等,无上位性效应
2、回归分析
各行列Wr和Vr为坐标点作图,
可用线性方程表示其关系:Wr = a + bVr
b –斜率,等于1时,反映无上位性
a –截距,反映显性程度,〉0,部分显性,=0,无显性
一般配合力(GCA):一个品系在一系列的杂交组合中的平均表现。
特殊配合力(SCA):指定杂交组合表现与平均表现的比较。
双列杂交设计方案:
双列杂交设计的统计分析分三步:1.按随机区组设计进行方差分析,品种均方的F测验,因模型的不同,分母方差应不同。
2.配合力方差分析,品种平均数作单位。
3.估计方差的组成成分及遗传力等。
固定模型:品种效应与区组效应固定。
比较试验群体的配合力多用此模型。
随机模型:品种效应与区组效应都为随机变数。
估计群体的变异方差多用此模型。
ANOVA 法(analysis of variance)
•特点:
–简单,估计值无偏
–不能有效分析非平衡数据
•步骤:
–各效应的平方和与均方
–根据均方的期望值与方差分量的线性关系,建立方差
分量线性函数的一组联立方程
–获得方差分量的估值
遗传力(率):衡量遗传和环境对表型总变异影响的相对重要性的一种参数,按遗传变异性质,可分广义、狭义和现实遗传力。
间接选择:通过一个性状的选择来改良另一个性状的目的,这种选择为间接选择。
分子标记辅助选择的优势:1. 允许早期选择,多性状/基因选择;2. 克服性状鉴定的困难;3. 显著地减轻连锁累赘的程度;4. 加快育种进程,提高育种效率;5. 全基因组选择。
数量性状位点分析的环节:分离世代的建立•多态标记的检测与连锁图谱构建•数量性状值的测定•数量性状基因的统计分析•遗传效应的生物学解释。
似然图谱:将同一连锁群上所有标记间的LOD值连接起来的连续曲线。
最大似然法:获得总体分布中未知参数点估计值的一种方法。
提高QTL定位的灵敏度和精确度:
•选择基因型扩大QTL效应
–Selective genotyping and progeny testing
–Bulked segregant analysis(BAS)
•降低遗传背景和环境误差
–试验控制和统计控制
–应用近等基因系精细定位
–应用代换系精细定位
–应用重叠导入系定位QTL
–应用永久群体多年(点)重复试验
基因的加性效应(A):加性效应就是影响数量性状的多个微效基因的基因型值的累加,也称性状的育种值,是性状表型值的主要成分。
显性效应(D):是指基因位点内等位基因之间的互作效应,是可以遗传但不能固定的遗传因素,是产生杂种优势的主要部分。
上位性效应(I):是指不同基因位点的非等位基因之间相互作用所产生的效应。
上述遗传效应在数量性状遗传改良中的作用:由于加性效应部分可以在上下代得以传递,选择过程中可以累加,且具有较快的纯合速度,具有较高加性效应的数量性状在低世代选择时较易取得育种效果。
显性相关则与杂种优势的表现有着密切关系,杂交一代中表现尤为强烈,在杂交稻等作物的组合选配中可以加以利用。
但这种显性效应会随着世代的递增和基因的纯合而消失, 且会影响选择育种中早代选择的效果, 故对于显性效应为主的数量性状应
以高代选择为主。
上位性效应是由非等位基因间互作产生的,也是控制数量性状表现的重要遗传分量。
其中加性×加性上位性效应部分也可在上下代遗传,并经选择而被固定;而加性×显性上位性效应和显性×显性上位性效应则与杂种优势的表现有关,在低世代时会在一定
程度上影响数量性状的选择效果。