神经网络控制
神经网络PID控制
NNI
十
十
x₁(k)=e(k)x₂(k)=△e(k)=e(k)-e(k-1)x₃(k)=△²e(k)=e(k)-2e (k-1)+e(k-2)e(k)=r(k)-y(k)NNC 的输出为:△u(k)=k₁x₁(k)+k₂x₂(k)+k₃x₃(k)式中,}i=1,2,3 为权系数,△u(k) 为输入信号的加权和。由此可见,NNC 具有增量D 控制的结构
i=1,2,…,Q-1
BP网络的输入层节点的输为
网络的隐含层输入、输为
·神经网络PID控制 20
o(k)=1
(13)
(14)
式中o 为输出层权系数 阈值,
网络的输出层的输入输出为
·神经网络PID控制 21
图二 神经网络PID控制系统结构图
·神经网络PID控制 17
二、方案二
被控对象
u
个
经典PID控制算式为u(k)=u(k-1)+Kp[e(k)-e(k-1)]+K,e(k)+K,[e(k)-2e(k-1) + e(k-2)1
7.由(20)式,计算修正输出层敝系数。(k);8.由(21)式,计算修正隐含层敝系数。)(k);9.置k=k+1, 返回到“3”,直到性能指标J 满足要求。
·神经网络PID控制 26
系数a(k)是慢时变的,a(k)=1.2(1-0.8e -01k),神经网络结构为4—5—3,输入层的个神经元分别为模型翰入r(k)、 输 出(k)、误 差(k)和常量。学习速率=0.25,动量系数=0.05,加权系数初始值取随[=0.50.5]上的随机数。当输入信号为幅值是的正弦信号(t)sin(2πt)时,取采样时间为.001s,仿真结果如图所示。·神经网络PID控制 27
神经网络控制系统的原理
神经网络控制系统的原理神经网络控制系统是一种基于人工神经网络的控制系统,在工业、交通、航空等各个领域具有广泛的应用。
它的原理是通过构建和训练神经网络模型,实现对待控对象的智能控制。
首先,神经网络控制系统需要建立一个神经网络模型,这个模型通常由节点、神经元和连接权值组成。
节点是模型中的基本单元,神经元是节点的一个实例,连接权值代表神经元之间的连接强度。
在建立模型时,需要确定网络的拓扑结构和各个节点之间的连接方式。
其次,神经网络控制系统需要进行网络的训练。
训练是为了使神经网络模型能够适应特定的控制任务。
训练过程通常包括两个阶段:前向传播和误差反向传播。
前向传播是指从输入层开始,逐层计算神经元的输出值,直到输出层。
误差反向传播是指根据网络的输出和期望输出之间的误差来调整连接权值,以提高网络的性能。
在训练过程中,需要使用一些优化算法来更新连接权值。
常用的优化算法有梯度下降法、反向传播算法和遗传算法等。
这些算法能够根据网络的误差情况,调整连接权值,使网络的输出尽量与期望输出一致。
一旦神经网络模型训练完成,就可以将其应用于实际的控制任务中。
在控制过程中,输入变量会通过网络的输入层传递给网络,经过一系列的计算和传递,最终得到输出结果。
输出结果可以是控制信号,用来调节待控对象的状态,使其达到期望的目标。
需要注意的是,神经网络控制系统的性能不仅取决于网络的结构和参数,还取决于训练数据的质量和数量。
训练数据应该尽可能地覆盖各种情况,以确保网络具有良好的泛化能力。
此外,神经网络控制系统还需要不断地进行监控和调整,以保持其稳定性和性能。
总的来说,神经网络控制系统通过构建和训练神经网络模型,实现对待控对象的智能控制。
它的原理是利用神经网络的拟合和学习能力,将输入变量转化为输出控制信号,从而实现对系统的控制。
神经网络控制系统具有较强的适应性和学习能力,能够适应各种复杂和变化的控制任务,因此在实际应用中具有广泛的潜力和前景。
模糊控制与神经网络控制
模糊控制与神经网络控制模糊控制和神经网络控制是现代控制领域中的两个重要研究方向,它们通过不同的方法和理论来解决复杂系统的控制问题。
本文将就这两种控制方法进行介绍和对比,并探讨它们在实际应用中的优劣势。
一、模糊控制模糊控制是一种基于模糊逻辑理论的控制方法,它通过将输入和输出之间的关系进行模糊化来实现系统的控制。
模糊控制器的设计通常包括模糊化、规则库的建立、推理机制以及解模糊化等步骤。
在模糊控制中,输入和输出以模糊集形式表示,通过一系列的模糊规则进行推理得到控制信号。
模糊规则库中存储了专家知识,根据实际问题的需求可以设计不同的规则。
推理机制使用模糊规则进行推理,最后通过解模糊化将模糊输出转化为具体的控制量。
模糊控制的优点之一是适用于非线性和不确定性系统,它能够通过模糊化处理来处理实际系统中的不确定性和模糊性。
此外,模糊控制能够利用专家经验进行控制器的设计,无需准确的系统数学模型。
然而,模糊控制也存在一些局限性。
首先,模糊控制的规则库和参数通常需要由专家进行手动设计,这对专家的经验和知识有一定的要求。
其次,模糊控制的性能也会受到模糊规则的数量和质量的影响,如果规则库设计不当,控制性能可能无法满足要求。
二、神经网络控制神经网络控制是一种基于人工神经网络的控制方法,它通过将系统模型表示为神经网络结构来实现控制。
神经网络是一种模仿生物神经系统结构和功能的计算模型,具有自适应学习和适应性处理的能力。
在神经网络控制中,神经网络被用作控制器来学习系统的映射关系。
通过输入和输出的样本数据,神经网络根据误差信号不断调整权重和阈值,使得输出逼近于期望输出。
神经网络控制通常包括网络的结构设计、学习算法的选择和参数调整等步骤。
与模糊控制相比,神经网络控制具有更好的自适应性和学习能力。
它能够通过学习过程来建立系统的非线性映射关系,并且对于未知系统具有较好的鲁棒性。
此外,神经网络控制不需要准确的系统模型,对系统的数学模型要求相对较低。
人工智能控制技术课件:神经网络控制
例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之
,
,
⋯
,
)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2
W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统
神经网络第2章神经网络控制的基本概念
正则化
正则化是一种防止模型过拟合 的技术,通过在损失函数中增 加惩罚项来约束模型复杂度。
常见的正则化方法包括L1正则 化、L2正则化和dropout等。
正则化可以帮助模型在训练过 程中更加关注数据的统计规律, 而不是单纯地记忆训练数据。
推荐系统
总结词
推荐系统是利用神经网络对用户的行为和兴趣进行分 析和预测,为其推荐相关内容或产品的系统。
详细描述
推荐系统是利用神经网络对用户的行为和兴趣进行分析 和预测,为其推荐相关内容或产品的过程。通过训练神 经网络,可以使其学习到用户的兴趣和行为模式,进而 实现个性化的推荐。在电子商务领域,推荐系统可以根 据用户的购物历史和浏览行为为其推荐相关商品或服务 ,提高用户的购买率和满意度。在新闻推荐领域,推荐 系统可以根据用户的阅读历史和兴趣为其推荐相关的新 闻文章或视频,提高用户的阅读体验和粘性。
早停法
早停法是一种防止模型过拟合的 技术,通过提前终止训练来避免
模型在验证集上的性能下降。
在训练过程中,当模型在验证集 上的性能开始下降时,就应该停
止训练,以避免过拟合。
早停法可以帮助节省计算资源和 时间,同时提高模型的泛化能力。
Dropout技术
Dropout是一种正则化技术,通过随 机关闭网络中的一部分神经元来防止 过拟合。
THANKS FOR WATCHING
感谢您的观看
Dropout可以帮助模型更加泛化地学 习数据分布,提高模型的鲁棒性和泛 化能力。
在训练过程中,每个神经元有一定的 概率被随机关闭,这样在每次前向传 播和反向传播时,网络的连接结构都 会有所不同。
神经网络控制
神经网络控制随着先进的计算技术的发展和大量的计算资源的获得,神经网络控制已经成为一种重要的控制方法。
神经网络控制通过建立神经网络模型对系统进行建模和控制,可以适用于不确定性较大、非线性程度较高的系统。
本文将从以下几个方面进行讨论。
1. 神经网络的基本原理神经网络是一个由大量神经元相互连接的关系网络。
神经元是生物神经系统中的基本单位,它接收神经元的输入,对输入进行处理,并将处理结果输出到其他神经元。
神经网络通过对神经元之间的连接强度进行学习,从而实现对输入和输出之间的映射。
神经网络的结构包含输入层、隐层和输出层。
输入层接收外部输入,隐层进行处理,最终的输出由输出层输出。
各层之间的连接权重是从样本学习中学得的。
在训练过程中,神经网络通过误差反向传播算法进行训练,从而得到最小误差的权值。
2. 神经网络控制的研究现状神经网络控制已经成为控制领域的一个热门研究方向。
在国内外均有大量的研究成果和应用案例。
神经网络控制在机器人控制、无人驾驶汽车控制、空间飞行器控制等领域中被广泛应用。
3. 神经网络控制在机器人控制中的应用机器人控制是神经网络控制的一个重要应用领域。
神经网络控制可以解决机器人控制中的多方面问题,如动力学建模、逆运动学、轨迹规划、控制等。
神经网络控制在机器人控制中的应用有:(1)运动控制神经网络控制可以对机器人的运动进行控制。
在机器人运动控制中,神经网络控制可以通过监督学习,对机器人的动力学进行建模,解决运动控制中的逆运动学问题。
同时,神经网络控制可以实现机器人的运动轨迹控制,保证机器人运动的平稳性和精度性。
(2)感知控制神经网络控制可以对机器人的感知进行控制。
机器人的传感器可以观测到周围环境的信息,神经网络控制可以对这些信息进行处理,并通过控制机器人的动作,使机器人具有基本的感知能力,如避障、跟踪等。
(3)智能控制在机器人控制中,神经网络控制可以实现机器人的智能控制。
神经网络控制可以对机器人进行学习和适应性,根据环境的变化,实现机器人的自适应控制,从而使机器人具有较强的智能性和自主性。
现代控制工程第13章神经网络控制
13.3.2 BP学习算法
▪ 两个问题:
(1)是否存在一个BP神经网络能够逼近给定的样本或者函数。
( 2)如何调整BP神经网络的连接权,使网络的输入与输出与 给定的样本相同。
1986年,鲁梅尔哈特(D. Rumelhart)等提出BP学习算法。
13.3.2 BP学习算法
1. 基本思想
目标函数:
x1
y1m
x2
y2m
x p1
y
m pm
13.3.2 BP学习算法
2. 学习算法
d y wikj1
k i
k 1 j
d y y u m ( i
m
i
)
si
fm
(
m)
i
——输出层连接权调整公式
d u d k i
fk (
k)
i
w k 1 k
l
li
l
——隐层连接权调整公式
13.3.2 BP学习算法
2. 学习算法
13.2 神经元与神经网络
13.2.1 生物神经元的结构
人脑由一千多亿(1011亿- 1014 亿)个神经细胞(神经元)交织 在一起的网状结构组成,其中大 脑皮层约140亿个神经元,小脑皮 层约1000亿个神经元。
神经元约有1000种类型,每个神经元大约与103- 104个其他 神经元相连接,形成极为错综复杂而又灵活多变的神经网络。 人的智能行为就是由如此高度复杂的组织产生的。浩瀚的宇 宙中,也许只有包含数千忆颗星球的银河系的复杂性能够与大 脑相比。
13.2.1 生物神经元的结构
神经网络(neural networks,NN)
▪ 生物神经网络( natural neural network, NNN): 由中枢神经系 统(脑和脊髓)及周围神经系统(感觉神经、运动神经等)所 构成的错综复杂的神经网络,其中最重要的是脑神经系统。 ▪人工神经网络(artificial neural networks, ANN): 模拟人脑神经 系统的结构和功能,运用大量简单处理单元经广泛连接而组成 的人工网络系统。
神经网络控制基础人工神经网络课件ppt课件
其他工业领域应用案例
电力系统
神经网络控制可以应用于电力系统的负荷预测、故障诊断和稳定性 分析等方面,提高电力系统的运行效率和安全性。
化工过程控制
神经网络控制可以对化工过程中的各种参数进行实时监测和调整, 确保生产过程的稳定性和产品质量。
航空航天
神经网络控制在航空航天领域的应用包括飞行器的姿态控制、导航控 制和故障诊断等,提高飞行器的安全性和性能。
05 神经网络控制性能评估与优化
性能评估指标及方法
均方误差(MSE)
衡量神经网络输出与真实值之间的误差,值越小表示性能越好。
准确率(Accuracy)
分类问题中正确分类的样本占总样本的比例,值越高表示性能越好。
交叉验证(Cross-Validation)
将数据集分成多份,轮流作为测试集和训练集来评估模型性能。
强化学习在神经网络控制中应用
强化学习原理
通过与环境进行交互并根据反馈信号进行学习的方法,使神经网络能够自主学习 到最优控制策略。
强化学习算法
包括Q-learning、策略梯度等算法,用于求解神经网络控制中的优化问题,实现 自适应控制。
04 神经网络控制系统设计与实现
系统需求分析
功能性需求
明确系统需要实现的功能,如 数据输入、处理、输出等。
非监督学习
无需已知输出数据,通过挖掘输入数 据中的内在结构和特征进行学习,常 用于聚类、降维等任务。
深度学习在神经网络控制中应用
深度学习模型
通过构建深层神经网络模型,实现对复杂非线性系统的建模与控制,提高控制 精度和性能。
深度学习优化算法
采用梯度下降等优化算法对深度学习模型进行训练,提高训练效率和模型泛化 能力。
神经网络控制
从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
神经网络控制
M—P模型的提出兴起了对神经网络的研究。
(2) 1949年心理学家D.O.Hebb提出神经元之间突触联系强度可变 的假设。他认为学习过程是在突触上发生的,突触的联系强度随其前 后神经元的活动而变化。根据这一假设提出的学习率为神经网络的学 习算法奠定了基础。
(3) 1958年,Rosenblatt提出感知机,第一次把神经网络的研究付 诸工程实践。这是一种学习和自组织的心理学模型,它基本上符合 神经生理学的知识,模型的学习环境是有噪声的,网络构造中存在 随机连接,这符合动物学习的自然环境。这种类型的机器显然有可 能应用于模式识别、联想记忆等方面。
3.兴盛阶段
再次兴起的原因:
(1)计算机不具备学习能力。在处理能明确定义的问题或运用能明 确定义的概念作为知识时,计算机比较容易对它们进行处理,但是对 一些知识背景不清楚、推理规则不明确、环境信息十分复杂的知识处 理或是算法难以提取的信息处理任务往往感到很困难。 (2)日本第五代机计划远未达到预想水平,也倾向使人觉得有必要 进一步弄清人们习以为常的认知功能是如何进行的.这些认知功能包 括视、听觉感知,学习记忆,运动控制等.从而使人们认识到不能拘 泥一格而必须开拓新的思路,探索新的人类智能实现途径。这时原来 已出现过的,与人脑的生理组织更为接近的神经网络模型就自然成为 理想的候选模型。
兴盛阶段的标志:
(1)近些年来.许多科学家提出了许多种具备不同信息处理能力的神 经网络模型,至今为止。约已开发出了三十多种。神经网络也 被应用到了许多信息处理领域,如模式别、自动控制、信号处理、辅助 决策、人工智能等等。 (2)神经计算机的研究也为神经网络的理论研究和应用研究促供了 强有力的支持,各大学、科研团体和公司开发了许多神经网络模拟软 件包、各种型号的电子神经计算机以及许多神经网络芯片。 (3)1987年6月在美国加州举行了第一届神经网络国际会议,并成立 了国际神经网络学会,以后每年召开两次国际联合神经网络大会 (IJCNN)。 1990年12月在北京召开了我国首届神经网络学术大会,在南 京召开的1991中国神经网络学术大会上成上了中国神经网络学会。当前 发行了两种专门介绍神经网络研究的刊物,《IEEE Transaction on Neural Network》和《Neural Network》
神经网络控制技术研究及其应用
神经网络控制技术研究及其应用神经网络控制技术是一种将人工神经网络应用于控制系统的技术,它是近年来发展非常迅速的一种新兴技术。
神经网络控制技术具有自适应性和学习能力等优点,可以较好地解决传统控制技术无法解决的问题,因此在航天、工业、交通等领域得到了广泛应用。
一、神经网络控制技术的基本原理神经网络是一种模拟生物神经网络的计算模型,它由许多互相连接的处理单元组成,每个单元都能够接受、处理并传递信息。
神经网络控制技术通过建立神经网络模型实现对复杂控制系统的控制。
根据神经网络的学习能力,可以通过输入输出数据来训练神经网络模型,不断修正连接权值,使得神经网络的输出符合系统的实际要求。
同时,神经网络也可以实现自适应控制,根据系统的实时响应情况,调整控制策略,使系统始终处于最佳工作状态。
二、神经网络控制技术的应用1. 工业自动化在工业自动化领域,神经网络控制技术可以广泛应用于电力系统、化工过程、废气处理等方面。
例如,在电力系统中,神经网络控制技术可以根据电网的实时负荷情况进行自适应调节,实现对电力系统的优化控制,提高其稳定性和可靠性。
2. 交通运输在交通运输领域,神经网络控制技术可以被应用于智能交通系统、车辆控制、航空航天等方面。
例如,在智能交通系统中,神经网络控制技术可以根据道路流量情况自适应调节信号灯时间,优化交通流量,提高道路通行效率。
3. 机器人控制在机器人控制领域,神经网络控制技术可以被应用于机器人动作规划、姿态控制、机器人视觉等方面,可以实现复杂机器人控制和运动控制。
例如,在机器人视觉方面,神经网络控制技术可以通过对大量图像进行学习和识别,实现智能机器人视觉控制。
三、神经网络控制技术的发展趋势随着信息技术的飞速发展,神经网络控制技术也将得到进一步的拓展。
未来,神经网络控制技术将在多智能体控制、网络化控制、自主控制等方面发挥更大作用。
此外,基于深度学习的神经网络控制技术也是一个重要的发展方向,它将更好地应用于各种控制系统中,实现更为高效和智能的控制。
控制系统中的神经网络控制理论与应用
控制系统中的神经网络控制理论与应用神经网络控制理论在控制系统中的应用日益广泛。
本文将从神经网络控制的定义和原理入手,深入探讨其在控制系统中的理论与应用方面。
一、神经网络控制的定义和原理神经网络控制是利用神经网络模型来实现对控制系统的建模与控制。
神经网络是一种模仿生物神经元网络结构和功能的人工神经网络模型。
其原理基于多层次、并行处理的结构,通过学习和适应能力实现对系统的建模和控制。
神经网络控制的核心是建立适当的网络结构和权值,并通过学习算法对其进行训练。
常用的神经网络模型包括前馈神经网络、递归神经网络和径向基函数神经网络等。
通过对输入信号的处理和网络参数的调整,神经网络能够实现对复杂系统的非线性建模和控制。
二、神经网络控制在控制系统中的应用1. 神经网络控制在自适应控制中的应用神经网络具有自适应性和非线性映射能力,适合用于自适应控制。
其能够通过学习和反馈调整网络参数,实现对系统的模型自适应和参数识别。
在自适应控制中,神经网络能够实时跟踪系统的变化,并做出相应的控制调整,提高系统的鲁棒性和适应性。
2. 神经网络控制在优化控制中的应用神经网络能够通过学习和优化算法,对系统的控制策略进行优化。
在优化控制中,神经网络可以作为一个强大的优化工具,通过学习系统的状态和控制规律,找到最优的控制策略,提高系统的性能和效率。
3. 神经网络控制在非线性系统控制中的应用传统的控制方法在处理非线性系统时常常面临困难,而神经网络可以有效地处理非线性系统的建模和控制。
通过神经网络的非线性映射能力,可以准确地描述和控制非线性系统的动态性质。
在非线性系统控制中,神经网络能够处理多变量和耦合的系统,并实现对系统的非线性控制。
4. 神经网络控制在智能控制中的应用神经网络具有学习和适应的能力,可以通过不断的学习和训练提高系统的控制能力。
在智能控制中,神经网络能够根据系统的运行状态和外部环境对控制策略进行优化和调整,实现对系统的智能化控制。
神经网络控制系统3篇
神经网络控制系统(一)神经网络控制系统简介神经网络控制系统是一种基于人工神经网络算法的控制系统,它主要通过对数据的学习和分析,不断优化参数,最终实现对系统的有效控制。
神经网络控制系统由多个神经元构成,每个神经元具有一定的输入和输出,它们之间通过权值连接相互联系。
通过不断地输入训练数据,系统能够自我调整,进而快速、精确地完成控制任务。
(二)神经网络控制系统的基本特点1.自适应性神经网络具有非常高的自适应能力,能自动学习和适应复杂的系统结构和变化。
2.非线性神经网络能够处理高度非线性的系统,并且能够自适应地调整变量之间的关系。
3.分布式处理神经网络是由多个节点组成的分布式处理系统,能够实时地响应和处理输入。
4.模式识别神经网络能够对数据进行有效的分类和识别,并在数据发生变化时及时调整模型。
5.容错性神经网络由多个节点组成,如果某个节点发生故障,其他节点仍然可以正常工作,保证系统的稳定性和可靠性。
(三)神经网络控制系统的应用范围1.智能控制神经网络控制系统能够对复杂的系统进行智能控制,如机器人、工业自动化等。
2.数据处理神经网络控制系统能够对海量数据进行处理和分析,为数据挖掘和决策提供支持。
3.医疗诊断神经网络控制系统能够对医疗数据进行分析,辅助医生进行疾病的诊断和治疗。
4.金融风控神经网络控制系统能够对金融领域的数据进行分析,预测市场趋势和风险,并在投资决策方面提供支持。
5.交通运输神经网络控制系统能够对交通流量进行分析和控制,优化交通路线,减少拥堵和事故。
总之,随着人工智能和大数据技术的不断进步,神经网络控制系统将会在更多的领域得到应用,为我们的生活和工作带来更多的便利和效益。
神经网络控制
神经网络控制在现代技术领域中,神经网络控制是一种采用神经网络模型进行系统控制的方法。
神经网络是一种模仿人类大脑神经元之间相互连接的方式构建的计算模型,通过学习和训练,神经网络能够模仿人类的思维方式和决策过程。
神经网络控制的基本原理是利用神经网络的强大学习能力和非线性映射能力,将系统的输入和输出关系建模成一个复杂的非线性函数,通过训练神经网络使其学习到这个函数的映射关系,从而实现对系统的控制。
神经网络控制在各个领域都有着广泛的应用,例如自动驾驶汽车、智能机器人、金融交易系统等。
在自动驾驶汽车中,神经网络控制可以根据传感器信息和环境数据实时调整车辆的速度和方向,使其具备更加智能的驾驶能力。
在工业控制系统中,神经网络控制可以用于优化控制器的参数,提高系统的响应速度和稳定性,从而提高生产效率和降低成本。
在金融领域,神经网络控制可以根据市场数据和交易历史预测股市走势,指导投资决策,提高投资的成功率。
神经网络控制虽然具有很多优势,例如适应复杂非线性系统、具有良好的泛化能力等,但也面临着许多挑战。
神经网络模型的训练需要大量的数据和计算资源,训练时间长、成本高是其中的主要问题。
此外,神经网络模型具有一定的不透明性,难以解释其决策过程和逻辑,这在一些对解释性要求比较高的应用场景中可能会成为障碍。
未来随着人工智能技术的不断发展和应用场景的拓展,神经网络控制将会在更多的领域得到应用和改进。
研究人员将继续探索如何提高神经网络模型的训练效率和泛化能力,以及如何解决神经网络模型的可解释性问题,从而更好地发挥神经网络控制在系统控制领域的作用。
综上所述,神经网络控制作为一种基于神经网络模型的系统控制方法,在现代技术领域具有着广泛的应用前景和发展空间,同时也面临着一些挑战和问题需要不断的研究和改进。
通过持续的努力和创新,相信神经网络控制将会为我们的生活和工作带来更多的便利和效益。
神经网络控制(RBF)
17/20
1.3 基本概念 生物神经元的基本特征
神经元具有感知外界信息或其它神经元信息的输入端 神经元具有向外界或其它神经元输出信息的输出端 神经元之间的连接强度(连接权)决定信号传递的强 弱,而且联接强度是可以随训练改变的 信号可以是起刺激作用的,也可以是起抑制作用的, 即连接权的值(权值)可正、可负 每个神经元有一个阀值 神经元可以对接受的信号进行累积(加权) 神经元的兴奋程度(输出值的大小),取决于其传输 函数及其输入(输入信号的加权与阈值之和)
4/20
1.1 概述
神经细胞利用电-化学过程交换信号。输入信号来自另一些神 经细胞。这些神经细胞的轴突末梢(也就是终端)和本神经细胞的 树突相遇形成突触(synapse),信号就从树突上的突触进入本细胞。 信号在大脑中实际怎样传输是一个相当复杂的过程,但就我们而言, 重要的是把它看成和现代的计算机一样,利用一系列的0和1来进行 操作。就是说,大脑的神经细胞也只有两种状态:兴奋(fire)和不 兴奋(即抑制)。发射信号的强度不变,变化的仅仅是频率。神经 细胞利用一种我们还不知道的方法,把所有从树突上突触进来的信号 进行相加,如果全部信号的总和超过某个阀值,就会激发神经细胞 进入兴奋(fire)状态,这时就会有一个电信号通过轴突发送出去给 其他神经细胞。如果信号总和没有达到阀值,神经细胞就不会兴奋 起来。这样的解释有点过分简单化,但已能满足我们的目的。 。
神经网络控制系统的设计与实现
神经网络控制系统的设计与实现随着机器学习和人工智能技术的快速发展,神经网络控制系统越来越受到关注。
神经网络控制系统是一种通过人工神经网络来解决复杂控制问题的方法。
本文将介绍神经网络控制系统的设计和实现。
一、神经网络控制系统的基本原理神经网络控制系统主要由输入层、隐藏层和输出层组成。
输入层接受传感器采集的数据,并把数据传递到隐藏层。
隐藏层通过对输入层数据的处理,提取出数据的重要特征,并将处理结果传递到输出层。
输出层输出神经网络对控制系统的控制指令,并送往执行器。
在整个过程中,神经网络通过不断的学习和调整权重,提高模型的准确性和性能。
二、神经网络控制系统的设计1.数据采集和处理神经网络控制系统的设计首先要考虑的是数据采集和处理。
在控制系统中,传感器采集的数据是神经网络学习和决策的重要数据源。
为了保证数据准确性和稳定性,我们需要使用高质量的传感器,并对采集的数据进行处理和滤波,以去除控制不必要的干扰和噪声。
2.神经网络模型选择和训练神经网络模型的选择和训练是神经网络控制系统设计的重要部分。
在选择神经网络模型时,我们需要根据控制系统的特点和控制要求,选择合适的神经网络模型。
常用的神经网络模型包括BP神经网络、RBF神经网络、Hopfield神经网络等。
在训练神经网络模型时,我们需要使用大量的训练数据,并采用合适的学习算法对神经网络模型进行训练和调整。
3.控制器设计和实现神经网络的输出结果是控制器的输入,而控制器的输出是控制指令。
因此,控制器的设计和实现是神经网络控制系统设计的关键。
在控制器设计时,我们需要考虑控制系统的特性和控制要求,选择合适的控制算法,并采用合适的编程语言和平台实现控制器。
三、神经网络控制系统的应用神经网络控制系统在各种控制领域都有广泛应用。
例如,在制造业中,神经网络控制系统可以用于生产线的自动化控制和质量控制;在交通运输领域,神经网络控制系统可以用于智能交通管理和车辆导航;在环境保护领域,神经网络控制系统可以用于污染源的监测和管理。
控制系统神经网络控制技术
控制系统神经网络控制技术控制系统是现代工业发展的重要组成部分,其作用是监测和控制工业系统的各种参数,以确保系统能够稳定可靠地运行。
而神经网络控制技术是一种新型的控制系统方法,它基于神经网络理论,利用具有自适应性和非线性特性的神经网络来控制系统,以提高系统的性能和鲁棒性。
下面将详细介绍神经网络控制技术在控制系统中的应用及其优越性。
一、神经网络控制技术的基本原理1.1神经网络理论概述神经网络理论是计算机科学中一个基础的研究领域,它是由生物学中的神经元学说发展而来。
神经网络是由一组相互连接的人工神经元构成的,这些神经元之间的连接可以传递信息,进而模拟人脑的神经网络。
1.2神经网络控制技术的原理神经网络控制技术利用具有自适应性和非线性特性的神经网络来控制系统,并通过反馈机制控制系统的输出变量,以保持系统的稳定性和精度。
神经网络控制技术具有很强的适应性,可以对系统中的各种复杂非线性因素进行在线学习和自适应调节,以达到最优控制效果。
二、神经网络控制技术在控制系统中的应用神经网络控制技术可以应用于各种控制系统中,如航空控制系统、机器人控制系统、电力系统等。
它在控制系统中的应用主要有以下几个方面:2.1预测控制神经网络可以对待控制变量的未来变化进行预测,以便根据预测结果采取相应的控制策略。
利用神经网络预测控制技术,可以在短时间内完成复杂系统的控制和优化调节,提高系统的响应速度和稳定性。
2.2优化控制神经网络可以对系统进行非线性建模和状态优化,以使得系统满足给定的控制要求。
利用神经网络优化控制技术,可以使系统的控制过程更加稳定、快速和准确,从而提高系统的控制质量和性能。
2.3非线性逆控制神经网络可以利用其非线性自适应特性,在控制系统中实现非线性逆控制,从而实现对系统的精确控制。
利用神经网络非线性逆控制技术,可以有效地克服系统建模中的误差和不确定性,提高系统的控制精度和可靠性。
三、神经网络控制技术的优越性相对于传统的控制技术,神经网络控制技术具有以下几个优越性:3.1 自适应性强神经网络控制技术可以根据系统实时的状态和环境信息进行自适应调节,从而保持系统的稳定性和可靠性。
神经网络控制3篇
神经网络控制第一篇:神经网络控制概述神经网络控制是一种基于人工智能技术的控制手段,其核心在于搭建一个具有学习、自适应、优化能力的神经网络模型,并将其作为控制器来实现对控制系统的控制。
与传统的控制方法相比,神经网络控制具有以下优势:1. 在任务未知或难以建立精确的数学模型的情况下,神经网络控制也可以实现对控制系统的控制。
2. 可以自适应地调整神经网络模型的参数和结构,以适应控制系统的非线性、时变、不确定等特点。
3. 神经网络控制可以通过学习获取控制规律,避免了传统控制方法需要手动设计控制策略的繁琐过程。
常见的神经网络控制方法包括前向神经网络、反向传播神经网络、自适应神经网络、模糊神经网络等。
这些方法均基于不同类型的神经网络模型,可根据实际控制需求和系统特点进行选择。
总的来说,神经网络控制作为一种新兴的控制手段,在工业自动化、航空航天、机器人技术等领域具有广泛应用前景,值得进一步研究和推广。
第二篇:神经网络控制应用案例神经网络控制已经在多个领域得到了应用,以下重点介绍几个典型案例。
1. 飞行控制系统神经网络控制被广泛应用于飞行控制系统中,用于解决飞行器对大气、地形、升力等复杂环境的感知和响应问题。
通过神经网络的学习和优化,可以实现飞行器自适应控制,提高飞行器的稳定性和精度。
2. 工业自动化领域在工业自动化领域,神经网络控制可以用于匹配控制、运动控制、负载估算等多个方面。
通过神经网络的自适应学习能力,可以实现对不稳定工况的精确控制,提高生产效率和质量,减少能源消耗和环境污染。
3. 智能家居和物联网领域神经网络控制也可以应用于智能家居和物联网领域,通过神经网络对各类传感器数据的学习和处理,实现对家庭设备的智能化控制和管理,提高生活质量和便捷性。
第三篇:神经网络控制发展趋势随着人工智能技术的不断发展,神经网络控制也在不断演进和完善,其发展趋势主要有以下几个方面:1. 模型优化未来的神经网络控制将更关注模型的优化和简化,以提高计算效率和控制精度。
《神经网络控制》课件
神经网络控制需要大量的数据和计算资源,对模型的训练和调整要求较高。
2 神经网络控制的挑战
在复杂系统的实时控制和稳定性问题上,神经网络控制仍然面临挑战。
3 神经网络控制未来发展的方向
未来,神经网络控制将更加注重与其他控制技术的结合,如模糊控制、强化学习等。
总结
神经网络控制的优势 和局限性
《神经网络控制》PPT课 件
# 神经网络控制PPT课件
介绍神经网络控制
定义神经网络控制
神经网络控制是利用神经网络模型来设计控制器,实现对系统的控制和优化。
神经网络控制的作用和优势
神经网络控制具有非线性建模能力和适应性,可以处理复杂系统和非线性控制问题。
神经网络控制的发展历程
神经网络控制起源于20世纪80年代,经历了多个阶段的发展,如BP神经网络、RBF神经网络 等。
神经网络控制具有非线性建模 能力和适应性,但对数据和计 算资源要求较高。
神经网络控制的发展 前景
神经网络控制在自动化控制领 域有着广阔的应用前景,将与 其他技术相结合。
未来研究方向
进一步研究神经网络控制与其 他控制技术的融合,提高控制 系统的稳定性和性能。
神经网络的基本单元是神经元,其模型
前馈神经网络和反馈神经网络
2
和激活函数决定了神经网络的行为和表 达能力。
前馈神经网络是一种信息传递方向单一
的网络结构,而反馈神经网络具有循环
连接,在动态系统的控制中应用广泛。
3
训练神经网络的方法
常见的神经网络训练方法包括反向传播 算法、遗传算法、粒子群优化等,用于 调整网络参数以实现优化和学习。
神经网络控制实例
倒立摆控制
自适应神经网络PID
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
wij (t 1) wij (t) wij (wij (t) wij (t 1))
其中 为学习速率, 为动量因子。
0,1
0,1
仿真实例: 取标准样本为3输入2输出样本,如表3-1所示。
表3-1 训练样本
输入
输出
10010 0 1 0 0 0.5 00101
表 3-1 μ=0.5 时的学习结果 ( 学习速率较小 )
k
1
w1(k), y(k) 1
234
5
1.5 1.75 1.875 1.9375
表 3-2 μ=1.5 时的学习结果 ( 学习速率较大 )
k
1
w1(k), y(k) 3
234
5
1.5 2.25 1.875 2.0625
表 3-3 μ=2 时的学习结果 ( 学习速率过大 )
yn x'j
x'j x j
x j wij
w
j2
x'j x j
xi
w j2 x'j (1 x'j ) xi
k+1时刻网络的权值为:
wij (k 1) wij (k) wij
如果考虑上次权值对本次权值变化的影响,需
要加入动量因子
此时的权值为: wj2(k 1) wj2(k) wj2 (wj2(k) wj2(k 1))
BP网络的主要缺点为: (1)待寻优的参数多,收敛速度慢; (2)目标函数存在多个极值点,按梯度下降法进行 学习,很容易陷入局部极小值; (3)难以确定隐层及隐层节点的数目。目前,如何 根据特定的问题来确定具体的网络结构尚无很好的 方法,仍需根据经验来试凑。
BP网络的应用领域:
(1)模式识别 (2)图像处理 (3)系统辨识 (4)函数拟合 (5)优化计算 (6)最优预测 (7)自适应控制
第三章 神经网络控制 (Neural Network Control)
➢人工神经元模型 ➢神经元的学习方法 ➢神经元网络 ➢神经网络控制 ➢应用实例
3.1 人工神经元模型
一、神经元模型(The Neuron) 生物神经元是脑组织的基本单元,人脑约
1011个神经元。
二、人工神经元: 利用物理器件(电子、光电)、软件在计算
由于BP网络具有很好的逼近特性和泛化能力, 可用于神经网络控制器的设计。但由于BP网络收 敛速度慢,难以适应实时控制的要求。
二、RBF神经网络
径向基函数(RBF-Radial Basis Function)
输入到输出的映射是 非线性的,而隐含层 空间到输出空间的映 射是线性的。 作用函数为高斯函数
Cj [c1j ,c2 j cij cn j ]T 其中,i=1,2,…n
设网络的基宽向量为:
B [b1,b2 bm ]T
b j为节点的基宽度参数,且为大于零的数。网络的
权向量为:
W [w1, w2 wj wm ]
k时刻网络的输出为:
ym(k)=wh w1h1+w2h2+ +wmhm
W1,W2的初值为[1,1]之间的随机值
0.50, 0.05
BP网络逼近程序见chap7_1.m
3.BP网络模式识别
①根据标准的输入输出模式对,采用神经网络学习 算法,以标准的模式作为学习样本进行训练,通 过学习调整神经网络的连接权值。
②当训练满足要求后,得到的神经网络权值构成了 模式识别的知识库。
②重复①、②,直至输出误差满足要求为止;
③对每组输入输出样本数据都按①~③ 进行学习;
④重复①~④,直至所有输出误差都达到要求的精 度。
(4)BP网络的逼近仿真实例
使用BP网络逼近对象:
y(k)
u(k)3
1
y(k 1) y(k 1)2
采样时间:1ms。 神经网络结构为2-6-1
输入信号为: u(k) 0.5sin(6t)
jl
x
' j
j
网络第 l 个输出与相应理想输出
x
0 l
的误差为:
el xl0 xl
第p个样本的误差性能指标函数为:
E p
1 2
N l 1
el 2
其中N为网络输出层的个数。
(2)反向传播:采用梯度下降法,调整各层间的权 值。权值的学习算法如下:
输出层及隐层的连接权值 w jl 学习算法为:
具有非线性特性
θ, f 的确定: 根据应用
wi 的确定: 通过学习
输出变换函数的常见类型:
① 符号函数 y f(s)
② 比例函数
1 , s0 1, s 0
y f ( s ) Ks , K 0
③ S 状函数 1
y f ( s ) 1 e s ,
④ 双曲函数
y
J 1 e2(k ) 2
其中 e( k ) 为基于某种评价准则的误差, 是 wi 的函数,
J
J W
w1
J
wn
称为J 在W ( k )
处的梯度,具有
则
J
e( k )
vi ( k ) wi W W ( k ) e( k ) wi W W ( k )
最大变化率。
特点:
J
沿梯度方向下降一定能到达 J 的极小点;
梯度方向
学习的快慢取决于学习速率μi 的选取; 缺点是可能陷入局部最小点。
W(k)
W
简单例:
设 y = w1x1 (即 θ= 0 , f(s) = s)
w1
x1
Σθf(·) y
w1 的初值 w1(0) = 0 用梯度下降法, 使 x1 = 1 时, y = 2 取性能指标为
1.BP神经网络特点
(1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间 不连接; (3)权值通过δ学习算法进行调节; (4)神经元激发函数为S函数; (5)学习算法由正向传播和反向传播组成; (6)层与层的连接是单向的,信息的传播是双向的。
2.BP网络的逼近(BP算法)
机上仿真,模拟生物结构功能。 对生物神经元的一种模拟与简化。它是神经
网络的基本处理单元。
三、神经元结构模型
j -1
sj
x1
wj1
yj
f (.)
n
s j wji xi j i 1
y j f (sj )
wjn xn
它是一个多输入、单 输出的非线性元件。
wji:连接权系数 θi:内部阈值 f(·) :输出变换函数,
w j2
E w j2
e(k) xk
w j2
e(k) x'j
k+1时刻网络的权值为: wj2(t 1) wj2(t) wj2
隐层及输入层连接权值学习算法为:
其中
wij
E
wij
e(k ) yn
wij
yn wij
网络的学习算法如下: (1)前向传播:计算网络的输出。
隐层神经元的输入为所有输入的加权之和:
x j wij xi
i
隐层神经元的输出
x
' j
采用S函数激发 x j
x
' j
1 f (xj ) 1 exj
则
x
' j
x j
x
' j
(1
x
' j
)
输出层神经元的输出:
xl
w
u(k )
y(k) xi
wij
wj2
xj
x
' j
yn (k)
= + BP算法
梯度 下降法
由输出层向输入层 反向计算每一层的
连接权值
(1)前向传播:计算网络的输出。
隐层神经元的输入为所有输入的加权之和:
x j wij xi
i
隐层神经元的输出采用S函数激发:
则
x
' j
f (xj)
1
1 exj
BP网络结构为3-6-2
W1,W2的初值为[1,1]之间的随机值
chap7_2a.m chap7_2b.m
0.50, 0.05
4. BP网络的优缺点
BP网络的优点为:
(1)只要有足够多的隐层和隐层节点,BP网络可以 逼近任意的非线性映射关系; (2)BP网络的学习算法属于全局逼近算法,具有较 强的泛化能力。 (3)BP网络输入输出之间的关联信息分布地存储在 网络的连接权中,个别神经元的损坏只对输入输出 关系有较小的影响,因而BP网络具有较好的容错性。
RBF网络是一种局部逼近网络,已证明它能任意精 度逼近任意连续函数。
1.RBF网络的逼近
网络的输入向量
X x1,x2,....xn T
径向基向量
H [h1,h2, hj..hm]T
其中hj为高斯基函数:
2
h j exp(-
X -Cj
2b
2 j
), j 1,2, m
网络的第j个结点的中心矢量为:
3.3 神经元网络
神经元按一定
神经
方式连接
网络
...
目的:通过学习,使神经网络具有
期望 的输入输出模式
两个关键: 网络结构 , 学习方法
常用结构: 前馈网,反馈网等
... ...
三层前馈网络
一、BP神经网络
(误差反向传播神经网络: Back Propagation )