南京市2009年中考数学试题及答案解析
盘点出现在中考数学填空_选择_题_省略_照射下利用影长求物体高度问题为例_徐骏
18), 则
EF=DE+DF =4.4
+0.2
=4.6,
由
AF EF
=01.4,
即
AB-0.3 4.6
=01.4, 可得
AB=11.8(米 ).
作者简介 徐骏 , 男 , 1978年 12月生 , 浙江上虞人 , 中学 一级教师 , 主要从事 课堂有效 教学研究和 解题教 学研究 .有 多篇论文 (案例 )获市一 等奖 , 在省 级以上 专业 期刊 发表论 文 30余篇 .
量树的高度 .在阳光下 , 一名同学测得一根长为 1米的竹
竿的影长为 0.4米 , 同时另一名同学测量树的高度时 , 发
现树的影子不全落在地面上 , 有一部分落在教学楼的第一
图 17 图 18
分析 影子既有在地上部分 , 又有在台阶踢面上的 ,
还有在台阶踏面上的 .过点 D作 DF⊥ AB于点 F(如图
华站在沿 DE方向的坡脚下 , 影子在平地上 , 两人的影长
分别为 4m与 2m,那么 , 塔高 AB =
m.
杆的影长为 2米 ,则电线杆的高度为
米.
图 5 图 6 图 7
分析 可用两种方法解答此题 : 法 1 过点 D作 DF⊥ CD交 AE于点 F, 过点 F作 FG
⊥ AB于点
初看此题 , 貌似平凡 , 甚至平庸 , 然细细品味 , 才
觉它有深藏不露的 “精彩 ”.首先 , 一道看似平凡的
题目 , 却考查了 “直径所对的圆周角是直角 ” 、“同弧
上的圆周角相等 ”、“圆的切线及其性质 ” 等等几乎
课标要求的所有与圆相关的知识点 ;第二 , 在考查圆
的基础上 , 巧妙地与勾股定理 、三角形中位线 、相似
南京2009—2010九年级上学期期中数学--(附解析答案)
2009—2010学年度第一学期期中测试(本试卷满分150分 考试时间120分钟)第一部分 选择题(共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置.......上) 1、已知数据:2,,3,5,6,5,则这组数据的众数和极差分别是( )A .5和7B .6和7C .5和3D .6和32、今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的( )A .众数B .方差C .平均数D .频数3、方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=04、若关于x 的方程2210kx x --=有两个不相等的实数根,则k 的取值范围是A .1k >- B. 1k >-且0k ≠ C.1k < D. 1k <且0k ≠5、下列命题中正确的是 ( )A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等6、如图,梯形ABCD 中,AD ∥BC,AD=AB,BC=BD,∠A=100°,则∠C=( )1-A.80°B.70°C.75°D.60°7、把()ba b a ---1化简后,正确结果( ) A .a b - B .b a - C .a b -- D .b a --8、在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=第二部分 非选择题(共126分)二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9、使1x -有意义的x 的取值范围是 .10、如果最简二次根式a +1与24-a 是同类根式,那么a =____________ABCD(第6题图)(第8题图)ADCBO第14题图第19题图11、某样本方差的计算式为S 2 =120[(x 1-30)2+(x 2-30)]2+…+(x n -30)2],则该样本的平均数=12、如图,有一个数值转换器:当输入的x 为64时,输出的y =13、等腰三角形一底角为500 ,则顶角的度数为14、如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是(只填一个你认为正确的即可).15、三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为16、已知a 、b 实数且满足(a 2+b 2)2-(a 2+b 2)-6=0,则a 2+b 2的值为17、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是18、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19、计算(本题6分)20)21()23(3632918-+-++--20、解方程(每题5分,共10分)(1)0)3()3(32=-+-x x x . (2)0322=--x x (用配方法解)21、(本题8分)如图,在正方形ABCD 中,CE DF ⊥.若10cm CE =,求DF 的长.22、(本题8分)已知关于x 的方程012)2(2=-+++m x m x .(1)求证:方程有两个不相等的实数根.(2)若方程有一根为2,求m 的值,并求出此时方程的另一根.FCBE A23、(本题10分)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?24、(本题10分)为选派一名学生参加全市实践活动技能竞赛,A、B两位同学在学校实习基地现场进行加工直径为20mm的零件的测试,他们各加工10个零件的相关数据依次如图及下表所示(单位:mm)平均数方差完全符合要求的个数根据测试得到的有关数据,回答下列问题:(1)考虑平均数与完全符合要求的个数,你认为的成绩好些;(2)计算出2S的大小,考虑平均数与方差,说明谁的成绩好些;B(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说说你的理由。
南京市中考数学复习题及答案 (6)
南京市中考数学复习题及答案
9.(2分)分解因式(a﹣b)2+4ab 的结果是(a+b)2.
【分析】直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.
【解答】解:(a﹣b)2+4ab
=a2﹣2ab+b2+4ab
=a2+2ab+b2
=(a+b)2.
故答案为:(a+b)2.
【点评】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.
10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=1.【分析】把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.
【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,
解得m=1.
故答案为1.
【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
第1 页共1 页。
南京市中考数学试卷含详细解版
江苏省南京市初中毕业生学业考试数学试题一. 选择题(本大题共6小题,每小题2分,共12分) 1.计算︱- 5+3︱的结果是()A. - 2B. 2C. - 8D. 8考点:有理数的加法;绝对值. 分析:先计算﹣5+3,再求绝对值即可. 解答:解:原式=|﹣2| =2. 故选B . 点评:本题考查了有理数的加法,以及绝对值的求法,负数的绝对值等于它的相反数. 2.计算(-xy ³)²的结果是( ) A. x ²y 6 B. -x ²y 6 C. x ²y 9 D. -x ²y 9 考点:幂的乘方与积的乘方. 分析:根据幂的乘方和积的乘方的运算方法:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数);求出计算(﹣xy 3)2的结果是多少即可. 解答:解:(﹣xy 3)2 =(﹣x )2•(y 3)2 =x 2y 6,即计算(﹣xy 3)2的结果是x 2y 6. 故选:A . 点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn(m ,n 是正整数);②(ab )n =a n b n (n 是正整数).3.如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是()A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 13考点:相似三角形的判定与性质. 分析:第3题图DA CE由DE∥BC,可得△ADE∽△ABC,然后由相似三角形的对应边成比例可得,然后由=,即可判断A、B的正误,然后根据相似三角形的周长之比等于相似比,面积之比等于相似比的平方即可判断C、D的正误.解答:解:∵DE∥BC,∴△ADE∽△ABC,∴,∵=,∵=,故A、B选项均错误;∵△ADE∽△ABC,∴==,=()2=,故C选项正确,D选项错误.故选C.点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的对应边之比等于相似比;相似三角形的周长之比等于相似比;相似三角形的面积之比等于相似比的平方.4.某市底机动车的数量是2×106辆,新增3×105辆.用科学记数法表示该市底机动车的数量是( )A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:底机动车的数量为:3×105+2×106=2.3×106.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.估计5 -12介于( )A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:第6题图MGFE O CD BA N估算无理数的大小. 分析:先估算的范围,再进一步估算,即可解答.解答: 解:∵ 2.235, ∴﹣1≈1.235, ∴≈0.617,∴介于0.6与0.7之间,故选:C . 点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.6.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为() A. 133B. 92C.4313D.2 5考点:切线的性质;矩形的性质. 分析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,得到∠A=∠B=90°,CD=AB=4,由于AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE ,FBGO 是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果. 解答:解:连接OE ,OF ,ON ,OG , 在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5﹣2﹣MN=3﹣MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3﹣NM )2+42,∴NM=,∴DM=3=,故选A.点评:本题考查了切线的性质,勾股定理,正方形的性质,正确的作出辅助线是解题的关键.二.填空题(本大题共10小题,每小题2分,共20分)7.4的平方根是;4的算术平方根是.考点:算术平方根;平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,由此即可求出结果.解答:解:4的平方根是±2;4的算术平方根是2.故答案为:±2;2.点评:此题主要考查了平方根和算术平方根的概念,算术平方根易与平方根的概念混淆而导致错误.8.若式子x+1在实数范围内有意义,则x的取值范围是.考点:二次根式有意义的条件.分析:根据二次根式的定义可知被开方数必须为非负数,列不等式求解.解答:解:根据题意得:x+1≥0,解得x≥﹣1,故答案为:x≥﹣1.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.9.计算5×153的结果是.考点:二次根式的乘除法.分析:直接利用二次根式的性质化简求出即可.解答:解:=×=5.故答案为:5. 点评:此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键. 10.分解因式(a - b )(a - 4b )+ab 的结果是 .考点:因式分解-运用公式法. 分析:首先去括号,进而合并同类项,再利用完全平方公式分解因式得出即可. 解答:解:(a ﹣b )(a ﹣4b )+ab =a 2﹣5ab+4b 2+ab =a 2﹣4ab+4b 2 =(a ﹣2b )2.故答案为:(a ﹣2b )2. 点评:此题主要考查了多项式乘法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.不等式组⎩⎨⎧2x +1>-12x +1 < 3的解集是 .考点:解一元一次不等式组. 分析:分别解每一个不等式,再求解集的公共部分. 解答:解:,解不等式①得:x >﹣1, 解不等式②得:x <1,所以不等式组的解集是﹣1<x <1. 故答案为:﹣1<x <1. 点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.12.已知方程x ²+mx +3=0的一个根是1,则它的另一个根是 ,m 的值是 . 考点:根与系数的关系;一元二次方程的解. 分析:利用一元二次方程的根与系数的关系,两根的和是﹣m ,两个根的积是3,即可求解. 解答:解:设方程的另一个解是a ,则1+a=﹣m ,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.点评:本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A',再作点A'关于y轴的对称点,得到点A'',则点A''的坐标是( , ).考点:关于x轴、y轴对称的点的坐标.分析:分别利用x轴、y轴对称点的性质,得出A′,A″的坐标进而得出答案.解答:解:∵点A的坐标是(2,﹣3),作点A关于x轴的对称点,得到点A′,∴A′的坐标为:(2,3),∵点A′关于y轴的对称点,得到点A″,∴点A″的坐标是:(﹣2,3).故答案为:﹣2;3.点评:此题主要考查了关于x轴、y轴对称点的性质.(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示.工种人数每人每月工资元电工 5 7000木工 4 6000瓦工 5 50001名.与调整前相比,该工程队员工月工资的方差 (填“变小”,“不变”或“变大”).考点:方差.分析:利用已知方差的定义得出每个数据减去平均数后平方和增大,进而得出方差变大.解答:解:∵减少木工2名,增加电工、瓦工各1名,∴这组数据的平均数不变,但是每个数据减去平均数后平方和增大,则该工程队员工月工资的方差变大.故答案为:增大.点评:此题主要考查了方差的定义,正确把握方差中每个数据的意义是解题关键.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E= °.1y=考点:圆内接四边形的性质. 分析:连接CE ,根据圆内接四边形对角互补可得∠B+∠AEC=180°,再根据同弧所对的圆周角相等可得∠CED=∠CAD ,然后求解即可. 解答:解:如图,连接CE ,∵五边形ABCDE 是圆内接五边形, ∴四边形ABCE 是圆内接四边形, ∴∠B+∠AEC=180°, ∵∠CED=∠CAD=35°, ∴∠B+∠E=180°+35°=215°. 故答案为:215.点评:本题考查了圆内接四边形的性质,同弧所对的圆周角相等的性质,熟记性质并作辅助线构造出圆内接四边形是解题的关键.16.如图,过原点O 的直线与反比例函数y 1、y 2的图像在第一象限内分别交于点A 、B ,且A 为OB 的中点.若函数y 1= 1x ,则y 2与x 的函数表达式是 .考点:反比例函数与一次函数的交点问题. 分析:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D ,由于点A 在反比例函数y 1=上,设A (a ,),求得点B 的坐标代入反比例函数的解析式即可求出结果. 解答:解:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , ∵点A 在反比例函数y 1=上, ∴设A (a ,),∴OC=a ,AC=, ∵AC ⊥x 轴,BD ⊥x 轴, ∴AC ∥BD ,∴△OAC ∽△OBD , ∴,∵A 为OB 的中点, ∴=,∴BD=2AC=,OD=2OC=2a , ∴B (2a ,), 设y 2=, ∴k=2a •=4,∴y 2与x 的函数表达式是:y=. 故答案为:y=.点评:本题主要考查了待定系数法求反比例函数,相似三角形的判定和性质,反比例函数中k的几何意义要注意数形结合思想的运用. 三. 解答题(本大题共11小题,共88分)17.(6分)解不等式2(x +1) - 1 ≥ 3x +2,并把它的解集在数轴上表示出来.考点: 解一元一次不等式;在数轴上表示不等式的解集. 分析:不等式去括号、移项合并、系数化为1即可求出不等式的解集,再在数轴上表示出不等式的解集即可. 解答:第17题图–1–2–31230解:去括号,得2x+2﹣1≥3x+2, 移项,得2x ﹣3x ≥2﹣2+1, 合并同类项,得﹣x ≥1, 系数化为1,得x ≤﹣1,这个不等式的解集在数轴上表示为:点评:本题考查了一元一次不等式的解法,在数轴上表示不等式的解集,>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18.(7分)解方程2x -3 = 3x考点:解分式方程. 专题: 计算题. 分析:观察可得最简公分母是x (x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:方程两边同乘以x (x ﹣3),得2x=3(x ﹣3). 解这个方程,得x=9.检验:将x=9代入x (x ﹣3)知,x (x ﹣3)≠0. 所以x=9是原方程的根. 点评:本题考查分式方程的解法,需要注意的是在解分式方程时需对得到的解进行检验.19.(7分)计算⎝⎛⎭⎫2a ²-b ² - 1a ² - ab ÷ aa +b考点:分式的混合运算. 分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可. 解答:解:(﹣)÷=[﹣]×=[﹣]×=×=.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.20.(8分)如图,△ABC 中,CD 是边AB 上的高,且AD CD = CD BD. (1) 求证:△ACD ∽ △CBD ; (2) 求∠ACB 的大小.考点:相似三角形的判定与性质. 分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°. 解答:(1)证明:∵CD 是边AB 上的高, ∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD , ∴∠A=∠BCD ,在△ACD 中,∠ADC=90°, ∴∠A+∠ACD=90°, ∴∠BCD+∠ACD=90°, 即∠ACB=90°. 点评:此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.21.(8分)为了了解某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合抽样结果,得到下列统计图.第20题图A(1)本次检测抽取了大、中、小学生共名,其中小学生名;(2)根据抽样的结果,估计该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为名;(3)比较与抽样学生50米跑成绩合格率情况,写出一条正确的结论.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据“教育部门从这三类学生群体中各抽取了10%的学生进行检测”,可得100000×10%,即可得到本次检测抽取了大、中、小学生共多少名,再根据扇形图可得小学生所占45%,即可解答;(2)先计算出样本中50米跑成绩合格的中学生所占的百分比,再乘以10万,即可解答;(3)根据条形图,写出一条即可,答案不唯一.解答:解:(1)100000×10%=10000(人),10000×45%═4500(人).故答案为:10000,4500;(2)100000×40%×90%=3600(人).故答案为:3600;(3)例如:与相比,该市大学生50米跑成绩合格率下降了5%(答案不唯一).点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)某人的钱包内有10元、20元和50元的纸币各1张.从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.考点:列表法与树状图法.专题:计算题.分析:(1)先列表展示所有3种等可能的结果数,再找出总额是30元所占结果数,然后根据概率公式计算;(2)找出总额超过51元的结果数,然后根据概率公式计算.解答:解:(1)列表:共有3种等可能的结果数,其中总额是30元占1种,所以取出纸币的总额是30元的概率=;(2)共有3种等可能的结果数,其中总额超过51元的有2种,所以取出纸币的总额可购买一件51元的商品的概率为.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,测得∠CAO=45°.轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为45km /h 和36km /h .经过0.1h ,轮船甲行驶至B 处,轮船乙行驶至D 位,测得∠DBO=58°,此时B 处距离码头O 有多远?(参考数据:sin 58° ≈ 0.85,cos 58° ≈ 0.53,tan 58° ≈ 1.60)考点:解直角三角形的应用.分析:设B 处距离码头Oxkm ,分别在Rt △CAO 和Rt △DBO 中,根据三角函数求得CO 和DO ,再利用DC=DO ﹣CO ,得出x 的值即可.解答:解:设B 处距离码头Oxkm ,在Rt △CAO 中,∠CAO=45°, 东北O B A∴CO=AO •tan ∠CAO=(45×0.1+x )•tan45°=4.5+x ,在Rt △DBO 中,∠DBO=58°,∵tan ∠DBO=,∴DO=BO •tan ∠DBO=x •tan58°,∵DC=DO ﹣CO ,∴36×0.1=x •tan58°﹣(4.5+x ),∴x=≈=13.5.因此,B 处距离码头O 大约13.5km .点评:本题考查了解直角三角形的应用,熟练掌握三角形中的边角关系是解题的关键.24.(8分)如图,AB ∥ CD ,点E 、F 分别在AB 、CD 上,连接EF ,∠AEF 、∠CFE 的平分线交于点G ,∠BEF 、∠DFE 的平分线交于点H .(1) 求证:四边形EGFH 是矩形.(2) 小明在完成(1)的证明后继续进行了探索.过G 作MN ∥ EF ,分别交AB 、CD 于点M 、N ,过H 作PQ ∥ EF ,分别交AB 、CD 于点P 、Q ,得到四边形MNQP .此时,他猜想四边形MNQP 是菱形,请在下列框图中补全他的证明思路.考点:菱形的判定;全等三角形的判定与性质;矩形的判定.分析:(1)利用角平分线的定义结合平行线的性质得出∠FEH+∠EFH=90°,进而得出∠GEH=90°,进而求出四边形EGFH 是矩形;(2)利用菱形的判定方法首先得出要证▱MNQP 是菱形,只要证MN=NQ ,再证∠MGE=∠QFH 得出即可.解答:(1)证明:∵EH 平分∠BEF ,∴∠FEH=∠BEF ,∵FH 平分∠DFE ,小明的证明思路 由AB ∥CD ,MN ∥EF ,PQ ∥EF ,易证四边形MNQP 是平行四边形.要证▱MNQP 是菱形, 只要证NM=NQ .由已知条件 , MN ∥ EF ,可证NG = NF ,故只要证 GM = FQ ,即证△MGE ≌△QFH .易证 , , 故只要证 ∠MGE = ∠QFH ,∠QFH = ∠GEF ,∠QFH=∠EFH , 第24题图P H G A D C∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,∵∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°﹣(∠FEH+∠EFH)=180°﹣90°=90°,同理可得:∠EGF=90°,∵EG平分∠AEF,∴∠EFG=∠AEF,∵EH平分∠BEF,∴∠FEH=∠BEF,∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°,∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°,∴四边形EGFH是矩形;(2)解:答案不唯一:由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形,要证▱MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MN∥EF,故只要证GM=FQ,即证△MGE≌△QFH,易证 GE=FH、∠GME=∠FGH.故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,∠GEF=∠EFH,即可得证.点评:此题主要考查了矩形的判定以及菱形的判定和角平分线的性质,根据题意得出证明菱形的方法是解题关键.25.(10分)如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)DA考点:作图—应用与设计作图;等腰三角形的判定;勾股定理;正方形的性质.分析:①以A为圆心,以3为半径作弧,交AD、AB两点,连接即可;②连接AC,在AC上,以A为端点,截取1.5个单位,过这个点作AC的垂线,交AD、AB两点,连接即可;③以A 为端点在AB上截取3个单位,以截取的点为圆心,以3个单位为半径画弧,交BC一个点,连接即可;④连接AC,在AC上,以C为端点,截取1.5个单位,过这个点作AC的垂线,交BC、DC两点,然后连接A与这两个点即可;⑤以A为端点在AB上截取3个单位,再作着个线段的垂直平分线交CD一点,连接即可.解答:解:满足条件的所有图形如图所示:点评:此题主要考查了作图﹣应用与设计作图,关键是掌握等腰三角形的判定方法.26.(8分)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB.(2)连接OE,交CD于点F,OE ⊥ CD.求证:△ABE是等边三角形.考点:圆内接四边形的性质;等边三角形的判定与性质;圆周角定理.(第26题)EOCABD分析:(1)根据圆内接四边形的性质可得∠A+∠BCD=180°,根据邻补角互补可得∠DCE+∠BCD=180°,进而得到∠A=∠DCE ,然后利用等边对等角可得∠DCE=∠AEB ,进而可得∠A=∠AEB ;(2)首先证明△DCE 是等边三角形,进而可得∠AEB=60°,再根据∠A=∠AEB ,可得△ABE 是等腰三角形,进而可得△ABE 是等边三角形.解答:证明:(1)∵四边形ABCD 是⊙O 的内接四边形,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠A=∠DCE ,∵DC=DE ,∴∠DCE=∠AEB ,∴∠A=∠AEB ;(2)∵∠A=∠AEB ,∴△ABE 是等腰三角形,∵EO ⊥CD ,∴CF=DF ,∴EO 是CD 的垂直平分线,∴ED=EC ,∵DC=DE ,∴DC=DE=EC ,∴△DCE 是等边三角形,∴∠AEB=60°,∴△ABE 是等边三角形.点评:此题主要考查了等边三角形的判定和性质,以及圆内接四边形的性质,关键是掌握圆内接四边形对角互补.27.某企业生产并销售某种产品,假设销售量与产量相等.下图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义.(2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?x /kgy /元D B120 C 60 A考点:二次函数的应用.分析:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)根据线段AB经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(3)利用总利润=单位利润×产量列出有关x的二次函数,求得最值即可.解答:解:(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(90,42),∴∴,∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤90);(3)设y2与x之间的函数关系式为y=k2x+b2,∵经过点(0,120)与(130,42),∴,解得:,∴这个一次函数的表达式为y2=﹣0.6x+120(0≤x≤130),设产量为xkg时,获得的利润为W元,当0≤x≤90时,W=x[(﹣0.6x+120)﹣(﹣0.2x+60)]=﹣0.4(x﹣75)2+2250,∴当x=75时,W的值最大,最大值为2250;当90≤x130时,W=x[(﹣0.6x+120)﹣42]=﹣0.6(x﹣65)2+2535,∴当x90时,W=﹣0.6(90﹣65)2+2535=2160,由﹣0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,因此当该产品产量为75kg时,获得的利润最大,最大值为2250.点评:本题考查了二次函数的应用,解题的关键是从实际问题中抽象出二次函数模型,难度不大.。
江苏省2009年中考数学试卷(含答案)
解析1.-2、0、1、-3四个数中,最小的数是()A.-2 B.0 C.1 D.-3 VIP显示解析2.如果收入50元,记作+50元,那么支出30元记作()A.+30 B.-30 C.+80 D.-80 VIP显示解析3.下面的几何体中,主视图不是矩形的是()A.B.C.D.显示解析4.若式子x−3在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3 D.x<3显示解析5.下列运算中,正确的是()A.2a2+3a2=a4B.5a2-2a2=3 C.a3×2a2=2a6D.3a6÷a2=3a4A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元显示解析7.如图,直线a∥b,∠1=120°,∠2=40°,则∠3等于()A.60°B.70°C.80°D.90°显示解析8.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有()A.4种B.5种C.6种D.7种显示解析二、填空题(本大题共10小题,每小题3分,共30分。
不需要写出解答过程,请将答案直接写在答题卡相应位置上)9.16的平方根是.★★★★★显示解析10.因式分解:a2-9=.★★☆☆☆显示解析11.2013年4月20日,四川省雅安市芦山县发生7.0级地震.我市爱心人士情系灾区,积极捐款,截止到5月6日,市红十字会共收到捐款约1400000元,这个数据用科学记数法可表示为元.显示解析12.使分式x+12x−1的值为零的条件是x=.显示解析13.如图所示是一飞镖游戏板,大圆的直径把一组同心圆分成四等份,假设飞镖击中圆面上每一个点都是等可能的,则飞镖落在黑色区域的概率是12.显示解析14.若x2-2x=3,则代数式2x2-4x+3的值为.显示解析15.写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)显示解析16.如图,将⊙O沿弦AB折叠,使AB经过圆心O,则∠OAB=.显示解析17.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为8cm2.显示解析18.如图,在以点O为原点的平面直角坐标系中,一次函数y=-12x+1的图象与x轴交于点A,与y轴交于点B,点C在直线AB上,且OC=12AB,反比例函数y=kx的图象经过点C,则所有可能的k值为121150.显示解析三、解答题(本大题共有10小题,共96分。
南京市2009年中考数学试题及答案解析
12.反比例函数 的图象在第象限.
13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为 ,则可列方程.
14.若 ,则 .
15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为 (偶数),指针指向标有奇数所在区域的概率为 (奇数),则 (偶数) (奇数)(填“ ”“ ”或“ ”).
(1)求观测点B到航线 的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据: , ,
, )
26.(本题满分10分)
(1)观察与发现
小明将三角形纸片 沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到 (如图②).小明认为 是等腰三角形,你同意吗?请说明理由.
中所示的位置,与三角形乙拼成一个矩形,那么,下面的平
移方法中,正确的是( )
A.先向下平移3格,再向右平移1格
B.先向下平移格,再向右平移1格
C.先向下平移2格,再向右平移2格
D.先向下平移3格,再向右平移2格
6.某商场试销一种新款衬衫,一周内销售情况如下表所示:
型号(厘米)
38
39
40
41
42
43
(2)实践与运用
将矩形纸片 沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点 处,折痕为EG(如图④);再展平纸片(如图⑤).求图⑤中 的大小.
2009年江苏省中考数学试题
( a C) 。
3 如 图 1数轴上 A、 . , B两点 分别对 应实数 o b 、. 则 下列结论正确 的是 (
( a+b A) >0
) .
( )b 0 Ba >
() C 中位数
() D 方差
( 0一b 0 C) >
曰
( ) 口 —Il 0 D II > b
A
7 如 图 4 给 出 下 列 4组 条 件 : . ,
@A B=D B E A D E,C= F.C= F;
B =DE, B = E, BC =EF; . b 一1 0 1 0
③ B= E, C:E C= F; B F,
1. 3 4 若 a 一a一 0,0 +2 6 = 2= 贝 8— a 5 .
I 镇I 图县 I 市l 口城
.. ... .. .. . . . .
_ J _
1. 5 如图 5 一个 圆形转盘被等 分成五个扇形 区 , 域, 上面分别标有 数字 1 2 3 4 5 转 盘指针的位置 … 、 , 固定 , 转动转盘后任 其 自由停 止 , 转动转 盘一次 , 当 转 盘停止转动 时 , 记指 针指 向标 有偶 数所在 区域 的 概率 为 P( 偶数 ) 指 针指 向标 有奇数所 在 区域的概 , 率为 P 奇数 ) 则 P( ( , 偶数 ) — ( — 填“>” “<” 或
第 个 :一 + ( ) 2数÷ ( )+ ・ t -
第 个 数 :1
一
( ) ・ + ;
个 矩 形 , 么 , 面 那 下
的平移方法 中, 正确的是 (
) .
( )+ ) ( ・ +
2009年江苏省中考数学二模试题选(1)2009.6
2009年江苏省中考数学二模试题选(1)2009.6注意事项:1. 本试卷满分150分,考试时间为120分钟.2. 卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.3. 请考生直接在数学答题卷上答题.一、选择题(本大题共8题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母填在答题卷上)1.下列计算正确的是 ( ) A . 632a a a =⋅ B .338)2(a a =- C .54aa a =+ D .32632x x x -=⋅-2.国务院总理温家宝作2009年政府工作报告时表示,今后三年各级政府拟投入医疗卫生领域资金达8500亿元人民币.将“8500亿元”用科学记数法表示为 ( ) A .9105.8⨯元B .10105.8⨯元C .11105.8⨯元D .12105.8⨯元3.方程(x -1)(x +2)=2(x +2)的根是 ( ) A .1,-2 B .3,-2 C .0,-2 D .14.京剧是我国的国粹,剪纸是流传已久的民间艺术,这两者的结合无疑是最能代表中国特色的艺术形式之一.图中京剧脸谱剪纸中是轴对称图形的个数是 ( ) A .1个 B .2个 C .3个 D .4个5.下列调查方式合适的是( )A.为了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式B.为了解全校学生用于做数学作业的时间,小明同学在网上通过QQ 向3位好友做了调查C.为了解全国青少年儿童睡眠时间,对某市某初中全体学生用了普查的方式D.为了解江苏人民对电影《南京!南京!》的感受,小华到某初中随机采访了8名初三学生 6.现有边长相同的正三角形、正方形、正六边形、正八边形的地砖,要求至少用两种不同的地砖作镶嵌 (两种地砖的不同拼法视为同一种组合), 则不同组合方案共有 ( ) A. 3种 B. 4种 C. 5种 D. 6种7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象如图所示,则所解的二元一次方程组是 ( )(第4题图)A .203210x y x y +-=⎧⎨--=⎩, B .2103210x y x y --=⎧⎨--=⎩, C .2103250x y x y --=⎧⎨+-=⎩, D .20210x y x y +-=⎧⎨--=⎩,8.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O →C →D →O 路线作匀速运动,设运动时间为x (秒),∠APB =y (度),右图函数图象表示y 与x 之间函数关系,则点M 的横坐 标应为 ( )A .2B .2π C .12π+ D .2π+2二、填空题(本大题共10小题,每小题3分,共计30分.请把答案填写在答题卷相应位置上横线上)9.-3的倒数是 ▲ ;-6的绝对值是 ▲ ;4的平方根是 ▲ . 10.函数21-=x y 的自变量x 取值范围是 ▲ .11.分解因式:2218x -= ▲ .12.如图,直线MA ∥NB ,∠A =70°,∠B =40°,则∠P = ▲ °.13.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.14.初三(2)班同学年龄统计数据如图所示,则该班级所有同学的平均年龄是 ▲ 岁(结果精确到0.1).15.小明要制作一个圆锥模型,其侧面是由一个半径为9cm ,圆心角为240°的扇形纸板制成的,还需要一块圆形纸板做底面,那么这块圆形纸板的半径为 ▲ cm .16.将点A (34,0)绕着原点顺时针方向旋转60°得到点B ,则点B 的坐标是 ▲ .(第7题图) M APN B(第12题)主视图 左视图 俯视图 正面(第13题)(第8题)17.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中剩余的编号为1-7的小正方形中任意一个涂黑,则所得图案是一个轴对称图形的概率是 ▲ .18.在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为 ▲ .三、解答题(本大题共10小题,共计96分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本大题满分8分,每小题4分) (1)计算: 10)31()145(sin 313---︒+⨯- (2)解方程:1215122=-+-xx20.(本题满分8分)先化简分式11132-÷⎪⎭⎫⎝⎛+--x x x xx x ,再从不等式组⎩⎨⎧+<-≥--15242)2(3x x x x 的解集中取一个合适的值代入,求原分式的值.AEFMB P C(第14题) (第17题) (第18题)21.(本题满分8分)已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且弧CB =弧CD ,CF⊥AB 于点F ,CE ⊥AD 的延长线于点E . (1)试说明:DE =BF ;(2)若∠DAB =60°,AB =6,求△ACD 的面积.22.(本题满分8分)某中学九(1)班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 ▲ ;(2)选择长跑训练的人数占全班人数的百分比是 ▲ ,该班共有同学 ▲ 人; (3)根据测试资料,训练后篮球定时定点投篮的人均进球数比训练之前人均进球数增加25% ,请求出参加训练之前的人均进球数.训练后篮球定时定点投篮测试进球数统计表长跑 铅球 篮球立定跳远20% 10%60% 项目选择情况统计图23.(本题满分10分)在中央电视台第2套《购物街》栏目中,有一个精彩刺激的游戏――幸运大转盘,其规则如下:①游戏工具是一个可绕轴心自由转动的圆形转盘,转盘按圆心角均匀划分为20等分,并在其边缘标记5、10、15、…、100共20个5的整数倍数,游戏时,选手可旋转转盘,待转盘停止时,指针所指的数即为本次游戏的得分;②每个选手在旋转一次转盘后可视得分情况选择是否再旋转转盘一次,若只旋转一次,则以该次得分为本轮游戏的得分,若旋转两次则以两次得分之和为本轮游戏的得分;③若某选手游戏得分超过100分,则称为“爆掉”,该选手本轮游戏裁定为“输”,在得分不超过100分的情况下,分数高者裁定为“赢”;④遇到相同得分的情况,相同得分的选手重新游戏,直到分出输赢.现有甲、乙两位选手进行游戏,请解答以下问题:(1)甲已旋转转盘一次,得分65分,他选择再旋转一次,求他本轮游戏不被“爆掉”的概率.(2)若甲一轮游戏最终得分为90分,乙第一次旋转转盘得分为85分,则乙还有可能赢吗?赢的概率是多少?(3)若甲、乙两人交替进行游戏,现各旋转一次后甲得85分,乙得65分,你认为甲是否应选择旋转第二次?说明你的理由.24.(本题满分10分)(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺........在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)(2)如图2,在10×10的正方形网格中,点A(0,0)、B(5,0)、C(3,6)、D(-1,3),①依次连结A、B、C、D四点得到四边形ABCD,四边形ABCD的形状是▲.②在x轴上找一点P,使得△PCD的周长最短(直接画出图形,不要求写作法);此时,点P的坐标为▲,最短周长为▲.A FO E B图25.(本题满分10分)宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20 m3 ,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m3,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少?并求出该方式下的运费是多少元?26.(本题满分10分)二次函数2y ax bx c=++的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,l).(1)试求a,b所满足的关系式;倍时,(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的54求a的值;(3)是否存在实数a,使得△ABC为直角三角形.若存在,请求出a的值;若不存在,请说明理由.27.(本题满分12分) 如图1,在底面积为l00cm 2、高为20cm 的长方体水槽内放人一个圆柱形烧杯.以恒定不变的流量速度先向烧杯中注水,注满烧杯后,继续注水,直至注满水槽为止,此过程中,烧杯本身的质量、体积忽略不计,烧杯在大水槽中的位置始终不改变.水槽中水面上升的高度h 与注水时间t 之间的函数关系如图2所示. (1)写出函数图象中点A 、点B 的实际意义; (2)求烧杯的底面积;(3)若烧杯的高为9cm ,求注水的速度及注满水槽所用的时间.【同类变式】在底面积为100cm 2、高为20cm 2的长方体水槽内放入一个圆柱形烧杯(烧杯本身的质量、体积忽略不计),如图(1)所示,向烧杯中注入流量一定的水,注满烧杯后,继续注水,直至注满水槽为止,(烧杯在水槽中的位置始终不变),水槽中水面上升的高度h 与注水时间t 之间的函数关系如图(2)所示。
2009年中考数学试题参考答案
2009年中考数学试题参考答案一、 选择题(每题3分,共30分)ADCBA BADCD二、 填空题(每题3分,共18分)11、1 12、A B ⊥CD 或AD=BD 或AC =CB 等 13、y=2x 14、20 15、10+33 16、19 三、解答题(每小题8分,共16分)17、解:由(1)得 x >-2 ………………………… 2分 由(2)得3x -1《2x -2 得x ≤-1 ………………………… 4分 所以,不等式组的解集为-2〈x ≤-1……6分在数轴上表示为 ……………………… 8分 18.解:原式=()()2111x x x x x -+÷+ ……………………………… 2分 =()()1112-+∙+x x xxx …………………………… 4分=1-x x ………………………………………………… 6分当x=2时,1-x x =2122=- …………………………… 8分四、解答题(每小题9分,共18分)19、解:(1)作业完成时间在1.5 ~2小时时间段内的学生有6人 …… 2分 (2)该班共有学生:40%4518=名 ………… 4分(3)(略) ………………………………………………… 6分 (4)作业完成时间在0.5~1小时的部分对应的扇形圆心角的度数是: 360°×30% = 108° ………………………………………9分20、解:(1)用列表法或数状图表示为: 列表法…………………………5分树状图法(2)P(恰好选中女生甲和男生A)=61 ………………………………………………8分∴恰好选中女生甲和男生A 的概率为61……………………………………… 9分21、证明:(1)在□ABCD 中,AD=CB,AB=CD,∠D=∠B …………………………… 1分 ∵EF 分别是AB 、CD 的中点 ∴DF=21CD,BE=21AB , DF=BE ………………………………………3分∴△AFD ≌△CEB ………………………………………………4分 (2)在□ABCD 中,AB=CD,AB ∥CD ……………………………………6分 由(1)得BE=DF ,∴AE=CF ………………………………………………7分 ∴四边形AECF 是平行四边形 ………………………………………8分22、解:∵点A(-3,1),B(2,n)是一次函和反比例函数的交点 ∴把x=-3,y=1代入y=xm ,得:m=-3∴反比例函数的解析式是y=- x3 …………………………………………3分把x=-3,y=n 代入y=-x3 得:n=-23把x=-3,y=1,x=2,y=-23分别代入y=kx+b得:⎪⎩⎪⎨⎧-=+=+-23213b k b k ,解得 ⎪⎩⎪⎨⎧-=-=2121b k ……………………………………4分 ∴一次函数的解析式为y=- 2121-x ……………………………………5分(3)过点A 作AE ⊥x 轴于点E ∴A 点的纵坐标为1,∴AE=1 由一次函数的解析式为y=- 2121-x得C 点的坐标为(0,-21), ……………………………………6分∴OC=21在Rt △OCD 和Rt △EAD 中,∠COD=∠AED=90°,∠CDO=∠ADE∴Rt △OCD ∽Rt △EAD ……………………………………7分 ∴==COAE CDAD 2 ……………………………………8分23、(1)证明:连接OD, ∵OD=OA, ∴∠ODA=OAD ………………………………1分又∵DE 是⊙O 的切线,∴∠ODE=90°,OD ⊥DE ……………………………2分 又∵DE ⊥EF, ∴OD ∥EF ……………………………………3分 ∴∠ODA=∠DAE, ∠DAE=∠OAD, ∴AD 平分∠CAE …………………………5分 (2)解:∵AC 是⊙O 的直径,∴∠ADC=90°………………………………6分 由(1)知:∠ODA=∠DAE, ∠AED=∠ADC, ∴△ADC ∽△AED, ∴ADAC AEAD = ………………………………7分在Rt △ADE 中,DE=4,AE=2, ∴AD=25 ………………………………7分∴52252AC =,∴AC=10 ……………………………………8分∴⊙O 的半径为5 ……………………………………9分 24、解(1)∵抛物线与x 轴交于A(1,0),B(70)∴y=a (x-1)(x-7) ……………………………………1分 又∴抛物线与y 轴交于C,且OA=7,则C 点的坐标为(7,0) ∴7=a (0-1)(0-7),7a=7, a=1 ……………2分∴抛物线的解析式为y=(x-1)(x-7)=782+-x x …………………………3分 (2)∵E 点在抛物线上∴m=25-40+7,m=-8 …………4分 ∵直线y=kx+b 经过点C(0,7),E(5,-8)∴⎩⎨⎧-===8757k b 解得:k=-3,b=7 …………………………5分∴直线CE 的表达式是y=-3x+7 ……………………………………6分 (3)设直线CE 于x 轴的交点为D 当y=0时,-3x+7=0,x=37∴D 点的坐标为(37,0) ……………………………………7分∴S=3531008)377(217)377(21==⨯-⨯+⨯-⨯=+∆∆BDE BDC S S …………8分(4)在抛物线上存在点P 使得△ABP 为等腰三角形 ………………………9分 ∵抛物线的顶点是满足条件的一个点除此之外,还有六个点理由如下: ∵AP=BP=103909322==+>6分别以A 、B 为圆心,半径长为6画圆,分别与抛物线交于点B 、1P 、2P 、A 、3P 、4P 、5P 、6P ,除去A 、B 两点外,其余六个点为满足条件的点,…………11分∴一共有七个满足条件的点P ……………………………………12分。
2009年南京市中考数学试题及标准答案
南京市2009年初中毕业生学业考试数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( )A .2B .2-C .12D .12-2.计算23()a 的结果是( )A .5aB .6a C .8a D .23a 3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( )A .平均数B .众数C .中位数D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭;(第3题)圆柱 圆锥 球 正方体 (第5题) 图②图① A C B DF E (第7题)第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭L.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相....应位置...上) 9.计算2(3)-= .10有意义的x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”). 16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= .17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2. 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(1--++(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.(第15题)A A D EB CF (第16题) (第17题) (第18题)20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h . 请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形.(1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD Y是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C,它的顶点B 在函数221y x x =--的图象的对称轴上.AD C F B 各类学生人数比例统计图各类学生成绩人数比例统计表(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到0.1km/h ).1.73,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.A 图① A 图②F EE D CF B A 图③ E D C A B FG 'D ' A DE C BF α图④ 图⑤27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标;(2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB . ①当C ⊙与射线DE 有公共点时,求t 的取值范围;②当PAB △为等腰三角形时,求t 的值.江苏省2009年中考数学试卷参考答案及评分建议1日:有库存6万升,成本价4元/升,售价5元/升.13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升. 五月份销售记录(万升)一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x +=14.1 15.< 16.25 17.2π 18.16三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程) 19.解:(1)原式2123=-+=. ·················································································· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. ················· (8分) 20.解:(1)280,48,180. ··························································································· (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=, 估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ························································ (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=.答:出现1个男婴,2个女婴的概率是38. ···································································· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ······························································ (7分) 答:普通公路长为60km ,高速公路长为120km . ························································· (8分)解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ························ (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .(男男男) (男男女) 男 女 男(男女男) (男女女) 男 女 女(女男男) (女男女) 男 女 男(女女男) (女女女)男 女女男女开始第一个 第二个 第三个所有结果根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,································································ (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h . ······································ (8分) 23.(1)解:13AD BC =. ····························································································· (1分) 理由如下:AD BC AB DE AF DC Q ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形. AD BE AD FC ==Q ,.又Q 四边形AEFD 是平行四边形,AD EF ∴=. AD BE EF FC ∴===.13AD BC ∴=. ················································································································· (5分) (2)证明:Q 四边形ABED 和四边形AFCD 都是平行四边形, DE AB AF DC ∴==,. AB DC DE AF =∴=Q ,.又Q 四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. ·································· (10分)24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ················因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C的坐标为(20),. ··························································· (6分) (2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),. 因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ············································ (10分) 25.解:(1)设AB 与l 交于点O .在Rt AOD △中,6024cos60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,.在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴==g °,°(km ). ∴观测点B 到航线l 的距离为3km . ················································································ (4分) (2)在Rt AOD △中,tan 60OD AD ==g °. 在Rt BOE △中,tan 60OE BE ==g °DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan76CBE BE CE BE CBE ∠==∴=∠=g °,,°.3tan 76 3.38CD CE DE ∴=-=-°.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ). 答:该轮船航行的速度约为40.6km/h . ········································································ (10分) 26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD 平分BAC ∠,所以BAD CAD ∠=∠.又由折叠知,90AGE DGE ∠=∠=°, 所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ···················································· (5分) (2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°.从而9067.522.5α∠=-=°°°. ·················································································· (10分) 27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升). 答:销售量x 为4万升时销售利润为4万元. ································································ (3分) (2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),.设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ···································· (6分)从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元).∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),. 设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ····································· (9分) (3)线段AB . ················································································································ (12分) 解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤. 当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ······························································· (3分) (2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,AF EG即 1.52(45)y x x =-≤≤. ··························································································· (6分) 把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升).当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.54.45⨯+⨯==(元). 所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤. ······························· (9分) (3)线段AB . ················································································································ (12分) 28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ·································································· (2分) (2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时,有3532t -≤,即43t ≥.当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO ∠=∠,得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. ······························ (5分)②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+221633532525t t t ⎛⎫=+--+ ⎪⎝⎭. 2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ·········································· (7分)当PA PB =时,有PC AB ⊥,3535t t ∴-=-.解得35t =.····························· (9分)当PB AB =时,有 222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭. 221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ································································ (11分)∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =. ················· (12分)。
DA江苏省中考真题
解:设普通公路长为 x km,高度公路长为 y km.
2 x y, x 60, 根据题意,得 x 解得 ····················(7 分) ··········· ········· ·········· ········· y y 120. 60 100 2.2.
3 P (1 个男婴,2 个女婴) . 8
答:出现 1 个男婴,2 个女婴的概率是
3 . ······················(8 分) ··········· ·········· · ·········· ··········· 8
22.解:本题答案不惟一,下列解法供参考. 解法一 问题:普通公路和高速公路各为多少千米?················ (3 分) ··········· ····· ·········· ······
a 2 1 (a 1) 2 (a 1)(a 1) a a 1 . ······ 分) ····· (8 ····· 2 a a a (a 1) a 1
20.解: (1)280,48,180.······························ 分) ····························· (3 ·········· ··········· ········ (2)抽取的学生中,成绩不合格的人数共有 (80 48 48) 176 , 所以成绩合格以上的人数为 2000 176 1824 , 估计该市成绩合格以上的人数为
4 4k b, k 1.5, 解得 5.5 5k b. b 2.
··········· (6 ·········· · 线段 AB 所对应的函数关系式为 y 1.5x 2(4 ≤ x ≤ 5) . ············ 分) 从 15 日到 31 日销售 5 万升,利润为 11.5 4 (5.5 4.5) 5.5 (万元) .
2008-2009学年度江苏省南京市九年级数学教学质量检测义务教育
2008—2009学年度某某市教学质量检测义务教育九年级数学试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷1至2页,第II卷3至8页。
全卷满分100分,考试时间120分钟。
第Ⅰ卷(选择题共30分)一、选择题:本大题10个小题,每小题3分,共30分。
请将唯一正确的答案序号填在题后的括号里。
1.有12只外观完全相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取1只,是二等品的概率等于()A.121B.61C.41D.1272.顺次连结任意四边形各边中点所得四边形是()A.平行四边形B.矩形C.菱形D.正方形3)A C D4.如图,斜坡AB 长20米,其水平宽度AC 长为103米,则斜坡AB 的 坡度为()A .30°B .60°C .1 :3D .1 :25.若则下列各式中不正确的是()A .B .C .D .6.如图,为了测量河两岸A 、B 两点的距离,在与AB 垂直的方向上取点C ,测得AC =a ,∠ACB =α,那么AB 等于( )A .αsin ⋅aB .cos a α⋅C .αtan ⋅aD .cot a α⋅7.关于x 的一元二次方程2210kx x +-=有两个不相等的 实数根,则k 的取值X 围是() A .1->kB .1-≥kC .01≠-≥k k 且D .01≠->k k 且8.如图在△ABC 中,点G 是重心,连结BG 并延长BG 交AC 于D , 若点G 到AB 的距离为2,则点D 到AB 的距离是() A . B .3C .D .49.某商品经两次降价,由每件100元调到每件81元,则平均每次 降价的百分率为() A .﹪B .9﹪C .﹪D .10﹪GD C AB Ca第4题图10.设a 、b 、c 、d 都是整数,且a<2b,b<3c ,c<4d,d<20,则a 的最大值是()A .480B .479C .448D .447第Ⅱ卷(非选择题共70分)二、填空题:本大题6个小题,每小题3分,共18分。
南京市中考数学试卷及答案
南京市中考数学试卷及答案南京市中考是南京地区中学生升入高中的重要考试,其中数学作为一门核心科目,对学生的数学能力和应试能力进行测试。
以下是一份典型的南京市中考数学试卷及答案,供参考。
第一部分:选择题本部分共有20道选择题,每题4分,共80分。
1、已知函数f(x) = x²-2x,求f(-1)的值。
A. 0B. -2C. 2D. 42、如图所示,正方形ABCD中,点E、F分别是边AD、BC的中点,连接EF,则△ABC与△EFC的面积比是:(图片省略)A. 1:2B. 2:1C. 1:4D. 4:13、已知函数y = 2x-1,求当x = 2时,y的值。
A. -2B. -1C. 1D. 3......(省略至第20题)第二部分:填空题本部分共有10道填空题,每题4分,共40分。
26、已知直线y = 2x-1与y = -x+3相交于点P,点P在第一象限,则点P的坐标为( 1 , _______ )。
答案:( 1 , 1 )27、如图所示,三角形ABC的面积是30平方厘米,AB = 10厘米,点D为BC的中点,连接AD,过点D作AE垂直于AB于点E,则△AED的面积为______ 平方厘米。
答案:1528、已知a + b = -3,ab = 2,则a²+b²的值为______。
答案:13......(省略至第35题)第三部分:解答题本部分共有5道解答题,每题12分,共60分。
36、计算下列各式的值。
(1)12-(-3)×4+5²(2)(6+2)²-3×(2-1)答案:(1)39 (2)3137、植树小组计划在一块空地上每隔3米栽一棵树,若已栽了25棵树,则树苗一共占用了多长的空地?答案:72米38、如图所示,下列各三角形中,哪个三角形是等腰三角形?说明理由。
(图片省略)答案:△ABC,因为AB = AC。
......(省略至第40题)答案部分:选择题答案:1、B2、A3、C ...(省略至第20题)填空题答案:26、1 27、15 28、13 ...(省略至第35题)解答题答案:36、(1)39 (2)31 37、72米 38、△ABC ...(省略至第40题)以上是一份典型的南京市中考数学试卷及答案。
南京市中考数学试卷
选择题
下列哪个数是无理数?
A. 3.14
B. √2(正确答案)
C. 22/7
D. -5
若直角三角形的两条直角边分别为3和4,则其斜边的长为?
A. 5(正确答案)
B. 6
C. 7
D. 8
下列哪个选项是方程x2 - 4x = 0 的解?
A. x = 0(正确答案)
B. x = 2
C. x = 4
D. x = -2
在平面直角坐标系中,点A(2,3)关于x轴对称的点的坐标是?
A. (-2,3)
B. (2,-3)(正确答案)
C. (-2,-3)
D. (3,2)
下列哪个不等式表示x与-5的距离不大于3?
A. |x - 5| ≤ 3
B. |x + 5| ≤ 3(正确答案)
C. |x - 5| ≥ 3
D. |x + 5| ≥ 3
一个圆的半径为r,其面积S与r的关系式为?
A. S = πr
B. S = 2πr
C. S = πr2(正确答案)
D. S = 2πr2
下列哪个选项是等差数列2, 5, 8, ... 的第10项?
A. 26
B. 29(正确答案)
C. 32
D. 35
若一个矩形的长为8,宽为x,且其面积为32,则x的值为?
A. 2
B. 3
C. 4(正确答案)
D. 5
下列哪个选项是二次函数y = x2 - 2x + 1 的顶点坐标?
A. (0,0)
B. (1,0)(正确答案)
C. (0,1)
D. (1,1)。
2009-2012年南京市中考数学试卷分析
江苏省南京市09—12年中考数学试卷分析结果——张进奇第一部分数与代数09年考了5题,3题选择题,1题填空题,1题解答题.第1题选择题考查了有理数的相反数,分值为3分,难易度为A;第2题选择题考查了绝对值,实数与数轴上的点一一对应,实数的四则运算,其中有理数知识占1分,难易度为B,第3题选择题考查的是数字规律,分值3分,难易度为B;填空题考查了有理数的乘方运算,分值为3分,难易度为A;解答题考查了绝对值,有理数的四则运算,算术平方根,代数式,整数指数幂的运算,乘法公式,利用分式的基本性质进行约分和通分,整式与分式的混合运算,其中有理数知识占2分,难易度为B.10年考了1题填空题,考查了绝对值,分值为2分,难易度为A.11年考了2题填空题,第1题填空题考查了有理数的相反数,分值为2分,难易度为A,第2题填空题考查的是数字规律,分值2分,难易度为B.12年考了1题选择题,考查了绝对值,平方运算,平方根,其中有理数知识占1分,难易度为A.本知识点在近四年试卷中所占的分值比例依次为8%,1.67%,3.33%,0.83%;出题方式:选择题,填空题,解答题;难易度:A或B.每年必考1题有关有理数的绝对值或相反数的选择题或填空题.本知识点是中学数学的基础知识,在中考试卷中常以选择题或填空题的形式考查,解答题中较少涉及.其中次重点:绝对值;非重点有理数的乘方运算,数字规律、相反数;其余知识点均为一般.09年考了3道题,1道选择题,1道填空题,1道解答题.选择题考查的是绝对值,实数与数轴上的点一一对应,实数的四则运算,其中实数知识占2分,难易度为B;填空题考查的是根式有意义的条件,分值3分,难易度为A;解答题考查的是绝对值,有理数的四则运算,算术平方根,代数式,整数指数幂的运算,乘法公式,利用分式的基本性质进行约分和通分,整式与分式的混合运算,其中实数知识占2分,难易度为B;10年考了3题,2题选择题,1题填空题.第1题选择题考查了实数的导数,分值为2分,难易度为A;第2题选择题考查了实数与数轴上的点一一对应,算术平方根和立方根,分值为2分,难易度为A;填空题考查了二次根式的乘法法则,分值为2分,难易度为A.11年考了2题,1题选择题,1题填空题.选择题考查了算术平方根,分值为2分,难易度为A;填空题考查了实数的简单四则运算,分值为2分,难易度为B.12年考了4题,2题选择题,2题填空题.第1题选择题考查了绝对值,乘方运算,平方根,其中实数知识占1分,难易度为A;第2题选择题考查了用有理数估计一个无理数的大致范围,分值为2分,难易度为A;第1题填空题考查了算术平方根的概念,分值为2分,难易度为A;第2题填空题考查了实数的简单四则运算,分值为2分,难易度为A.本知识点在近四年试卷中所占的分值比例依次为4.67%,5%,3.33%,5.83%;出题方式:选择题,填空题,解答题;难易度:A或B.其中平方根在近四年试卷中均有所考查.本知识点是中学数学的基础知识,是对小学所学的有关数的知识进行了综合,在中考试卷中常以选择题或填空题的形式考查.其中重点:平方根运算,实数的四则运算;无次重点;非重点:实数与数轴上的点一一对应,算术平方根的概念;其余知识点均为一般.09年考了2道题,1道填空题,1道解答题.填空题考查的是求代数式的值,分值3分,难易度为B;解答题考查的是点的坐标表示,解简单的一元一次不等式,分析简单问题的数量关系,并用代数式表示,三角形相似的判定(三个角对应相等的两个三角形相似),勾股定理,解一元一次方程、一元二次方程,根据问题的实际意义检验结果是否合理,等腰三角形的性质,其中代数式知识占1分,难易度为C;10年考了2题解答题.第1题解答题考查了分析简单问题的数量关系,并用代数式表示,二次函数的表达式、图象及顶点坐标,其中代数式知识占2分,难易度为B;第2题解答题考查了分析简单问题的数量关系,并用代数式表示,解一元二次方程,其中代数式知识占4分,难易度为B.11年考了1题填空题,考查了求代数式的值,分值为2分,难易度为B.12年考了1题解答题,考查了用代数式表示简单问题的数量关系,直线与圆以及圆与圆的位置关系,解直角三角形,特殊角的三角函数值,二次函数的应用,其中代数式知识占2分,难易度为B.本知识点在近四年试卷中所占的分值比例依次为2.67%,5%,1.67%,1.67%;出题方式:填空题,解答题;难易度:A、B或C.本知识点无重点,次重点:分析简单问题的数量关系,并用代数式表示;非重点:求代数式的值;其余知识点均为一般.09年考了3道题,1道选择题,1道填空题,1道解答题.选择题考查的是整数指数幂的运算,分值3分,难易度为A;填空题考查的是用科学记数法表示数,分值3分,难易度为A;解答题考查的是绝对值,有理数的四则运算,算术平方根,代数式,整数指数幂的运算,乘法公式,利用分式的基本性质进行约分和同分,整式与分式的混合运算,其中整式的知识占2分,难易度为B.10年考了3题,1题选择题,1题填空题,1题解答题.选择题考查了同底数幂的运算,分值为2分,难易度为A;填空题考查了用科学记数法表示数,分值为2分,难易度为A;解答题考查了乘法公式,利用分式的基本性质进行约分和通分,分式的四则运算,其中整式知识占2分,难易度为B.11年考了3道题,2道选择题,1道解答题,第1道选择题考查的是整数指数幂运算,分值2分,难易度为A,第2道选择题考查的是科学记数法,分值2分,难易度为A,解答题考查的是乘法公式,利用分式的基本性质进行约分和通分,进行简单的分式加、减、乘、除运算,其中整式知识占1分,难易度为B;12年考了3题,2题选择题,1题解答题.第1题选择题考查了用科学记数法表示数,分值为2分,难易度为A;第2题选择题考查了整数指数幂的运算,分值为2分,难易度为A;解答题考查了乘法公式,利用分式的基本性质进行约分,分式的四则运算,一元一次不等式组,其中整式知识占1分,难易度为B.本章知识在09、10、11、12年试卷中的分值比例分别为:5.33%、5%、4.17%、4.17%.总体来说:本章重点:整数指数幂运算,科学记数法,乘法公式,其余为一般.09年考了1道解答题,考查的是绝对值,有理数的四则运算,算术平方根,代数式,整数指数幂的运算,乘法公式,利用分式的基本性质进行约分和通分,整式与分式的混合运算,其中分式知识占2分,难易度为B;10年考了 1题解答题,考查了乘法公式,利用分式的基本性质进行约分和通分,分式的四则运算,其中分式知识占4分,难易度为B.11年考查了1道解答题,考查了乘法公式,利用分式的基本性质进行约分和通分,进行简单的分式加、减、乘、除运算,其中分式知识占5分,难易度为B.12年考了 1题解答题. 考查了乘法公式,利用分式的基本性质进行约分,分式的四则运算,一元一次不等式组,其中分式知识占4分,难易度为B.本章知识在09、10、11、12年试卷中的分值比例分别为:1.33%、3.33%、4.17%、3.33%.总体来说:本章重点:利用分式的基本性质进行约分和通分,分式的四则运算;无次重点和非重点;其余知识点均为一般.09年考了3道题,1道填空题,2道解答题.填空题考查的是根据具体问题中的数量关系,列出方程,分值3分,难易度为B;第1道解答题考查的是二元一次方程组及其应用,分值8分,难易度为B;第2道解答题考查的是点的坐标表示,解简单的一元一次不等式,分析简单问题的数量关系,并用代数式表示,三角形相似的判定(三个角对应相等的两个三角形相似),勾股定理,解一元一次方程、一元二次方程,根据问题的实际意义检验结果是否合理,等腰三角形的性质,其中方程(组)知识占6分,难易度为C.10年考了3题解答题.第1题解答题考查了解简单的二元一次方程组,分值为6分,难易度为B;第2题解答题考查了一次函数的表达式及其应用,解一元一次方程,其中方程(组)知识占2分,难易度为B;第3题解答题考查了分析简单问题的数量关系,并用代数式表示,解一元二次方程,一次函数的表达式,其中方程(组)知识占4分,难易度为B. 11年考了1题解答题,考查了解一元二次方程,分值为6分,难易度为B.12年考了3题,1题填空题,2题解答题.填空题考查了可化为一元一次方程的分式方程,分值为2分,难易度为B;第1题解答题考查了解简单的二元一次方程组,分值为6分,难易度为B;第2题解答题考查了解一元二次方程,根据具体问题的实际意义,检验结果是否合理,分值为8分,难易度为B.本知识点在近四年试卷中所占的分值比例依次为11.33%,10%,5%,13.33%;出题方式:选择题,填空题,解答题;难易度:B或C.本知识点的重点:解一元二次方程;次重点:二元一次方程组,一元一次方程;非重点:根据问题的实际意义检验结果是否合理;其余知识点均为一般.09年考了1道解答题,考查的是点的坐标表示,解简单的一元一次不等式,分析简单问题的数量关系,并用代数式表示,三角形相似的判定(三个角对应相等的两个三角形相似),勾股定理,解一元一次方程、一元二次方程,根据问题的实际意义检验结果是否合理,等腰三角形的性质,其中不等式(组)知识占2分,难易度为C. 10年考了1题选择题,考查了解一元一次不等式组,分值为2分,难易度为A. 11年考了1题解答题,考查了解一元一次不等式组,分值为6分,难易度为B. 12年考了1题解答题,考查了乘法公式,利用分式的基本性质进行约分,整式的四则运算,一元一次不等式组,其中不等式(组)知识占4分,难易度为B.本知识点在近四年试卷中所占的分值比例依次为1.33%,1.67%,5%,3.33%;出题方式:选择题,解答题;难易度:A、B或C.本知识点无重点;次重点(无重点):一元一次不等式组;无非重点;其余知识点均为一般.09年未考查. 10年考了2题,1题填空题,1题解答题.填空题考查了函数自变量的取值范围(分式),分值为2分,难易度为A;解答题考查了全等三角形的判定(有两角及其夹边相等的两个三角形全等)及其性质,勾股定理,相似三角形的判定及其性质(对应边成比例),余角,一元二次函数的表达式,函数自变量的取值范围,其中函数知识占1分,难易度为C. 11年未考查.12年考了1题解答题,考查了变量的意义,结合图象对简单实际问题中的函数关系进行分析,分值为7分,难易度为B.本知识点在10年和12年试卷中所占的分值比例依次为2.5%,5.83%;出题方式:填空题,解答题;难易度:A、B或C.本知识点无重点、次重点,非重点:函数自变量的取值范围,其余为一般.09年考了1道解答题,考查的是根据图象确定一次函数表达式,一次函数的实际应用,分值 12分,难易度为B;10年考了2题,1题选择题,1题解答题.选择题考查了一次函数的图象,中心投影,其中一次函数知识占1分,难易度为B;解答题考查了一次函数的表达式及其应用,解一元一次方程,其中一次函数知识占6分,难易度为B. 11年考了3题解答题,第1题解答题考查的是根据图象确定一次函数表达式,一次函数的应用,分值7分,难易度为B,第2题解答题考查的是一次函数的图象与性质,二次函数的图象与性质,其中一次函数知识占2分,难易度为B;第3题解答题考查的是一次函数的性质,二次函数的性质,反比例函数的性质,其中一次函数知识占3分,难易度为C;12年考了2题,1题选择题,1题填空题.选择题考查了一次函数与反比例函数的图象,其中一次函数知识占1分,难易度为B;填空题考查了根据图象上点的坐标确定一次函数的表达式,分值为2分,难易度为A.本知识点在近四年试卷中所占的分值比例依次为8%,5.83%,10%,2.5%,;出题方式:选择题,填空题、解答题;难易度:A、B、C.本知识点的重点:一次函数的表达式;次重点:一次函数的图象,一次函数的应用;无非重点;其余知识点均为一般.09年考了1道填空题,考查的是反比例函数的图象,分值3分,难易度为A. 10年考了1题填空题,考查了反比例函数的表达式及其图象,分值为3分,难易度为B. 11年考了1题解答题,考查的是一次函数的性质,二次函数的性质,反比例函数的性质,其中反比例函数知识占3分,难易度为C.12年考了1题选择题,考查了一次函数与反比例函数的图象,其中反比例函数知识占1分,难易度为B.本知识点在09、10、11、12年试卷中所占的分值比例依次为2%,2.5%,2.5%,0.83%,;出题方式:选择题,填空题、解答题;难易度:A、B、C.本知识点无重点和非重点;次重点:反比例函数的图象;其余知识点均为一般.09年考了1道解答题,考查的是二次函数的图象、顶点及对称轴,二次函数的表达式,菱形的性质,点关于直线对称,点的坐标表示,其中二次函数知识占8分,难易度为B.10年考了2题解答题.第1题解答题考查了分析简单问题的数量关系,并用代数式表示,二次函数的表达式,图象及顶点坐标,其中二次函数知识占5分,难易度为B;第2题解答题考查了全等三角形的判定(有两角及其夹边的对应相等的两个三角形全等)及其性质,勾股定理,相似三角形的判定及其性质(对应边成比例),余角,二次函数的表达式,函数自变量的取值范围,其中二次函数知识占2分,难易度为C.11年考了2题解答题,第1题解答题考查的是一次函数的图象与性质,二次函数的图象与性质,其中二次函数知识占5分,难易度为B,第2道解答题考查的是一次函数的性质,二次函数的性质,反比例函数的性质,其中二次函数知识占5分,难易度为C;12年考了1题解答题,考查了直线与圆以及圆与圆的位置关系,解直角三角形,特殊角的三角函数值,用代数式表示简单问题的数量关系,二次函数的应用,其中二次函数知识占4分,难易度为B.本知识点在09、10、11、12年试卷中所占的分值比例依次为5.33%,5.83%,8.33%, 3.33%,;出题方式:解答题;难易度:B或C.本知识次重点;二次函数图象;非重点:二次函数性质,表达式及其顶点;其余知识点均为一般. 第二部分空间与图形09年考了2道题,1道填空题,1道解答题.填空题考查的是直径所对圆周角的特征,平行线的性质(两直线平行内错角相等),直角三角形的两锐角互余,其中角相交线与平行线知识占1分,难易度为B;解答题考查的是等腰三角形的判定,正方形的判定及性质,轴对称的性质,余角,其中角相交线与平行线知识占1分,难易度为B .10年考了4题,1题填空题,3题解答题.填空题考查了补角,分值为2分,难易度为A;第1题解答题考查了全等三角形的性质(对应角相等),平行线的判定(内错角相等),等腰三角形的性质,三角形的内角和,其中相交线与平行线知识占3分,难易度为B;第2题解答题考查了全等三角形的判定(有两角及其夹边相等的两个三角形全等)及其性质,勾股定理,相似三角形的判定及其性质(对应边成比例),余角,一元二次函数的表达式,函数自变量的取值范围,其中相交线与平行线知识占1分,难易度为C;第3题解答题考查了直线与圆的位置关系,平行线的性质(两直线平行,内错角相等),扇形的面积,平行四边形的判定(两组对边平行)及性质,其中相交线与平行线知识占2分,难易度为B. 11年考了1题填空题,考查了五边形的内角,平行线的性质,其中相交线与平行线知识占1分,难易度为B.12年考了3题,1题选择题,2题填空题.选择题考查了轴对称,菱形的性质,平行线的性质(同旁内角互补),补角,余角,三角形的内角和,等腰三角形的判定及性质,解直角三角形,特殊角的三角函数值,主考轴对称和解三角形,难易度为C;第1题填空题考查了补角,多边形的外交和等于360°,其中相交线与平行线知识占1分,难易度为A;第2题填空题考查了平行四边形的性质,平行线的性质(内错角相等),相似三角形的判定及性质(对应边成比例),主考平行四边形的性质和相似三角形,难易度为B.本知识点在近四年试卷中所占的分值比例依次为1.33%,6.67%,0.83%,0.83%;出题方式:选择题、填空题、解答题;难易度:A、B或C.本知识点无重点,次重点:余角,平行线的性质;其余知识点均为一般.09年考了3道题,1道选择题,2道解答题.选择题考查的是两个三角形全等的条件,分值3分,难易度为B.第1道解答题考查的是等腰三角形的判定,正方形的判定及性质,轴对称的性质,余角,其中三角形知识占5分,难易度为B;第2道解答题考查的是点的坐标表示,解简单的一元一次不等式,代数式,三角形的相似(三个角相等的两个三角形相似),勾股定理,解一元一次方程、一元二次方程,根据问题的实际意义检验结果是否合理,等腰三角形的性质,其中三角形知识占2分,难易度为C.10年考了4题,1题填空题,3题解答题.填空题考查了圆与圆的位置关系,垂径定理,勾股定理,其中三角形知识占1分,难易度为B;第1题解答题考查了全等三角形的性质(对应角相等),平行线的判定(内错角相等),等腰三角形的性质,三角形的内角和,其中三角形知识占4分,难易度为B;第2题解答题考查三角形相似的条件,勾股定理,其中三角形知识占2分,难易度为B;第3题解答题考查了全等三角形的判定(有两角及其夹边相等的两个三角形全等)及其性质,勾股定理,相似三角形的判定及其性质(对应边成比例),余角,一元二次函数的表达式,函数自变量的取值范围,其中三角形知识占5分,难易度为C.11年考了5题,1道选择题,1道填空题,3道解答题,选择题考查的是直线与圆的位置关系,垂径定理,勾股定理,其中三角形知识占1分,难易度为B,填空题考查的是勾股定理,菱形的性质,菱形的面积,其中三角形知识占1分,难易度为B,第1道解答题考查的是平行四边形的性质,三角形全等的判定,矩形的判定,其中三角形知识占3分,难易度为B,第2道解答题考查的是勾股定理,三角形相似的判定与性质,直线与圆的位置关系,圆与圆的位置关系,直径所对圆周角的特征,其中三角形知识占1分,难易度为B,第3道解答题考查的是直角三角形的性质,三角形相似的判定,相似的新定义,尺规作图,其中三角形知识占1分,难易度为B;12年考了4题,1题选择题,3题解答题.选择题考查了轴对称,菱形的性质,平行线的性质(同旁内角互补),补角,余角,三角形的内角和,等腰三角形的判定及性质,解直角三角形,特殊角的三角函数值,其中三角形知识占1分,难易度为C;第1题解答题考查了三角形全等的判定(有两角及其夹边相等的两个三角形全等),直角三角形的性质,尺规作图,其中三角形知识占4分,难易度为B;第2题解答题考查了三角形和梯形的中位线,等腰梯形的性质,正方形的判定(有一个角是直角的菱形是正方形),勾股定理,其中三角形知识占3分,难易度为B;第3题解答题考查了圆周角与圆心角的关系、直径所对圆周角的特征,勾股定理,点与圆的位置关系,三角形的内角和,其中三角形知识占2分,难易度为C.本知识点在近四年试卷中所占的分值比例依次为6%,9.17%,5.83%,8.33%;出题方式:选择题、解答题;难易度:B或C.本知识点的重点:勾股定理,全等三角形的判定;次重点:等腰三角形的性质;非重点:等腰三角形的判定;其余知识点均为一般.09年考了5道题,2道填空题,3道解答题.第1道填空题考查的是弧长公式(以正六边形为载体),其中四边形知识占1分,难易度为B,第2道填空题考查的是梯形中位线,分值3分,难易度为B,第1道解答题考查的是平行四边形的判定及性质,矩形的判定(对角线相等的平行四边形是矩形),分值为10分,难易度为B;第2道解答题考查的是二次函数的图象、顶点及对称轴,二次函数的表达式,菱形的性质,点关于直线对称,点的坐标表示,其中四边形知识占1分,难易度为B;第3道解答题考查的是等腰三角形的判定,正方形的判定及性质,轴对称的性质,余角,其中四边形知识占2分,难易度为B.10年考了2题,1题选择题,1题解答题.选择题考查了点的坐标表示,菱形的性质,其中四边形知识占1分,难易度为A;解答题考查了直线与圆的位置关系,平行线的性质(两直线平行,内错角相等),扇形的面积,平行四边形的判定(两组对边平行)及性质,其中四边形知识占2分,难易度为B. 11年考了5题,4题填空题,1题解答题.第1题填空题考查了多边形的内角,平行线的性质,其中四边形知识占1分,难易度为B;第2题填空题考查了等腰梯形的性质,梯形的中位线,分值为2分,难易度为B;第3道填空题考查的是勾股定理,菱形的性质,菱形的面积,其中四边形知识占1分,难易度为B,第4题填空题考查了对应点与旋转中心连线所成的角彼此相等,正方形的性质,其中四边形知识占1分,难易度为B;解答题考查了平行四边形的性质,三角形全等的判定(有两角及其其中一角的对边对应相等的两个三角形全等),矩形的判定(对角线相等),其中四边形知识占4分,难易度为B. 12年考了4题,1题选择题,2题填空题,1题解答题.选择题考查了轴对称,菱形的性质,平行线的性质(同旁内角互补),补角,余角,三角形的内角和,等腰三角形的判定,解直角三角形,特殊角的三角函数值,主考轴对称和解三角形,难易度为C;第1题填空题考查了补角,多边形的外角和等于360°,其中四边形知识占1分,难易度为B;第2题填空题考查了平行四边形的性质,平行线的性质(内错角相等),相似三角形的判定及性质(对应边成比例),其中四边形知识占1分,难易度为B;解答题考查了三角形和梯形的中位线,等腰梯形的性质,正方形的判定(有一个角是直角的菱形是正方形),勾股定理,其中四边形知识占6分,难易度为B.本知识点在近四年试卷中所占的分值比例依次为11.33%,2.5%,7.5%,6.67%;出题方式:选择题、填空题、解答题;难易度:A、B或C.本知识点的重点:平行四边形的性质,菱形的性质;次重点:梯形中位线,非重点:等腰梯形性质,平行四边形的判定,矩形的判定,正方形的判定及性质;其余知识点均为一般.09年考了3道题,2道填空题,1解答题.第1道填空题考查的是直径所对圆周角的特征,平行线的性质(两直线平行内错角相等),直角三角形的两锐角互余,其中圆的知识占2分,难易度为B;第2道填空题考查的是弧长公式(以正六边形为载体),其中圆的知识占2分,难易度为B,解答题考查的是点的坐标表示,解简单的一元一次不等式,用代数式表示简单数量关系,三角形相似的判定,勾股定理,解一元一次方程、一元二次方程,根据问题的实际意义检验结果是否合理,等腰三角形的性质,直线与圆的位置关系,其中圆的知识占1分,难易度为C.10年考了3题,2题填空题,1题解答题.第1题填空题考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省2009年中考数学试卷说明:1. 本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2. 答题前,考生务必将本人的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角填写好座位号.3. 所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米黑色水笔作答.在试卷或草稿纸上答题无效. 4. 作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置.......上) 1.2-的相反数是( ) A .2B .2-C .12D .12-2.计算23()a 的结果是( ) A .5aB .6aC .8aD .23a3.如图,数轴上A B 、两点分别对应实数a b 、, 则下列结论正确的是( ) A .0a b +> B .0ab > C .0a b ->D .||||0a b ->4.下面四个几何体中,左视图是四边形的几何体共有( )A .1个B .2个C .3个D .4个5.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是( )A .先向下平移3格,再向右平移1格B .先向下平移2格,再向右平移1格C .先向下平移2格,再向右平移2格D .先向下平移3格,再向右平移2格6.某商场试销一种新款衬衫,一周内销售情况如下表所示:B A1-1 0 a b (第3题)圆柱 圆锥 球 正方体 (第5题) 图②甲 乙 图① 甲乙型号(厘米) 38 39 40 41 42 43数量(件)25 30 36 50 28 8商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .众数 C .中位数 D .方差 7.如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有( )A .1组B .2组C .3组D .4组 8.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 9.计算2(3)-= .10.使1x -有意义的x 的取值范围是 .11.江苏省的面积约为102 600km 2,这个数据用科学记数法可表示为 km 2. 12.反比例函数1y x=-的图象在第 象限. 13.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 . 14.若2320a a --=,则2526a a +-= .15.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为PA CB DF E (第7题) 15 43 2(第15题)(偶数),指针指向标有奇数所在区域的概率为P (奇数),则P (偶数) P (奇数)(填“>”“<”或“=”).16.如图,AB 是O ⊙的直径,弦CD AB ∥.若65ABD ∠=°,则ADC ∠= . 17.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留π).18.如图,已知EF 是梯形ABCD 的中位线,DEF △的面积为24cm ,则梯形ABCD 的面积为 cm 2.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)0|2|(12)4--++;(2)2121a a a a a -+⎛⎫-÷ ⎪⎝⎭.20.(本题满分8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A 、B 、C 、D 四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:(1)请将上面表格中缺少的三个数据补充完整;(2)若该市九年级共有60 000名学生参加测试,试估计该市学生成绩合格以上(含合格)的人数.OBAC D A D E BCF (第16题)(第17题)(第18题)30% 30% 40%农村县镇城市各类学生人数比例统计图等第 人数 类别 A B C D 农村 ▲ 200 240 80 县镇 290 132 130 ▲ 城市 240 ▲ 132 48 (注:等第A 、B 、C 、D 分别代表优秀、良好、合格、不合格) 各类学生成绩人数比例统计表21.(本题满分8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?22.(本题满分8分)一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h ,在高速公路上行驶的速度为100km/h ,汽车从A 地到B 地一共行驶了2.2h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.23.(本题满分10分)如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形. (1)AD 与BC 有何等量关系?请说明理由;(2)当AB DC =时,求证:ABCD是矩形.24.(本题满分10分)如图,已知二次函数221y x x =--的图象的顶点为A .二次函数2y ax bx =+的图象与x 轴交于原点O 及另一点C ,它的顶点B 在函数221y x x =--的图象的对称轴上.(1)求点A 与点C 的坐标;(2)当四边形AOBC 为菱形时,求函数2y ax bx =+的关系式.25.(本题满分10分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;AD CFE Bx yO 1 2 32 1 1- 1- 2-221y x x =-- A(2)求该轮船航行的速度(结果精确到0.1km/h ).(参考数据:3 1.73≈,sin 760.97°≈, cos 760.24°≈,tan 76 4.01°≈)26.(本题满分10分) (1)观察与发现小明将三角形纸片()ABC AB AC >沿过点A 的直线折叠,使得AC 落在AB 边上,折痕为AD ,展开纸片(如图①);再次折叠该三角形纸片,使点A 和点D 重合,折痕为EF ,展平纸片后得到AEF △(如图②).小明认为AEF △是等腰三角形,你同意吗?请说明理由.(2)实践与运用将矩形纸片ABCD 沿过点B 的直线折叠,使点A 落在BC 边上的点F 处,折痕为BE (如图③);再沿过点E 的直线折叠,使点D 落在BE 上的点D '处,折痕为E G (如图④);再展平纸片(如图⑤).求图⑤中α∠的大小.27.(本题满分12分)某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题:北东CDB EAl60°76°A C DB 图① ACD B 图②F EE D CF B A 图③ E D C A B FG C 'D ' A DE C BFG α图④ 图⑤(1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)28.(本题满分12分)如图,已知射线DE 与x 轴和y 轴分别交于点(30)D ,和点(04)E ,.动点C 从点(50)M ,出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒.(1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、12t 个单位长度为半径的C ⊙与x 轴交于A 、B 两点(点A 在点B 的左侧),连接PA 、PB .①当C ⊙与射线DE 有公共点时,求t 的取值范围; ②当PAB △为等腰三角形时,求t 的值.江苏省2009年中考数学试卷参考答案及评分建议一、选择题(本大题共有8小题,每小题3分,共24分) 题号123456781日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.五月份销售记录 Oxy EPDA B M C Ox(万升) y (万元)CB A4 5.5 10选项 A B C B D B C A二、填空题(本大题共有10小题,每小题3分,共30分)9.9 10.1x ≥ 11.51.02610⨯ 12.二、四 13.27800(1)9100x += 14.1 15.< 16.25 17.2π 18.16三、解答题(本大题共有10小题,共96分.解答必须写出必要的文字说明、推理步骤或证明过程)19.解:(1)原式2123=-+=.············································································· (4分)(2)原式2221(1)(1)(1)1(1)1a a a a a a a a a a a --+-+=÷=⨯=--. ················ (8分) 20.解:(1)280,48,180. ······················································································ (3分)(2)抽取的学生中,成绩不合格的人数共有(804848)176++=,所以成绩合格以上的人数为20001761824-=, 估计该市成绩合格以上的人数为182460000547202000⨯=. 答:估计该市成绩合格以上的人数约为54720人. ····················································· (8分) 21.解:用树状图分析如下:P (1个男婴,2个女婴)38=. 答:出现1个男婴,2个女婴的概率是38. ································································· (8分) 22.解:本题答案不惟一,下列解法供参考.解法一 问题:普通公路和高速公路各为多少千米? (3分) 解:设普通公路长为x km ,高度公路长为y km .根据题意,得2 2.2.60100x y x y =⎧⎪⎨+=⎪⎩,解得60120x y =⎧⎨=⎩,. ··························································· (7分) 答:普通公路长为60km ,高速公路长为120km . ······················································· (8分)(男男男) (男男女) 男 女 男(男女男) (男女女) 男 女 女(女男男) (女男女) 男 女 男(女女男) (女女女)男 女女男女开始第一个 第二个 第三个所有结果解法二 问题:汽车在普通公路和高速公路上各行驶了多少小时? ······················· (3分) 解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h . 根据题意,得 2.2602100.x y x y +=⎧⎨⨯=⎩,解得11.2.x y =⎧⎨=⎩,····························································· (7分)答:汽车在普通公路上行驶了1h ,高速公路上行驶了1.2h . ····································· (8分) 23.(1)解:13AD BC =. ······················································································· (1分) 理由如下:AD BC AB DE AF DC ∥,∥,∥,∴四边形ABED 和四边形AFCD 都是平行四边形. AD BE AD FC == ,.又 四边形AEFD 是平行四边形,AD EF ∴=. AD BE EF FC ∴===.13AD BC ∴=. ············································································································ (5分)(2)证明: 四边形ABED 和四边形AFCD 都是平行四边形, DE AB AF DC ∴==,. AB DC DE AF =∴= ,.又 四边形AEFD 是平行四边形,∴四边形AEFD 是矩形. ································ (10分)24.解:(1)2221(1)2y x x x =--=--,所以顶点A 的坐标为(12)-,. ························································· (3分)因为二次函数2y ax bx =+的图象经过原点,且它的顶点在二次函数221y x x =--图象的对称轴l 上,所以点C 和点O 关于直线l 对称,所以点C 的坐标为(20),. ······· (6分)(2)因为四边形AOBC 是菱形,所以点B 和点A 关于直线OC 对称,因此,点B 的坐标为(12),. 因为二次函数2y ax bx =+的图象经过点B (12),,(20)C ,,所以2420.a b a b +=-⎧⎨+=⎩,解得24a b =-⎧⎨=⎩,.所以二次函数2y ax bx =+的关系式为224y x x =-+. ·········································· (10分)25.解:(1)设AB 与l 交于点O .xyO 1 23211- 1- 2-221y x x =--ABlC在Rt AOD △中,6024cos 60ADOAD AD OA ∠====°,,°.又106AB OB AB OA =∴=-=,. 在Rt BOE △中,60cos603OBE OAD BE OB ∠=∠=∴== °,°(km ). ∴观测点B 到航线l 的距离为3km . ············································································ (4分) (2)在Rt AOD △中,tan 6023OD AD == °. 在Rt BOE △中,tan6033OE BE == °.53DE OD OE ∴=+=.在Rt CBE △中,763tan 3tan 76CBE BE CE BE CBE ∠==∴=∠= °,,°. 3tan7653 3.38CD CE DE ∴=-=-°≈.15min h 12=,1212 3.3840.6112CDCD ∴==⨯≈(km/h ).答:该轮船航行的速度约为40.6km/h . ····································································· (10分) 26.解:(1)同意.如图,设AD 与EF 交于点G .由折叠知,AD平分BAC ∠,所以BAD CAD ∠=∠. 又由折叠知,90AGE DGE ∠=∠=°, 所以90AGE AGF ∠=∠=°,所以AEF AFE ∠=∠.所以AE AF =,即AEF △为等腰三角形. ·················································· (5分)(2)由折叠知,四边形ABFE 是正方形,45AEB ∠=°,所以135BED ∠=°.又由折叠知,BEG DEG ∠=∠,所以67.5DEG ∠=°. 从而9067.522.5α∠=-=°°°. ··············································································· (10分) 27.解法一:(1)根据题意,当销售利润为4万元,销售量为4(54)4÷-=(万升). 答:销售量x 为4万升时销售利润为4万元. ····························································· (3分)(2)点A 的坐标为(44),,从13日到15日利润为5.54 1.5-=(万元), 所以销售量为1.5(5.54)1÷-=(万升),所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+,则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ·································· (6分) 从15日到31日销售5万升,利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=(万元).∴本月销售该油品的利润为5.5 5.511+=(万元),所以点C 的坐标为(1011),. ACD B F EG设线段BC 所对应的函数关系式为y mx n =+,则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ··································· (9分) (3)线段AB . ··········································································································· (12分)解法二:(1)根据题意,线段OA 所对应的函数关系式为(54)y x =-,即(04)y x x =≤≤.当4y =时,4x =.答:销售量为4万升时,销售利润为4万元. ····························································· (3分) (2)根据题意,线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-,即 1.52(45)y x x =-≤≤. ······················································································· (6分)把 5.5y =代入 1.52y x =-,得5x =,所以点B 的坐标为(55.5),. 截止到15日进油时的库存量为651-=(万升).当销售量大于5万升时,即线段BC 所对应的销售关系中, 每升油的成本价144 4.54.45⨯+⨯==(元).所以,线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤. ······································· (9分)(3)线段AB . ··········································································································· (12分)28.解:(1)(50)C t -,,34355P t t ⎛⎫- ⎪⎝⎭,. ····························································· (2分)(2)①当C ⊙的圆心C 由点()50M ,向左运动,使点A 到点D 并随C ⊙继续向左运动时,有3532t -≤,即43t ≥. 当点C 在点D 左侧时,过点C 作CF ⊥射线DE ,垂足为F ,则由CDF EDO ∠=∠,得CDF EDO △∽△,则3(5)45CF t --=.解得485t CF -=. 由12CF ≤t ,即48152t t -≤,解得163t ≤. ∴当C ⊙与射线DE 有公共点时,t 的取值范围为41633t ≤≤. ····························· (5分) ②当PA AB =时,过P 作PQ x ⊥轴,垂足为Q ,有222PA PQ AQ =+221633532525t t t ⎛⎫=+--+ ⎪⎝⎭.2229184205t t t ∴-+=,即2972800t t -+=. 解得1242033t t ==,. ········································· (7分) 当PA PB =时,有PC AB ⊥,3535t t ∴-=-.解得35t =. ···························· (9分) 当PB AB =时,有 222221613532525PB PQ BQ t t t ⎛⎫=+=+--+ ⎪⎝⎭. 221324205t t t ∴++=,即278800t t --=. 解得452047t t ==-,(不合题意,舍去). ··························································· (11分) ∴当PAB △是等腰三角形时,43t =,或4t =,或5t =,或203t =. ················ (12分)O x y E PC D B Q A M F。