数学建模五步法与灵敏度分析
数学建模敏感性分析课件

医学研究与诊断案例
诊断模型建立与敏感性分析
敏感性分析在医学研究中的 应用
医学图像处理中的敏感性分 析案例
药物剂量调整中的敏感性分 析应用
农业产量预测案例
案例背景:介绍农业产量预测的背景和 意义
模型建立:详细介绍模型建立的过程和 步骤
数据来源:说明数据来源和收集方法
结果分析:对模型结果进行分析和解释
THANKS
汇报人:PPT
添加标题
添加标题
评估气候变化对环境和人类活动的 影响
医学研究与诊断
医学影像处理:利用数学建模敏感性分析提高医学影像的分辨率和准确性
疾病预测与诊断:通过数学模型对疾病数据进行敏感性分析,提高疾病预 测和诊断的准确性和效率
药物研发:利用数学建模敏感性分析优化药物研发过程,提高药物疗效和 降低副作用
个性化治疗:通过数学模型对患者的个体差异进行敏感性分析,为患者提 供更加个性化的治疗方案
未来展望:随着科技的不断进步和应用领域的不断拓展,数学建模敏感性分析将会在未来的发展中发挥 更加重要的作用,为各个领域的决策和预测提供更加准确和可靠的支持。
Part Seven
数学建模敏感性分 析实践建议与注意
事项
提高模型精度与稳定性
模型参数选择:选 择合适的参数,提 高模型精度
数据处理:对数据 进行预处理,减少 误差
● 背景:基于统计学和数学理论,通过对模型进行敏感性分析,可以更好地理解和解释模型结果 我 正 在 写 一 份 主 题 为 “ 数 学 建 模 敏 感 性 分 析 课 件 ” 的 P P T, 现 在 准 备 介 绍 “ 数 学 建 模 敏 感 性 分 析 方 法”,请帮我生成“主要方法”为标题的内容 主要方法
数学建模实验报告

《数学建模实验》实验报告学院名称数学与信息学院专业名称提交日期课程教师实验一:数学规划模型AMPL求解实验内容1. 用AMPL求解下列问题并作灵敏度分析:一奶制品加工厂用牛奶生产A1和A2两种奶制品,1桶牛奶可以在甲类设备上用12小时加工成3公斤A1或者在乙类设备上用8小时加工成4公斤A2,且都能全部售出,且每公斤A1获利24元,每公斤A2获利16元。
先加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且甲类设备每天至多加工100公斤A1,乙类设备的加工能力没有限制,试为该厂制定一个计划,使每天的获利最大。
(1)建立模型文件:milk.modset Products ordered;param Time{i in Products }>0;param Quan{i in Products}>0;param Profit{i in Products}>0;var x{i in Products}>=0;maximize profit: sum{i in Products} Profit [i]* Quan [i]*x[i];subject to raw: sum{i in Products}x[i] <=50;subject to time:sum{i in Products}Time[i]*x[i]<=480;subject to capacity: Quan[first(Products)]*x[first(Products)]<=100;(2)建立数据文件milk.datset Products:=A1 A2;param Time:=A1 12 A2 8;param Quan:=A1 3 A2 4;param Profit:=A1 24 A2 16;(3) 建立批处理文件milk.runmodel milk.mod;data milk.dat;option solver cplex;solve;display x;(4)运行运行结果:CPLEX 11.0.0: optimal solution; objective 33602 dual simplex iterations (1 in phase I)x [*] :=A1 20A2 30;(5)灵敏度分析:model milk.mod;data milk.dat;option solver cplex;option cplex_options 'sensitivity';solve;display x;display x.rc, x.down, x.up;display raw, time, capacity;display raw.down, raw.up,raw.current, raw.slack;得到结果:【灵敏度分析】: x.rc x.down x.up:=A1 -3.55271e-15 64 96A2 0 48 72;raw = 48time = 2capacity = 0raw.down = 43.3333raw.up = 60raw.current = 50raw.slack = 0某公司有6个建筑工地,位置坐标为(a i, b i)(单位:公里),水泥日用量d i (单位:吨)1) 现有j j j吨,制定每天的供应计划,即从A, B两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
数学建模快捷地设计化工过程的方法

数学建模快捷地设计化工过程的方法
数学建模是一种将现实问题抽象为数学模型的方法,用于解决实际问题和优化方案。
在化工过程设计中,数学建模的方法可以帮助工程师更快速、更准确地设计出高效可靠的工艺流程。
下面将介绍一些数学建模在化工过程设计中的常用方法。
一、动态过程模拟
动态过程模拟是通过数学方程来模拟和描述化工过程中的动态行为。
通过建立动态模型,可以预测工艺流程在不同条件下的变化和响应。
在化工生产中,可以通过建立热力学模型来模拟和优化反应过程,预测温度、压力等参数的变化趋势,进而调整操作条件,实现工艺的稳定和优化。
二、优化方法
优化方法是化工过程设计中常用的数学建模方法之一。
通过数学建模,可以将问题形式化为优化问题,然后通过数学算法求解最优解。
在化工过程中,通过建立数学模型,可以确定最佳的操作条件、最优的生产方案,以达到最大化生产、最小化成本、最大化资源利用等优化目标。
三、灵敏度分析
灵敏度分析是通过数学建模来评估某个输入变量对输出结果的影响程度。
通过分析各个变量的灵敏度,可以帮助工程师理解工艺流程的关键因素,并据此调整和优化工艺。
在化工过程中,可以通过灵敏度分析了解不同因素对反应速率、产物选择性等的影响,并据此调整反应条件,提高产率和选择性。
四、数据拟合
数据拟合是通过数学建模方法将实验数据与数学模型进行拟合,以得到模型的参数和关系。
通过数据拟合,可以更准确地描述化工过程的特性和动态行为。
在化工过程中,可以通过数据拟合来确定反应动力学模型的参数,从而预测反应速率和产物分布。
数学建模评价模型

数学建模评价模型1.准确性评价:这是评估模型与实际数据的契合程度。
准确性评价可以通过计算模型预测结果与实际数据之间的差异来实现。
常见的准确性评价指标有均方根误差(RMSE)、平均绝对误差(MAE)等。
均方根误差是模型预测值与真实值之间的差值的均方根,平均绝对误差是模型预测值与真实值之间的差值的平均值。
准确性评价越小,则模型准确性越高。
2.可靠性评价:可靠性评价是评估模型在不同数据集上的稳定性。
通过将模型应用于不同的数据集,观察模型预测结果的变化情况,可以评估模型的可靠性。
常见的可靠性评价方法包括交叉验证和蒙特卡洛模拟。
交叉验证将数据集分为训练集和测试集,通过多次重复实验,观察模型预测结果的稳定性。
蒙特卡洛模拟则是通过随机生成不同数据集,观察模型预测结果的分布情况。
3.灵敏度分析:灵敏度分析是评估模型对输入参数变化的敏感性。
建模时,经常需要设定各种参数值,而不同参数值可能导致不同的结果。
灵敏度分析可以帮助确定哪些参数对模型输出的影响最大。
常见的灵敏度分析方法包括单因素灵敏度分析和多因素灵敏度分析。
单因素灵敏度分析是将一个参数保持不变,观察模型结果的变化情况。
多因素灵敏度分析则是将多个参数同时变化,并观察模型结果的变化情况。
4.适用性评价:适用性评价是评估模型在特定问题上的适用性。
不同的问题可能需要不同的数学模型,评价模型的适用性可以帮助确定模型是否适用于特定问题。
适用性评价可以通过将模型应用于类似的问题,并进行验证来实现。
在实施数学建模评价模型时,需要根据具体问题的特点和需求来选择合适的评价指标和方法。
同时,在建立数学模型之前,需要确定评价指标的合理范围,以便在评估结果时进行比较和判断。
总之,数学建模评价模型是一种用于评估数学建模结果的方法。
通过准确性评价、可靠性评价、灵敏度分析和适用性评价,可以评估模型的优劣、准确性和可靠性,为实际问题的解决提供参考。
构建“五步建模教学法”,培养学生建模能力

附件二:浅谈数学“五步建模教学法”安丘市普教教研室刘红娟安丘市大汶河开发区贾戈小学鹿立华弗赖登塔尔说过:“学生自己发明数学就会学得更好”,“让他们经历数学化的过程,这是教学的第一原则”。
所以我们在教学中应当致力于学生数学建模的引领,让学生体验数学建模的过程,从而获得数学活动经验,以便更好地达成“新课标”提出的能力发展目标。
我们通过构建“五步建模教学法”,加强建模策略的研究,有效提高了学生的建模能力。
一、基本环节和流程针对数学建模的重点,我们把“小学数学建模的有效策略”作为重点课题进行了深入研究,并形成了“五步建模教学法”,模式流程如下:1.创设问题情境,激发建模兴趣。
数学模型都是具有现实的生活背景的,要建模首先必须对生活原型有充分的了解。
教师要创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。
如构建“平均数”模型时,可以创设这样的情境:4名男生一组,5名女生一组,进行套圈游戏比赛,哪个组的套圈水平高一些?学生提出了一些解决问题的方法,如比较每组的总分、比较每组中的最好成绩等,但都遭到了否决。
这时“平均数”的策略应需而生,构建“平均数”的模型就成为了学生的需求,同时也揭示了模型存在的背景、适用环境、条件等。
一个精彩有效的问题情境应该有如下特征:(1)有实际意义,或对学习、理解、掌握、应用前后数学知识有很好的作用;(2)有趣味性和挑战性,能够激发学生的兴趣,吸引学生投入进来;(3)易理解,问题情境是学生熟悉的;(4)时机上的恰当,起到“画龙点睛”的作用;(5)难度的适中,能有效激发学生的学习兴趣。
2.引出数学问题,培育建模基础。
这一环节主要是从新课开始时所创设的问题情境中,在教师的引导下,将生活问题数学化,提出相关的数学问题,以待进一步探索和解决。
灵敏度分析

§2-6 灵敏度分析(Sensitivity Analysis)灵敏度分析的含义是指对系统或事物因周围条件变化显示出来的敏感程度的分析。
线性规划的灵敏度分析是在建立数学模型和求得最优解之后,针对数据资料变化而作的研究和分析。
这种分析可以从两个方面来看:一是希望知道根据一定数据得到的最优结果,在数据变化到一定程度时,对最优解有什么影响。
二是希望知道要使最优解保持不变,各个数据可以有多大幅度的变动。
灵敏度分析的具体步骤如下:1. 将参数的改变计算反映到最终单纯形表上来: 具体计算方法是,按下列公式计算出由参数,,ij i j a b c 的变化而引起的最终单纯形表上有关数字的变化:*1b B b −Δ=Δ (2.17)*1i i p B p −Δ=Δ (2.18)1()()mj j j j ij i i c z c z a y ∗∗=Δ−=Δ−−∑ (2.19) 2. 检查原问题是否仍为可行解; 3. 检查对偶问题是否仍为可行解;4. 按表(表2-8)所列情况得出结论和决定继续计算的步骤。
表2-8原问题 对偶问题 结论或继续计算的步骤可行解 可行解 仍为问题的最优解可行解 非可行解 用单纯形法继续迭代求最优解 非可行解 可行解 用对偶单纯形法继续迭代求最优解 非可行解非可行解引入人工变量,编制新的单纯形表重新计算下面分别就各个参数改变后的情形进行讨论。
6-1 分析j c 的变化范围目标函数中系数j c 的变化仅仅影响到检验数j j c z −的变 化,所以将j c 的变化直接反映到最终单纯形表中,只可能出现如表2-8中所示的两种情况。
【例6】 已知线性规划问题1122max (2)(3)z x x λλ=+++s.t .1212122212416515,0x x x x x x +≤⎧⎪≤⎪⎨≤⎪⎪≥⎩试分析1λ和2λ分别在什么范围变化,问题的最优解不变。
【解】 当120λλ==,上述线性规划问题的最终单纯形表见表2-3,当20λ=时,将1λ反映到该表中(见表2-9)表2-9表中解为最优解的条件是:11102λ−−≤,111055λ−+≤由此推导得121λ−≤≤时满足上述要求。
数学建模万能模板7灵敏度分析

数学建模万能模板7灵敏度分析1.引言在引言部分,首先简要介绍灵敏度分析的重要性,以及在各种数学建模场景中的应用。
可以列举一些实际例子来支持这一观点,同时阐述灵敏度分析对于决策制定、预测以及控制等领域的贡献。
2.灵敏度分析概述在这一部分,详细解释灵敏度的概念,以及如何利用灵敏度分析来研究模型输出如何随输入参数的变化而变化。
可以引入一些数学概念,如雅可比矩阵、灵敏度系数等,以便为后续的分析打下基础。
3.灵敏度分析方法在这一部分,介绍灵敏度分析的主要方法,如局部灵敏度分析、全局灵敏度分析、蒙特卡洛模拟等。
详细解释每种方法的原理、计算步骤以及适用范围。
此外,还可以讨论这些方法在数学建模中的应用。
4.数学建模灵敏度分析实例在这一部分,结合具体的数学模型,进行灵敏度分析的实例展示。
可以选择一个或多个具有代表性的模型,如预测模型、优化模型等。
详细介绍如何使用灵敏度分析方法来研究这些模型的灵敏度特征,以及如何根据分析结果来改进模型或调整模型参数。
5.灵敏度分析的决策应用在这一部分,讨论灵敏度分析在决策制定中的应用。
可以根据实际情况列举一些具体案例,如根据灵敏度分析结果来制定资源分配策略、调整生产计划或制定风险管理策略等。
此外,还可以讨论灵敏度分析如何与其他技术(如机器学习、仿真等)结合使用,以提高决策制定的科学性和准确性。
6.灵敏度分析的挑战与展望在这一部分,讨论灵敏度分析面临的挑战以及未来的发展方向。
例如,如何处理高维度模型、如何提高计算效率、如何将灵敏度分析与不确定性量化相结合等。
此外,还可以探讨灵敏度分析在其他领域的应用前景,如生物医学、环境科学等。
7.结论总结全文的主要内容,强调灵敏度分析在数学建模中的重要性以及在实际应用中的价值。
同时指出本文所介绍的灵敏度分析方法只是其中的一部分,鼓励读者在今后的学习和实践中进一步探索其他灵敏度分析方法,并将其应用于实际问题中。
8.参考文献列出本文中所引用的参考文献,格式按照所选的参考文献类型进行整理排版即可。
数学建模敏感性分析课件

3个约束条件的右端不妨看作3种“资源”:原料、劳动时间、 车间甲的加工能力。输出中SLACK OR SURPLUS (松弛或 剩余)给出这3种资源在最优解下是否有剩余:原料、劳动时 间的剩余均为零(即约束为紧约束),车间甲尚余40公斤加 工能力(不是紧约束)。
2. 约束右端项变化的范围(Right Hand Side RANGES) 如本例中:第2行约束中当前右端项(CURRENT RHS)=48, 允许增加(Allowable Increase)=INFINITY(无穷)、允许 减少(Allowable Decrease)=24,说明当它在
[48-24,48+ ) = [24,)
目标函数可以看作“效益”,成为紧约束的“资源”一旦增加, “效益”必然跟着增长。
输出中DUAL PRICES(对偶价格) 给出这3种资源在最优解 下“资源”增加1个单位时“效益”的增量:原料增加1个单位 (1桶牛奶)时利润增长48(元),劳动时间增加1个单位(1 小时)时利润增长2(元),而增加非紧约束车间甲的能力显 然不会使利润增长。
选择“是(Y)”按钮,这表示你需要做灵敏性分析。 然后,查看输出结果。
输出结果的前半部分:
LP OPTIMUM FOUND AT STEP 1 OBJECTIVE FUNCTION VALUE
VARIABLE VALUE
REDUCED COST
ROW SLACK OR SURPLUS DUAL PRICES
RHS
INCREASE
DECREASE
3
20.000000
4.000000
灵敏度分析

XB + B-1 N XN + B-1 IXS = B-1 b
XB ,XN ,XS ≥ 0
灵敏度分析的步骤可归纳如下: 1. 将参数的改变通过计算反映到最终单纯形表上来: 具体计算方法是,按下列公式计算出由参数 aij , bi 的变化而引起 的最终单纯行表上有关数字的变化。
Pj' B 1Pj ;( Pj 为第j列)
对应I 式的单纯形表—— I 表
XB XN XS
解
B CB
N C’N
I 0
系数时,若要保持最优解
(或基)不变,则必须满足:
b 0
C’N – CB B -1N ≤0
XB
对应B 式的单纯形表—— B 表
XN XS
解
I
0
B -1N
C’N – CB B -1N
B -1
- CB B -1
B b
C B b
1 B
2. 检查原问题是否仍为可行解; 3. 检查对偶问题是否仍为可行解; 4. 按下表所列情况得出结论或决定继续计算步骤。
b ' B 1b;
线性规划原问题单纯形法对应的 I 表中参数的变化
将引起B 表中对应参数的变化情况表:
原问题
可行解 可行解 非可行解 非可行解
对偶问题
可行解 非可行解 可行解 非可行解
C = (c1 ,c2 ,…,cn ) 其中 X= b1 b2 . . . bm
x1 x2 . . . xn
XS =
xS1 xS2 . . . xSm
b=
对于前面给定符合典式的线性规划问题中,初始基矩 阵为 I ,基变量为 XS ,即松弛变量。其对应的初始 单纯形表如下: I 表(初始表)
数学中的灵敏度分析

因此,假设条件成为了建模过程中一个影响模型好坏的影响因素,灵敏度分析就是在模型建立后,对假设条件变化,检验模型的优劣性一般来说Lingo做出来的灵敏度分析能够达到一个比较理想的程度,不过还是要根据模型本身来研究,建议你在开始之前先学习一下《数值分析》,对建模的灵敏度分析很有用哈,再根据《数值分析》的方法,对M-C(蒙特卡罗)方法进行灵敏度分析,你会很快掌握~~~随着现代工业的迅速发展,对工业设备的精度提出了更高的要求。
但是,由于制造误差、轴承间隙、弹性变形等因素的影响,不可避免地会对设备的精度产生一定的影响。
因此我们就有必要建立起一个数学模型并且应用恰当的分析方法来研究上述的各种误差对精度的影响关系,找出影响最大的因素,作为我们在实际的制造和装配过程中进行误差分配,降低生产成本,提高传动精度的理论依据。
这里就可以采用灵敏度分析的方法。
它主要包括局部灵敏度分析方法和全局灵敏度分析方法。
一、局部灵敏度分析方法局部法主要分析因素对模型的局部影响(如某点)。
局部法可以得到参数对输出的梯度,这一数值是许多领域研究中所需要的重要数据。
局部法主要应用于数学表达式比较简单,灵敏度微分方程较易推出,不确定因素较少的系统模型中。
主要包括直接求导法、有限差分法、格林函数法。
1.直接求导法对于输入因素个数少、结构不复杂、灵敏度微分方程较易推导的系统或模型,直接法是一种简单快速的灵敏度分析方法。
时变(非静止)系统可以用微分或微分-代数方程进行描述。
假设要考虑的初值问题是,(1)同样,代表n维输出变量,代表m维输入因素。
代表初值数组。
式(1)对输入因素微分得到下述的灵敏度微分方程(2)或以矩阵形式表示为(3)式中,是系统代数-微分方程右边对系统输出变量的导数(可称为雅可比矩阵),是对输入因素的导数,也可称为参数雅可比。
微分方程(2)的初始条件为零向量。
上述的直接法建立在微分方程(2)的基础上,要得到其灵敏度矩阵S的解,需要先求得矩阵J和F的值。
数学建模五步法

数学建模五步法1第一步:提出问题列出问题中涉及到的变量,包括恰当的单位?注意不要混淆变量和常量(参数)?列出对变量所做的全部假设,写出变量间的关系式(不等式、等式)?检查变量/常量的单位关系,以保证所做假设的意义?用准确的数学语言(表达式)写出问题的目标?案例涉及的变量:●w =猪的重量(磅);●t=从现在到出售期间经历的时间(天);●C=t天内饲养猪的费用(美元);●p=猪的市场价格(美元/磅);●R=售出猪获得的收益(美元);●P=最终获得净收益(美元)。
案例所作的假设:01.0 65.05200≥-=⋅=-=+=tC RPw pR tp tw案例目标:Pmax第二步:选择建模方法选择解决问题的一般求解方法?这需要jian mo zhe的经验、技巧和对相关文献的了解和熟悉。
建模常用的方法有:1(新西兰)Mark M. Meershaert著,刘来福等译. 《数学建模方法与分析》,机械工业出版社(2005)——优化模型的求解方法:微积分方法、数学规划方法等;——动态模型方法:微分方程、差分方程、模拟方法等;——概率模型:概率定律、计量经济方法等。
注意:大量的模型均可用计算机软件工具实现,模型求解方法的选择,现实中,就变为软件工具的选择。
案例涉及的数学方法:● 微积分之优化理论——可微函数的一阶条件:()0'=x f第三步:推导模型的公式将第一步得到的问题重新表达,以适应第二步所选定的建模方法所需要的形式,这可能需要对变量进行调整?记下任何补充假设,这些假设是为了是在第一步中描述的问题与第二步中选定的数学结构相适应而做出的。
案例推导()(){}{}()()t t t P t t t tt t tw p CR P t t 45.0520001.065.0max 0:45.0520001.065.045.00-+-=>-+-=-⋅=-=>::问题可表达为如下模型,的取值范围补充假设:求解变量第四步:求解模型将第二步所选方法应用于第三步得到的数学表达式?注意:要保证数学推导过程的正确。
(完整版)数学建模五步法与灵敏度分析

灵敏度分析简介:研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。
在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。
通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。
因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。
用途:主要用于模型检验和推广。
简单来说就是改变模型原有的假设条件之后,所得到的结果会发生多大的变化。
举例(建模五步法):一头猪重200磅,每天增重5磅,饲养每天需花费45美分。
猪的市场价格为每磅65美分,但每天下降1美分,求出售猪的最佳时间。
建立数学模型的五个步骤:1.提出问题2.选择建模方法3.推到模型的数学表达式4.求解模型5.回答问题第一步:提出问题将问题用数学语言表达。
例子中包含以下变量:猪的重量w(磅),从现在到出售猪期间经历的时间t(天),t天内饲养猪的花费C(美元),猪的市场价格p(美元/磅),出售生猪所获得的收益R(美元),我们最终要获得的净收益P(美元)。
还有一些其他量,如猪的初始重量200磅。
(建议先写显而易见的部分)猪从200磅按每天5磅增加(w磅)=(200磅)+(5磅/天)*(t天)饲养每天花费45美分(C美元)=(0.45美元/天)*(t天)价格65美分按每天1美分下降(p美元/磅)=(0.65美元/磅)-(0.01美元/磅)*(t天)生猪收益(R美元)=(p美元/磅)*(w磅)净利润(P美元)=(R美元)-(C美元)用数学语言总结和表达如下:参数设定:t=时间(天)w=猪的重量(磅)p=猪的价格(美元/磅)C=饲养t天的花费(美元)R=出售猪的收益(美元)P=净收益(美元)假设:w=200+5tC=0.45tp=0.65-0.01tR=p*wP=R-Ct>=0目标:求P的最大值第二步:选择建模方法本例采用单变量最优化问题或极大—极小化问题第三步:推导模型的数学表达式子P=R-C (1)R=p*w (2)C=0.45t (3)得到R=p*w-0.45tp=0.65-0.01t (4)w=200+5t (5)得到P=(0.65-0.01t)(200+5t)-0.45t令y=P是需最大化的目标变量,x=t是自变量,现在我们将问题转化为集合S={x:x>=0}上求函数的最大值:y=f(x)=(0.65-0.01x)(200+5x)-0.45x (1-1)第四步:求解模型用第二步中确定的数学方法解出步骤三。
数学建模万能模板7灵敏度分析

前期很少涉及~`~`o(∩_∩)o …
七、模型中满意度的灵敏度分析
按照我们对问题的分析,满意度会对该出版社的潜在效益产生影响,从而最终影响我们的最终利益。
在实际生活中,我们有必要知道满意度的变化对最终利益的影响大小,从而决定花多大的代价来提高满意度。
这就需要先对满意度进行灵敏度分析。
在上面的模型求解中,顾客对9个学科分社的满意度均接近3.25。
为了查看满意度对最终利益的影响,我们依次令满意度1,2,3,4,5i M =,(1,2....9)i =,算出相应的最终利益值并作图对比如下:
图(7):满意度的灵敏度分析示意图
上图是在偏好系数分别为0.9,0.8,0.7的三种情况下画出的,由图可以看
出:
1、满意度的灵敏性和偏好系数有关。
出版社领导对长远发展的偏好越大(1m -值越大),顾客满意度i M 对总体利益的影响就越大;
2、满意度的灵敏性和位置区间有关。
总体利益随满意度i M 的增大而增大,开始增长速度慢,然后快速增长,最后又慢了下来。
这一点也是符合实际的:当顾客的满意度很差时,增加一点点也是无济于事;当顾客的满意度很高时,再增加或减小一点也影响不大;只有当顾客的满意度处于中等位置时,增加满意度,总体效益才有显著的提高。
数学建模的五个步骤

数学建模的五个步骤数学建模是指利用数学方法来解决实际问题的过程。
它在现代科学研究、工程技术等领域都有广泛的应用。
数学建模的过程可以分为五个步骤,包括问题理解、建立模型、模型求解、模型评价和结果解释。
下面将详细介绍这五个步骤。
第一步:问题理解问题理解是数学建模的第一步,也是至关重要的一步。
正确的问题理解能够确保后续建模过程的准确性和有效性。
在问题理解阶段,研究者需要明确问题的背景和要求,确定问题的范围和目标,以及搜集相关的实验数据和文献资料。
这些信息将有助于研究者在后续的建模过程中更好地进行模型的构建和求解。
第二步:建立模型建立模型是数学建模的核心步骤,它是将实际问题转化为数学问题的过程。
在建立模型时,研究者需要根据问题的特点和要求,选取合适的数学方法和工具,构建数学模型。
数学模型可以是代数方程、差分方程、微分方程、最优化问题等等。
模型的构建需要充分考虑实际问题中的各种因素和假设条件,并进行适当的抽象和简化。
此外,研究者还需要对所选用的数学模型进行合理的验证和修正。
第三步:模型求解模型求解是数学建模中的关键步骤之一、在模型求解过程中,研究者需要选择合适的求解方法和算法,使用计算机软件或手工计算来解决所建立的数学模型。
求解的过程中,研究者需要考虑求解的效率和精度,以及结果的可靠性和实用性。
第四步:模型评价模型评价是对所建立的数学模型进行有效性和可行性的评估。
在模型评价过程中,研究者需要利用实验数据和实际情况进行模型的验证和检验。
评价的指标可以是模型的拟合度、预测精度、稳定性等等。
通过模型评价的结果,可以对模型进行合理的调整和改进,以便更好地解决实际问题。
第五步:结果解释结果解释是数学建模的最后一步,也是将数学模型的结果转化为实际应用的关键一步。
在结果解释过程中,研究者需要将模型的结果与实际问题进行对比和分析,解释模型的意义和结论,提出相应的建议和策略。
结果解释的目的是使模型的结果能够被决策者、管理者和其他利益相关方所理解和接受,并能够指导实际问题的解决和处理。
数学建模方法

法
建
模
原理关键词: 随机 分布 模拟
建模方法:
方法1 利用理论分布,基于对问题的实际、合理的假设,选择 适当的理论分布模拟随机变量,
方法2 基于实际数据的频率作近似模拟,
随机性存储模型是研究不确定性因素下随机库存模 型中的多时期存储控制系统,着重分析连续存盘的存储控 制系统在不同情况下确定的安全库存量的最优采购策略, 可分为需求为离散型随机变量的存储模型和需求为连续 型随机变量的存储模型,
模糊综合评判方法: 1. 模糊综合评判提点法击添加文本 2. 确定因素集、评判集、模糊评判矩阵
点击添加文本
线性规划是数学规划的一个重要组成部分,它
起源于工业生产组织管理的决策问题,在数学上它
用来确定多变量线性函数在变量满足线性约束条
线
件下的最优值,
性
规
划
模
型
原理关键词: 多变量 线性函数 最优值
一般线性规划的数学模型:
式说明层次的递阶结构与因素的从属关系, 2. 构造判断矩阵 3. 当相互比较因素的重要性能够用具有实际意义的比
值说明时,判断矩阵相应的值则可以取这个比值, 3. 层次单排序及其一致性检验 4. 通过判断矩阵的特征根得到特征向量,经过一系列归
化后即为同一层次相关因素对于上一层次某因素相对重 要性的排序权值,然后进行一致性检验, 4. 层次总排序 5. 计算同一层次所有因素对于最高层相对重要性的排 序, 5. 层次总排序的一致性检验 6. 这一步骤也是从高到低逐层进行的,
设P x 为顾客对煤炭需求量xkg的概率,显然
0 P(x)dx1
供应部门收益的期望值:
Q
g ( Q ) E [ y ( x ) ] 0 ( 1 x 4 9 Q ) P ( x ) d Q x ( 1 Q 5 1 x ) P 0 ( x ) dx
数学建模五步法案例.doc

数学建模五步法小论文问题再现:一个汽车制造商售出某品牌的汽车可获利1500美元,估计每100美元的折扣可以使销售额提高15%。
⑴ 多大的折扣可以使利润最高?利用五步方法及单变量最优化模型。
⑵ 对你所得的结果,求关于所做的15%假设的灵敏性。
分别考虑折扣量和相应的收益。
⑶ 假设实际每100美元的折扣仅可以使销售额提高10%,对结果会有什么影响?如果每100美元的折扣的提高量为10%~15%之间的某个值, 结果以如何。
⑷ 什么情况下折扣会导致利润的降低?问题一:一、 问题的提出1. 具体问题(1)多大的折扣可以使利润最高?利用五步方法及单变量最优化模型。
(2)对你所得的结果,求关于所做的15%假设的灵敏性。
分别考虑折扣量和相应的收益。
(3)假设实际每100美元的折扣仅可以使销售量提高10%,对结果会有什么影响?如果每100美元的折扣的提高量为10%~15%之间的某个值, 结果以如何.(4)什么情况下折扣会导致利润的降低。
2. 符号的说明(1)每辆汽车的成本C ;(2)折扣前的销量n ;(3)折扣后的销量'n ;(4)折扣前每辆车的价格P ;(5)折扣后每辆车的价格'P ;(6)折扣前的销售额R ;(7)折扣后的销售额'R ;(8)折扣前的利润L ;(9)折扣后的利润'L ;由题意:折扣前的利润1500)(=-=C P n L ,设折扣为x 时,可使利润最高。
此时假设活动一次性完成,即厂家一次性降低x 100美元,销售额提高x %15可使利润最高。
二、 选择建模方法则由题中已知条件可得方程组⎪⎪⎩⎪⎪⎨⎧-=+==--=)'('')15.01('1500100'C P n L x n n C P x P P三、 推导模型公式由各关系式可推出折扣后的利润函数为:)1001500)(15.01()100)(15.01('x x n C x P x n L -+=--+=四、 求解模型已知厂商折扣后的利润函数为:)1001500)(15.01()100)(15.01('x x n C x P x n L -+=--+=为使厂商利润最大,令0)2031(100)1001500(203'=+--=x n x n dx dL 解得:2.4625≈=x 五、 回答问题一般情况下,无论n 值取多少,厂商为了使得利益最大,都会选择降价420美元左右。
灵敏度分析在数学建模中的应用

灵敏度分析在数学建模中的应用灵敏度分析是指通过对模型的参数或变量进行微小的变化,分析其对模型结果的影响程度,从而判断模型的稳定性和可靠性。
在数学建模中,灵敏度分析是一个非常重要的工具,可以帮助研究者对模型进行优化和改进,提高模型的精度和可靠性,进而为实际问题的解决提供更加可行的方案。
一、灵敏度分析的基本思想灵敏度分析是指在一组偏离参考值不大的参数或变量的变化下,研究模型结果随之变化的过程。
通过描述这种变化,可以评估模型在参数或变量变化时的稳定性和可靠性,进而帮助研究者确定哪些参数或变量对模型结果影响最大,从而针对性地进行调整和改进。
二、灵敏度分析的应用场景灵敏度分析广泛应用于各种实际问题的数学建模中,例如:1、工程建模:在工程建模中,灵敏度分析可以帮助研究者实现设计的优化,降低成本和风险。
例如,可以对比不同变量或参数组合下的模型结果,分析为什么某种组合会使模型结果更优秀,从而对设计方案进行优化。
2、金融建模:在金融建模中,灵敏度分析可以帮助研究者确定价格和市场变化对模型结果的影响,从而更好地预测未来市场的发展趋势,优化金融风险管理方案。
3、医学建模:在医学建模中,灵敏度分析可以帮助研究者评估药物或疗法对疾病的疗效和副作用的影响,从而更好地指导医疗决策和治疗方案选择。
三、灵敏度分析的方法和步骤进行灵敏度分析的方法和步骤通常包括以下几个方面:1、选择模型:选择合适的数学模型是进行灵敏度分析的第一步。
模型必须能够描述研究对象的特征和关系,同时易于进行参数或变量的微小变化。
2、确定变化范围:确定模型中参数或变量的变化范围,一般是基于实际问题的特点和实验数据的分析得出的。
3、计算偏导数:通过计算模型对参数或变量的偏导数,可以得到模型结果对它们的敏感程度。
4、分析结果:分析结果可以帮助研究者确定哪些参数或变量的变化会对模型结果产生重要的影响,并评估模型在给定参数或变量变化范围内的稳定性和可靠性。
四、灵敏度分析的优缺点灵敏度分析是一种非常有用的数学建模工具,具有以下优点:1、能够确定模型结果对参数或变量的敏感程度,为模型优化提供了指导。
综合评价方法数学建模

综合评价方法数学建模综合评价方法在数学建模中被广泛应用,用于对模型的准确度和可靠性进行评估。
综合评价方法是通过分析模型的输入、输出和处理过程,结合实际情况来评价模型优劣的一种方法。
本文将介绍几种常见的综合评价方法,并分析它们的优点和不足。
一、误差分析法误差分析法是基于模型输出与实际数据之间的误差来评估模型准确度和可靠性的方法。
该方法通过计算模型的预测值与实际观测值之间的差异,来评估模型的拟合程度。
常用的误差指标包括残差平方和、均方根误差等。
优点是计算简单,直观易懂;缺点是只能评估模型的输出,在一些情况下无法全面评估模型的有效性。
二、参数敏感度分析法参数敏感度分析法是通过改变模型的输入参数,观察模型输出的变化情况,来评估模型的稳定性和可靠性的方法。
该方法通过计算参数的敏感度指标,来评估每个参数对模型输出的影响程度。
常用的敏感度指标包括偏导数、敏感度系数等。
优点是能够全面评估模型的输入对输出的影响;缺点是对于复杂的模型,计算量较大。
三、模型效果评估法模型效果评估法是通过对模型的输出进行评估来评价模型的准确度和可靠性的方法。
该方法通过建立与模型输出相对应的评价指标,来评估模型的效果。
常用的评价指标包括相关系数、拟合好坏指标等。
优点是对模型的整体效果进行综合评估;缺点是评价指标的选择和建立需要考虑实际问题的特点。
四、灵敏度分析法灵敏度分析法是通过改变模型的输入条件,观察模型输出的变化情况,来评估模型的可靠性和鲁棒性的方法。
该方法通过计算输入条件的灵敏度指标,来评估输入条件对模型输出的影响程度。
常用的灵敏度指标包括变动范围、影响程度等。
优点是能够评估模型对输入条件的容忍程度;缺点是对于复杂的模型,计算量较大。
五、假设验证法假设验证法是通过比较模型预测结果与实际观测结果,来评估模型的可靠性和适用性的方法。
该方法通过对模型的假设条件进行验证,来检验模型的合理性和适用性。
常用的方法包括残差分析、拟合优度检验等。
数学建模的基本方法与步骤

数学建模的基本方法与步骤数学建模是利用数学方法和技术解决现实问题的过程,它在各个领域都有广泛的应用。
本文将介绍数学建模的基本方法与步骤,帮助读者了解数学建模的过程,并能进行基本的数学建模工作。
一、问题定义数学建模的第一步是明确问题。
在这一步中,研究者需要对问题进行细致的分析和思考,确保对问题的理解准确和全面。
问题定义阶段需要回答以下问题:1. 问题的背景与目标:了解问题背景,明确问题的目标和约束条件。
2. 变量和参数的设定:确定问题涉及的变量和参数,并对它们进行定义和量化。
二、建立数学模型在问题定义的基础上,数学建模的下一步是建立数学模型。
数学模型是对实际问题进行抽象和简化的表示,它通常包括以下要素:1. 假设和逻辑关系:建立数学模型需要进行一定的假设和逻辑推理,将实际问题转化为数学可解决的形式。
2. 数学表达式:使用数学语言表示问题的关系和约束。
3. 符号和符号含义:为模型中的符号和参数设定符号,并明确其具体含义和单位。
三、数学求解建立数学模型后,下一步是对模型进行求解。
数学求解的过程中,可以使用各种数学方法和技术,如微积分、概率论、优化方法等。
数学求解的关键是选择合适的方法,并进行正确的计算和分析。
四、模型验证和评估在模型求解后,需要对模型进行验证和评估。
验证模型是否符合实际情况,评估模型的可行性和效果。
模型验证和评估的方法包括:1. 数据对比:将模型的结果与实际数据进行对比,评估模型的准确性和可靠性。
2. 灵敏度分析:通过调整模型中的参数和变量,评估模型对输入的敏感程度。
3. 合理性分析:通过与实际领域专家的讨论,评估模型的合理性和可行性。
五、模型应用与解释模型应用是将建立的数学模型应用到具体问题中的过程。
在这一步中,需要将模型的结果与实际问题相结合,进行解释和分析,并从模型中得出结论和建议。
模型应用的关键是将数学模型的结果转化为实际问题的解决方案。
总结:数学建模是一个复杂的过程,需要经验和专业知识的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灵敏度分析
简介:
研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。
在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。
通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。
因此,灵敏度分析几乎在所有的运筹学方法中以及在对各种方案进行评价时都是很重要的。
用途:
主要用于模型检验和推广。
简单来说就是改变模型原有的假设条件之后,所得到的结果会发生多大的变化。
举例(建模五步法):
一头猪重200磅,每天增重5磅,饲养每天需花费45美分。
猪的市场价格为每磅65美分,但每天下降1美分,求出售猪的最佳时间。
建立数学模型的五个步骤:
1.提出问题
2.选择建模方法
3.推到模型的数学表达式
4.求解模型
5.回答问题
第一步:提出问题
将问题用数学语言表达。
例子中包含以下变量:猪的重量w(磅),从现在到出售猪期间经历的时间t(天),t天内饲养猪的花费C(美元),猪的市场价格p(美元/磅),出售生猪所获得的收益R(美元),我们最终要获得的净收益P(美元)。
还有一些其他量,如猪的初始重量200磅。
(建议先写显而易见的部分)
猪从200磅按每天5磅增加
(w磅)=(200磅)+(5磅/天)*(t天)
饲养每天花费45美分
(C美元)=(0.45美元/天)*(t天)
价格65美分按每天1美分下降
(p美元/磅)=(0.65美元/磅)-(0.01美元/磅)*(t天)
生猪收益
(R美元)=(p美元/磅)*(w磅)
净利润
(P美元)=(R美元)-(C美元)
用数学语言总结和表达如下:
参数设定:
t=时间(天)
w=猪的重量(磅)
p=猪的价格(美元/磅)
C=饲养t天的花费(美元)
R=出售猪的收益(美元)
P=净收益(美元)
假设:
w=200+5t
C=0.45t
p=0.65-0.01t
R=p*w
P=R-C
t>=0
目标:求P的最大值
第二步:选择建模方法
本例采用单变量最优化问题或极大—极小化问题
第三步:推导模型的数学表达式子
P=R-C (1)
R=p*w (2)
C=0.45t (3)
得到R=p*w-0.45t
p=0.65-0.01t (4)
w=200+5t (5)
得到P=(0.65-0.01t)(200+5t)-0.45t
令y=P是需最大化的目标变量,x=t是自变量,现在我们将问题转化为集合S={x:x>=0}上求函数的最大值:
y=f(x)=(0.65-0.01x)(200+5x)-0.45x (1-1)
第四步:求解模型
用第二步中确定的数学方法解出步骤三。
例子中,要求(1-1)式中定义的y=f (x)在区间x>=0上求最大值。
下图给出了(1-1)的图像和导数(应用几何画板绘制)。
在x=8为全局极大值点,此时f(8)=133.20。
因此(8,133.20)为f在整个实轴上的全局极大值点,同时也是区间x>=0上的最大值点。
第五步:回答问题
根据第四步,8天后出售生猪的净收益最大,可以获得净收益133.20美元。
只要第一步中的假设成立,这一结果正确。
数学建模五步方法总结:
第一步:提出问题
(1)列出问题中涉及的变量,包括适当的单位;
(2)注意不要混淆变量和常量;
(3)列出你对变量所做的全部假设,包括等式和不等式;
(4)检查单位从而保证你的假设有意义;
(5)用准确的数学术语给出问题的目标。
第二步:选择建模方法
(1)选择解决问题的一个一般的求解方法;
(2)一般地,这一步的成功需要经验,技巧和熟悉相关文献。
第三步:推导模型的数学表达式
(1)将第一步中得到的问题重新表达成第二步选定的建模方法所需要的形式;(2)将第一步中的一些变量名改成与第二步所用的记号一致;
(3)记下任何补充假设,这些假设是为了使第一步中描述的问题与第二步中选定的数学结构相适应而做出的。
第四步:求解模型
(1)将第二步中所选用的一般求解过程应用于第三步得到表达式的特定问题;(2)注意你的数学推导,检查是否有错误,你的答案是否有意义;
(3)采用适当的技术,计算机代数系统,图形工具,数值计算的软件等,都能
扩大你能解决问题的范围,并能减少计算错误。
第五步:回答问题
(1)用非技术性的语言将第四步的结果重新表述;
(2)避免数学符号和术语;
(3)能理解出处提出的问题的人就应该能理解你给出的答案。
灵敏度分析
数据是由测量,观察有时甚至完全猜测得到的,因此,我们要考虑数据不准确的可能性。
上例中,生猪现在的重量,现在的价格,每天饲养花费都很容易测量,而且有相当大的确定性。
但是猪的生长率则不那么确定,而价格的下降率则确定性更低,记r为价格的下降率,现在假设r的实际值不同,对几个不同的r值重复前面的求解过程,我们会对问题的解关于r的敏感程度有所了解。
下表给出了几个不同r值求出的计算结果。
根据表格绘制图形,我们可以看到售猪的最优时间对参数r很敏感。
r(美元/天)x(天)
0.008 15.0
0.009 11.1
0.010 8.0
0.011 5.5
0.012 3.3
对灵敏度的更系统的分析是将r视为未知参数,按前面的步骤求解,写出p=0.65-rt。
得到y=f(x)=(0.65-rx)(200+5x)-0.45x。
使得导数为0,得到x=(7-500r)/25r,当x>=0时,只要0<r<=0.014。
对于猪的生长率g同样不确定,我们有w=200+gt,得到y=f(x)=(0.65-rx)(200+gx)-0.45x。
使得导数为0,得到x=5*(13g-49)/2g。
当x>=0时,得到g>=3.769。
我们将灵敏度数据用相对改变量表示,例如:r下降10%导致了x增加了39%,而g下降了10%导致了x下降了34%。
如果x的改变量Δx,则Δx/x表示相对改变量。
如果r改变了Δr,导致了x有Δx的改变量,则相对改变量的比值为(Δx/x)/(Δr/r),令Δr→0,我们有(Δx/x)/(Δr/r)→(dx/dr)*(r/x)。
我们称这个极限值为x对r的灵敏度,即为S(x,r)。
在售猪问题中,r=0.01和x=8得到dx/dr=-7/25r2=-2800,因此S(x,r)=(dx/dr)*(r/x)=-2800*(0.01/8)=-7/2,即若r增加2%,则x下降7%。
由于
dx/dg=245/2g2=4.9,我们有S(x,g)=(dx/dg)*(g/x)=4.9*(5/8)=3.0625。
于是猪的生长率增加1%,会导致大约等待3%的时间再将猪售出。
灵敏度分析的成功应用要有较好的判断力,通常即不可能对模型中的每个参数都计算灵敏度分析,也没有特别的要求。
我们需要选择那些有较大不确定性的参数进行灵敏度分析。
对灵敏度系数的解释还要依赖与参数的不确定程度,主要问题是数据的不确定程度影响答案的置信度。
在这个问题中,我们通常认为猪的生长率g比价格下降率r更可靠。
如果我们观察了猪或者其他类似动物在过去的生长情况,则g有25%的误差会是很不寻常的,但对r的估计有25%的误差则不足为奇。
数学模型的稳健性
一个数学模型称为稳健的,是指即使这个模型不完全精确,由其导出的结果也是正确的。
在实际问题中,我们不会有绝对准确的信息,即使能够建立一个完美的精确模型,我们也可能采取较为简单和易于处理的方法。
出于数学处理的方便和简化的目的,常常要做一些假设,建模者有责任要考察这些假设是否太特殊,以致使模型的结果无效。
上例中我们主要是假设猪的重量和每磅的价格都是时间线性函数。
假设一年后,猪的重量为200+5*365=2025磅,卖出收益为0.65-0.01*365=-3美元/磅。
一个更为实际的模型应该考虑到这些函数的非线性性,又考虑到随着时间的推移不确定性的增加。
考察售猪问题中的线性假设。
基本方程为P=pw-0.45t。
如果模型初始数据和假设没有与实际相差太远,则售猪的最佳时间应该有令P求导为0得到。
计算后有p'w+pw'=0.45,得到只要猪价比饲养的费用增长快,就应暂时不卖出。
其中,p'w为价格下降带来的损失,pw'为猪增重而增加的价值。
考虑更一般的模型的情况,猪的未来增长和价格的未来变化并不确定。
假设如下情况,一个农民有一头重量大约是200磅的猪,上一周猪每天增重约5磅,五天前猪价为70美分/磅,但现在是65美分/磅,根据现有数据我们可以得出何时出售,问题是p'和w'在未来几周内不会保持常数,因此,两者不会是时间的线性函数。
但是只要在这段时间内,两者变化不太大,假设他们保持为常数而导致的误差就不会太大。