全等三角形及其应用

合集下载

全等三角形的判定及性质的应用_邬兴

全等三角形的判定及性质的应用_邬兴
全等三角形的基本变换图形
复习引入
例题分析
典型例题
例1. 已知AF=AC,FE=CB,则△ABC与△AEF是否全等? 若不全等,那能否加一个条件使其全等?有几种 加法,依据什么?
例题分析
典型例题
例题分析
典型例题
例2.现将图1中的△ABC沿AC进行翻折成图2,A、D 两点重合:若AF=AC,AE=AB, ∠CAF=∠BAE=90°,则BC与EF有何关系?
△DEF分别沿FC、FE翻折,如图6,若已知条件不变,
(1)△CEF是
三角形;(2)则AD、AC、
BE之间的关系为:
.
例题分析
典型例题
例2.变式4:如果继续在图5的基础上作变换,将△AFC、
△DEF分别沿FC、FE翻折,如图6,若已知条件不变,
(1)△CEF是
三角形;(2)则AD、AC、
BE之间的关系为:
之间的关系,请直接写出结果:
.
例题分析
典型例题
例2.变式3:继续将△ABC沿DF平移,如图5,B、F重合,
并连接EC.(1)BC与EF的关系为
.
(2)若在题(1)的条件下,能否找出AC、DE、DA
之间的关系,请直接写出结果:
.
例题分析
典型例题
例2.变式4:如果继续在图5的基础上作变换,将△AFC、
例题分析
典型例题
例2.变式1:(1)已知条件不变,连结FC、BE, △ACF绕A点旋转至图3,BC、EF之间的关系是否 发生变化,说明理由.
例题分析 例2.变式1:
典型例题
例题分析
典型例题
例2.(2)猜想△ACF绕A点任意旋转时,BC与EF 的关系是否发生变化?
例题分析

全等三角形在生活中的应用

全等三角形在生活中的应用

全等三角形在生活中的应用在全等图形中,全等三角形是最基本,应用最广泛的一类图形,利用全等三角形的有关知识,不仅可以帮助我们进行决策,还可以帮助我们制作一些仪器,现举例说明这个问题,供同学们学习时参考.一、仪器我也会做例1 如图1是小亮做的一个平分角的仪器,其中AB=AD ,BC=DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明其中的道理吗?分析:由已知条件易得△ABC 和△ADC 全等,由全等三角形的对应角相等,可知∠BAC=∠DAC ,即AE 是角平分线.解:已知AB=AD ,BC=DC ,又因为AC 是公共边,所以△ABC ≌△ADC ,所以∠BAC=∠DAC .所以AE 是角平分线.评析:利用三角形全等的知识,常常可以说明两个角相等的问题.二、巧测内口直径例2 小红家有一个小口瓶(如图2所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少.你知道这是为什么吗?请说明理由.(木条的厚度不计)分析:只要量出AB 的长,就知道内径是多少?显然只需要说明AB 和CD 相等就行. 解:连结AB ,CD ,因为AO=DO ,BO=CO , 图 1 图2又因为∠AOB=∠DOC,所以△ABO≌△DCO(SAS).所以AB=CD,也就是AB的长等于内径CD的长.评析:利用三角形全等的知识,可以说明线段长相等的问题.三、距离相等的解释例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.分析:只要能说明AD与BE相等,就说明她说的有道理.解:小丽说的有道理,理由如下:图3 已知AC=BC,因为∠ADC=∠BEC=90°,又因为∠C是公共角,所以△ACD≌△BCE,所以AD=BE.即学校到路段BC的距离与菜市场到路段AC的距离相等.你还知道全等三角形有哪些应用,说出来和同学们交流交流!应把握的两种模型利用三角形全等测距离,主要有以下两种模型:一、视线模型当需要测量距离的两个点中有一个点无法接近时,常采用这种方法. 视线法简便易行,但有一定的误差,一般在仅适应于目测的情况下使用. 如:例1如图1所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距离.你能解释其中的道理吗?解:这个战士实际上是运用了全等三角形的知识. 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形.如图2所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD的长度可以测得,又因为战士与地面是垂直的,也就是∠BCA=∠EFD=90°,另外战士的身高与姿态是不变的,所以BC=EF,∠ABC=∠FED.依据“SAS”可知△ABC≌△DEF,所以AC=FD.所以只要测得FD的距离,就可得到AC的距离.这就是“视线法”的基本模型与解题原理.二、构图模型当需要测量距离的两点均可到达,但两点之间不能通过直接测得距离时,可通过构造两个全等的三角形,进行间接的测量.构图法间接测量的结果比较准确.如:例2如图3所示,A,B两点分别位于一个池塘的两端,小明想用绳子测量这两点之间的距离,但绳子不够长,老师为他出了一个主意:先在地上取一个可以直接到达A,B 两点的点C,连接AC并延长到点D,使DC=AC;连接BC并延长BC到点E,使CE=CB,连接DE并测出它的长度,DE的长度就是A,B之间的距离.你能说明其中的道理吗?解:池塘两端的A点和B点不好直接测量,取一个可以直接到达A,B两点的点C,连接AC并延长的D,使DC=AC;连接BC并延长BC到点E,使CE=CB,这样在△ABC 与△DEC中,有CA=CD,CB=CE,且∠ACB=∠ECD,则依据“SAS”可得△ABC≌△DEC,从而DE=AB,因为DE是可直接测得的,这样即可得到AB的距离.这就是“构图法”的基本模型与解题原理.。

全等三角形的重要意义及其应用——三角形学习方案二

全等三角形的重要意义及其应用——三角形学习方案二

全等三角形的重要意义及其应用——三角形学习方案二。

全等三角形的重要意义:
1.全等三角形是数学中最基本和最重要的概念之一。

全等三角形的研究是三角形学习的核心,也是建立在三角形学习基础之上的。

2.全等三角形的研究可以帮助学生进一步了解三角形的性质、特征和规律,掌握三角形的分类和判定方法,提高数学思维能力和解决问题的能力。

3.全等三角形的研究也可以帮助学生认识到三角形的基本概念和几何学基本原理,这些基本概念和原理对于后续数学学习和其他学科的学习都具有重要的作用。

全等三角形的应用:
1.在测量工程中,全等三角形可以用于求解长度、角度和面积等量值。

通过全等三角形的基本理论,可以快速且准确地确定不可直接测量的物理量。

2.在建筑工程和城市规划领域中,全等三角形的基本原理也是很重要的。

通过分析和应用全等三角形的基本原理,可以预测建筑物和城市中的各种形状和结构的稳定性,确保它们能够在各种情况下各自保持平衡和稳定。

3.在机械制造、航空航天和船舶工程等领域中,全等三角形
也是很重要的。

在这些领域中,人们需要准确地计算和设计各种机件和结构,而全等三角形的基本原理可以帮助人们快速计算、确定和设计这些结构。

全等三角形是三角形学习和数学学科中最基本的概念之一。

通过研究和应用全等三角形,不仅可以帮助学生加深对三角形的认识和理解,还能让他们更好地掌握数学思维方法和解决问题的能力。

同时,全等三角形也被广泛地应用于各个领域,为我们的生活和工作提供了良好的支持和帮助。

全等三角形的判定及应用

全等三角形的判定及应用

全等三角形的判定及应用深圳市育才二中 雷树养(2005。

8)一。

全等三角形的判定方法:1. 有两边和它们的夹角对应相等的两个三角形全等(简写为”SAS ”)2. 有两角和它们的夹边对应相等的两个三角形全等(简写为”ASA")3. 有两角和其中一角的对边对应相等的两个三角形全等(简写为"AAS ”)4. 三边对应相等的两个三角形全等(简写为”SSS ”)特别地:斜边和直角边对应相等的两个直角三角形全等(简写为”HL ”)二。

判定两个三角形全等的基本思路:1. 有两边对应相等时,找夹角或第三边对应相等.2. 有一边和一角对应相等时,找另一角相等或夹等角的另一边相等.3. 有两个角相等时,找一对对应边相等。

三。

判定两个三角形全等的注意事项:熟练判定方法,要善于寻找图形中的公共边、公共角、对顶角等隐含条件,如果不能直接找到条件,就要考虑加辅助线,构造全等三角形。

四.三角形全等的主要应用于:1.证明两线段相等; 2。

证明两角相等五.典型例题:例1。

如图,已知AC=DB,要使得⊿ABC ≌⊿DCB,只需要增加一个条件是 _ ______. (2001年安徽省中考题)分析:因为BC 是公共边,又已知AC=BD,要使⊿ABC ≌⊿DCB,可利用SSS 或SAS 来说明。

解:AB=DC 或∠ACB=∠DBC 例2。

如图,已知AC 、BD 交于点O ,AC=BD. 求证:OA=OD 分析:要证明两线相等,可通过证明两三角形全等或证明等腰三角形来解决.本题直接证明,条件不足.所以考虑作助线。

A BCD O证明:连结AD,在⊿ABD和⊿DCA中,∵AB=DC,BD=CA,AD=DA∴⊿ABD≌⊿DCA(SSS)∴∠B=∠C在⊿AOB和⊿DOC中,∵∠AOB=∠DOC,∠B=∠C,AB=DC∴⊿AOB≌⊿DOC(AAS)∴OA=OD或在证明了⊿ABD≌⊿DCA后,得∠ADB=∠DAC,∴OA=OD(等角对等边)例3.如图:AC=BD,AD⊥AC,BC⊥BD求证:AD=BC分析:本题证明两线段相等,仍考虑证明两个三角形全等.但题目中的含AD、BC的两个三角形没有全等的条件。

全等三角形和相似三角形的性质和应用

全等三角形和相似三角形的性质和应用

全等三角形和相似三角形的性质和应用三角形作为几何学中最基本的图形之一,具有多种重要的性质和应用。

其中,全等三角形和相似三角形是常见的三角形类型。

本文将探讨全等三角形和相似三角形的性质和应用,并讨论它们在实际问题中的运用。

一、全等三角形的性质和判定方法全等三角形是指具有相同三边和三个内角相等的三角形。

以下是关于全等三角形的性质及其判定方法。

1. 边-边-边(SSS)判定法:当两个三角形的三条边分别相等时,这两个三角形全等。

2. 角-边-角(ASA)判定法:当两个三角形的两个角和它们的夹边分别相等时,这两个三角形全等。

3. 边-角-边(SAS)判定法:当两个三角形的两条边和这两边夹角的度数分别相等时,这两个三角形全等。

4. 直角三角形的判定:如果两个直角三角形的两条直角边分别相等,那么这两个三角形全等。

全等三角形的性质可以应用于各种几何证明和计算中,具有重要的研究价值。

二、相似三角形的性质和判定方法相似三角形是指具有对应角相等的三角形。

以下是关于相似三角形的性质及其判定方法。

1. AAA相似判定法:当两个三角形的三个内角对应相等时,这两个三角形相似。

2. AA相似判定法:当两个三角形的两个对应角相等时,这两个三角形相似。

3. 边比例相等判定法:当两个三角形的对应边之比相等时,这两个三角形相似。

相似三角形的性质在尺规作图、测量和计算中有广泛的应用。

三、全等三角形和相似三角形的应用全等三角形和相似三角形的性质和判定方法在实际问题中有许多应用。

以下是全等三角形和相似三角形的一些应用。

1. 尺规作图:通过相似三角形的性质,我们可以根据已知的几何条件来绘制图形。

2. 可视化测量:通过测量两个实际物体和它们的阴影或相似图形的尺寸,我们可以计算出一个物体的尺寸,而无需直接测量。

3. 实际问题的解决:许多实际问题都可以通过应用全等三角形和相似三角形的性质来求解,例如计算高楼的高度、测量无法直接测量的距离或高度等。

4. 工程建筑:在建筑和工程领域中,全等三角形和相似三角形的应用非常广泛,包括建筑设计、工程测量、公路施工等。

全等三角形在初中及应用

全等三角形在初中及应用

全等三角形在初中及应用全等三角形是初中数学中的一个重要概念,它在几何学的研究和实际应用中都有广泛的应用。

全等三角形指的是两个三角形的所有对应边和对应角都相等。

当两个三角形全等时,我们可以说它们形状完全相同,只是大小和位置可能不同。

在初中数学中,我们学习了一些判断三角形全等的方法。

一种常用的判断方法是SAS判定法。

SAS判定法是指当两个三角形的某两边分别相等,且它们的夹角也相等时,就可以判断这两个三角形是全等的。

另一种常用的判断方法是SSS判定法。

SSS判定法是指当两个三角形的三条边分别相等时,就可以判断这两个三角形是全等的。

通过学习全等三角形的判定方法,我们可以解决一些与全等三角形有关的问题。

比如,当我们知道两个三角形的某些边或角相等时,我们可以利用全等三角形的性质,求解其他未知边或角的值。

另外,在几何学的研究中,全等三角形也有许多重要的性质和定理。

比如,对于全等三角形来说,它们的对应角一定相等,对应边也一定成比例。

这些性质使得全等三角形在几何证明中有着重要的地位。

除了在数学中的理论研究,全等三角形在实际应用中也有广泛的应用。

例如,在建筑设计中,我们经常需要根据给定的尺寸比例来设计建筑物。

这时,我们可以利用全等三角形的性质,通过测量几何图形的一些已知边和角,来确定其他未知边和角的值。

此外,在地理测量中,我们经常需要测量地球上的距离和角度。

利用全等三角形的概念,我们可以通过测量已知长度的地面距离、高度或角度,来计算未知长度的地面距离、高度或角度。

全等三角形在实际应用中的一个重要用途是测量不可达的物体的高度。

例如,当我们需要测量一个高楼大厦的高度时,由于无法直接测量,我们可以利用全等三角形的性质,通过测量大厦底部和顶部的距离以及观察者与大厦的角度,来计算出大厦的高度。

此外,在计算机图形学和计算机视觉领域,全等三角形也有广泛的应用。

例如,在三维模型的渲染过程中,我们需要根据模型的表面纹理信息来计算光照效果。

全等三角形的判定与应用

全等三角形的判定与应用

全等三角形的判定与应用全等三角形是指具有相同形状和大小的两个三角形,它们的对应边长相等,对应角度相等。

全等三角形的判定以及应用在几何学中有着重要的意义,本文将探讨全等三角形的判定方法以及其在实际问题中的应用。

一、全等三角形的判定方法1. SSS判定法(边边边判定法)若两个三角形的三条边分别相等,则它们是全等三角形。

这是最直观且常用的全等三角形判定方法。

2. SAS判定法(边角边判定法)若两个三角形的一对相等的边及其夹角相等,则它们是全等三角形。

3. ASA判定法(角边角判定法)若两个三角形的一对相等的角及其夹边相等,则它们是全等三角形。

4. RHS判定法(直角边相等判定法)若两个三角形的直角边及斜边分别相等,则它们是全等三角形。

通过这些判定法,我们可以快速判断两个三角形是否全等,为后续的应用打下基础。

二、全等三角形的应用1. 几何证明全等三角形在几何证明中经常被使用。

通过证明两个三角形全等,可以推导出许多几何性质。

例如,我们可以利用全等三角形的性质证明角平分线定理、垂心定理等。

2. 测量与构造在实际测量和构造问题中,全等三角形的概念也得到了广泛应用。

例如,当我们需要在地图上等比例地绘制某个区域时,可以通过寻找与已知三角形全等的三角形来实现。

这种方法可以保证地图的比例尺度正确。

3. 三角函数运算全等三角形也在三角函数运算中发挥重要作用。

通过利用全等三角形的性质,我们可以推导出三角函数之间的关系式,简化三角函数运算的复杂性。

4. 相似三角形应用相似三角形是指两个三角形的对应角相等,对应边成比例。

在相似三角形的问题中,全等三角形的判定与应用经常被使用。

通过寻找与已知三角形全等的三角形,我们可以解决相似三角形的各种问题,如边长比例求解、面积比例求解等。

总结:全等三角形判定是几何学中的重要内容,它有利于准确推导出几何性质,并且在实际问题中有广泛应用。

通过SSS、SAS、ASA、RHS 等判定法,我们可以快速判断两个三角形是否全等。

七年级下册数学全等三角形的模型及应用(知识点串讲)(解析版)

七年级下册数学全等三角形的模型及应用(知识点串讲)(解析版)

专题12 全等三角形的模型及应用知识网络重难突破知识点一全等三角形常见模型(1)一线三等角常见图形如下:(含特殊的一线三垂直)(2)手拉手模型常见图形如下:(等腰三角形、等边三角形、等腰直角三角形)(2)半角模型常见图形如下:(正方形、一般四边形)(1)一线三等角典例1(2019春•莲湖区期末)如图1,在ABC⊥∆中,90∠=︒,AB ACBAC=,过点A作直线DE,且满足BD DE 于点D,CE DE⊥于点E,当B,C在直线DE的同侧时,(1)求证:DE BD CE=+.(2)如果上面条件不变,当B,C在直线DE的异侧时,如图2,问BD、DE、CE之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C在直线DE的异侧时,如图3,问BD、DE、CE之间的数量关系如何?写出结论并证明.【解答】(1)证明:如图1,BD DE⊥,CE DE⊥,90D E ∴∠=∠=︒,90BAC ∠=︒,90BAD CAE ∴∠+∠=︒.90BAD ABD ∠+∠=︒,CAE ABD ∴∠=∠.在ADB ∆和CEA ∆中,D E ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =,DE AD AE =+,DE CE BD ∴=+;(2)解:BD DE CE =+,理由:如图2,BD DE ⊥,CE DE ⊥,90ADB CEA ∴∠=∠=︒.90BAD ABD ∴∠+∠=︒.90BAD EAC ∠+∠=︒ABD EAC ∴∠=∠.在ADB ∆和CEA ∆中,ADB CEA ABD EAC AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADB CEA AAS ∴∆≅∆,BD AE ∴=,AD CE =.AE AD ED =+,BD DE CE ∴=+.(3)解:DE CE BD =-,理由是:如图3,同理易证得:()ABD CAE AAS ∆≅∆,BD AE ∴=,AD CE =,DE AD AE =-,DE CE BD ∴=-.典例2(2019春•长清区期末)CD 是经过BCA ∠顶点C 的一条直线,CA CB =,E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)如图(1),若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,当90BCA α∠=∠=︒时,线段BE与CF有怎样的大小关系?并说明理由.(2)如图(2),若直线CD经过BCA∠的外部,当90∠=∠>︒时,则EF、BE、AF三条线段之间BCAα有怎样的数量关系?并说明理由.【解答】解:(1)BE CF=,理由:FCA FAC∠+∠=︒,90∠+∠=︒,90BCE ACF∴∠=∠,(同角的余角相等)BCE FCA=,∠=∠,CA CBBEC CFA∴∆≅∆,Rt BCE Rt CAF(AAS)∴=;BE CF(2)EF AF BE=+,理由:CAF ACFα∠+∠=︒-∠,BCE ACFα∠+∠=︒-∠,180180∴∠=∠,(同角的补角相等)BCE CAF=,∠=∠,CA CBBEC CFA∴∆≅∆,BCE CAF AAS()=,∴=,BE CFCE AF∴=+=+.EF CE CF AF BE(2)手拉手全等典例1如图,等边ABC∆中,D是AB边上的一动点,以CD为一边,向上作等边EDC∆,连接AE.(1)求证:ACE BCD∆≅∆;(2)判断AE与BC的位置关系,并说明理由.【解答】证明:(1)ABC ∆和DCE ∆都是等边三角形,BC AC ∴=,DC CE =,60ACB DCE ∠=∠=︒,ACB DCA DCE DCA ∴∠-∠=∠-∠,即BCD ACE ∠=∠,在ACE ∆和BCD ∆中,BC AC BCD ACE DC CE =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴∆≅∆;(2)//AE BC ,理由是:ACE BCD ∆≅∆,CAE ABC ∴∠=∠,ABC ∆是等边三角形,ABC ACB ∴∠=∠,CAE ACB ∴∠=∠,//AE BC ∴.典例2(2019春•金牛区期末)如图.已知∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠F AB +∠DAE 的度数;(3)请问线段CE 、BF 、DE 之间有什么数量关系?请说明理由.【解答】(1)证明:∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =90°,∠CAD +∠DAE =90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)解:∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠CAB=∠DAE,∠BCA=∠E=45°,∠F AB+∠DAE=∠F AB+∠CAB=∠F AC,∵∠AFC=90°,∠BCA=45°,∴∠F AC=45°,∴∠F AB+∠DAE=45°;(3)解:CE=2BF+2DE;理由如下:延长BF到G,使得FG=FB,连接AG,如图所示:∵AF⊥BG,∴AB=AG,∴∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE,∴CE=2BF+2DE.典例3(2019春•天桥区期末)如图1,在ABC ∆中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),以AD 为边在AD 的右侧作ADE ∆,使AD AE =,DAE BAC ∠=∠,连接CE ,设BAC α∠=,BCE β∠=.(1)线段BD 、CE 的数量关系是 ;并说明理由;(2)探究:当点D 在BC 边上移动时,α,β之间有怎样的数量关系?请说明理由;(3)如图2,若90BAC ∠=︒,CE 与BA 的延长线交于点F .求证:EF DC =.【解答】解:(1)结论:BD CE =.理由:如图1中,AB AC =,AD AE =,BAC DAE ∠=∠,BAD CAE ∴∠=∠,()BAD CAE SAS ∴∆≅∆,BD CE ∴=.(2)结论:180αβ+=︒.理由:如图1中,BAD CAE ∆≅∆(已证),ABD ACE ∴∠=∠,BCE ACB ABC ABC ACE β∴∠=∠+∠=∠+∠=,180BAC ABC ACB ∠+∠+∠=︒,BAC α∠=,180αβ∴+=︒.(3)如图2中,由(1)可知BAD CAE ∆≅∆,BD EC ∴=,B ACE ∠=∠,AB DC =,90BAC ∠=︒,45B ACB ACF ∴∠=∠=∠=︒,90BCF ∴∠=︒,45F ∠=︒,B F ∴∠=∠,CB CF ∴=,BD EC =,EF CD ∴=.(3)半角模型典例1(2019春•罗湖区期末)四边形ABCD 是正方形(四条边相等,四个角都是直角).(1)如图1,将一个直角顶点与A 点重合,角的两边分别交BC 于E ,交CD 的延长线于F ,试说明BE=DF;(2)如图2,若将(1)中的直角改为45°角,即∠EAF=45°,E、F分别在边BC、CD上,试说明EF=BE+DF;(3)如图3,改变(2)中的∠EAF的位置(大小不变),使E、F分别在BC、CD的延长线上,若BE =15,DF=2,试求线段EF的长.【解答】证明:(1)∵正方形ABCD是正方形,∴AD=AB,∠BAD=∠B=∠ADC=90°,∵∠EAF=90°,∴∠BAE+∠EAD=∠EAD+∠DAF=90°,∴∠BAE=∠DAF,在△BAE和△DAF中,∵,∴△ABE≌△ADF(ASA),∴BE=DF;(2)如图2,∵AD=AB,将△ABE绕点A逆时针旋转90°得到△ADE',此时AB与AD重合.由旋转可得∠BAE=∠DAE',BE=DE',∠B=∠ADE'=90°.∴∠ADF+∠ADE'=90°+90°=180°,∴点F、D、E'在同一条直线上,∵∠EAF=45°,∴∠BAE+∠DAF=∠DAF+∠DAE'=45°=∠EAF,在△EAF和△E'AF中,∵,∴△EAF≌△E'AF(SAS),∴EF=E'F,∵E'F=DF+DE'=DF+BE,∴EF=BE+DF;(3)将△ADF绕着点A按顺时针方向旋转90°,得△ABF′,如图3所示,由四边形ABCD为正方形可知点B、C、F′在一条直线上,∵∠BAF′=∠DAF,∠EAF=∠EAD+∠DAF=45°,∴∠EAF′+∠EAD+∠DAF=90°,∴∠EAF′=∠EAF=45°.在△EAF和△EAF′中,,∴△EAF≌△EAF′(SAS),∴EF=EF′,∴EF=EF'=BE﹣BF'=BE﹣DF=15﹣2=13.知识点二全等三角形的应用典例1(2019春•皇姑区期末)要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD CB=,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出10BD=,5ED=,则AB的长是()A.2.5B.10C.5D.以上都不对【解答】解:AB BD⊥,ED AB⊥,90ABC EDC∴∠=∠=︒,在ABC∆和EDC∆中,90ABC EDCBC DCACB ECD∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,()ABC EDC ASA∴∆≅∆,5AB ED∴==.故选:C.典例2(2019春•灵石县期末)某大学计划为新生配备如图1所示的折叠凳图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,由以上信息能求出CB的长度吗?如果能,请求出BC的长度,如果不能,请你说明理由.【解答】解:O是AB、CD的中点,OA OB∴=,OC OD=,在AOD∆和BOC∆中,OA OBAOD BOC OC OD=⎧⎪∠=∠⎨⎪=⎩,()AOD BOC SAS∴∆≅∆,CB AD∴=,30AD cm=,30CB cm∴=.巩固训练一、单选题(共6小题)1.(2019春•罗湖区期末)如图,为估计罗湖公园小池塘岸边A、B两点之间的距离,思雅学校小组在小池塘的一侧选取一点O,测得OA=28m,OB=20m,则A,B间的距离可能是()A.8m B.25m C.50m D.60m【解答】解:连接AB,根据三角形的三边关系定理得:28﹣20<AB<28+20,即:8<AB<48,则AB的值在8和48之间.2.(2019春•市中区期末)如图,有一池塘,要测池塘两端A ,B 间的距离,可先在平地上取一个不经过池塘可以直接到达点A 和B 的点C ,连接AC 并延长至D ,使CD CA =,连接BC 并延长至E ,使CE CB =,连接ED .若量出58DE =米,则A ,B 间的距离即可求.依据是( )A .SASB .SSSC .AASD .ASA【解答】解:在ABC ∆和DEC ∆中,AC CD ACB DCE BC CE =⎧⎪∠=∠⎨⎪=⎩,()ABC DEC SAS ∆≅∆,58AB DE ∴==米,故选:A .3.(2018春•槐荫区期末)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD CD =,AB CB =,詹姆斯在探究筝形的性质时,得到如下结论:①AC BD ⊥;②12AO CO AC ==;③ABD CBD ∆≅∆;④四边形ABCD 的面积12AC BD =⨯其中正确的结论有( )A .1个B .2个C .3个D .4个【解答】解:在ABD ∆与CBD ∆中,AD CD AB BC DB DB =⎧⎪=⎨⎪=⎩,()ABD CBD SSS ∴∆≅∆,ADB CDB ∴∠=∠,在AOD ∆与COD ∆中,AD CD ADB CDB OD OD =⎧⎪∠=∠⎨⎪=⎩,()AOD COD SAS ∴∆≅∆,90AOD COD ∴∠=∠=︒,AO OC =,AC DB ∴⊥,故①②正确;四边形ABCD 的面积111222S ADB S BDC DB OA DB OC AC BD =∆+∆=⨯+⨯=, 故④正确;故选:D .4.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )A .①B .②C .③D .①和②【解答】解:带③去可以利用“角边角”得到全等的三角形.故选:C .5.(2019春•青羊区期末)如图,∠ACB =90°,AC =BC ,AE ⊥CE 于点E ,BD ⊥CE 于点D ,AE =5cm ,BD =2cm ,则DE 的长是( )A .8cmB .5cmC .3cmD .2cm【解答】解:∵AE ⊥CE 于点E ,BD ⊥CE 于点D ,∴∠AEC =∠D =∠ACB =90°,∴∠A+∠ACE=90°,∠ACE+∠BCD=90°,∴∠A=∠BCD,∵AC=BC,∴△ACE≌△CBD(AAS),∴AE=CD=5cm,CE=BD=2cm,∴DE=CD﹣CE=5﹣2=3cm.故选:C.6.(2019春•罗湖区期末)如图,△ABD与△AEC都是等边三角形,AB≠AC,下列结论中,正确的个数是(),①BE=CD;②∠BOD=60°;③∠BDO=∠CEO;④若∠BAC=90°,且DA∥BC,则BC⊥CE.A.1 B.2 C.3 D.4【解答】解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴∠BDO=∠CEO错误,∴③错误;∵DA ∥BC ,∴∠DAB =∠ABC =60°,∵∠BAC =90°,∴∠ACB =30°,∵∠ACE =60°,∴∠ECB =90°,∴BC ⊥CE ,④正确,综上所述,①②④正确,故选:C .二、填空题(共5小题)7.(2018春•历下区期中)如图,两棵大树间相距13m ,小华从点B 沿BC 走向点C ,行走一段时间后他到达点E ,此时他仰望两棵大树的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知大树AB 的高为5m ,小华行走的速度为1/m s,小华走的时间是 .【解答】解:90AED ∠=︒,90AEB DEC ∴∠+∠=︒,90ABE =︒,90A AEB ∴∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和DCE ∆中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE ECD AAS ∴∆≅∆,5EC AB m ∴==,13BC m =,8BE m ∴=,∴小华走的时间是818()s ÷=,故答案为:8s .8.(2018春•槐荫区期末)如图,要测量河两岸相对两点A 、B 间的距离,先在过点B 的AB 的垂线上取两点C 、D ,使CD BC =,再在过点D 的垂线上取点E ,使A 、C 、E 三点在一条直线上,可证明EDC ABC ∆≅∆,所以测得ED 的长就是A 、B 两点间的距离,这里判定EDC ABC ∆≅∆的理由是.【解答】解:AB BD ⊥,ED BD ⊥,90ABD EDC ∴∠=∠=︒,在EDC ∆和ABC ∆中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()EDC ABC ASA ∴∆≅∆.故答案为:ASA .9.(2019春•商河县期末)如图,要在湖两岸A ,B 两点之间修建一座观赏桥,由于条件限制,无法直接测量A 、B 两点间的距离,于是小明想出来这样一种做法:在AB 的垂线BF 上取两点C 、D ,使BC CD =,再定出BF 的垂线DE ,使A ,C ,E 三点在一条直线上,这时测得50DE =米,则AB = 米.【解答】解:根据题意可知90B D ∠=∠=︒,BC CD =,ACB ECD ∠=∠()ABC EDC ASA ∴∆≅∆50AB DE ∴==米.故答案为:5010.(2019春•平阴县期末)如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边ABC ∆和等边CDE ∆,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②//PQ AE ;③AP BQ =;④DE DP =;⑤120AOE ∠=︒,其中正确结论有 (填序号).【解答】解:等边ABC ∆和等边CDE ∆,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB BCD DCE BCD ∴∠+∠=∠+∠,即ACD BCE ∠=∠,在ACD ∆与BCE ∆中,AC BC ACD BCECD CE =⎧⎪∠=∠⎨⎪=⎩,()ACD BCE SAS ∴∆≅∆, AD BE ∴=,①正确,ACD BCE ∆≅∆,CBE DAC ∴∠=∠, 又60ACB DCE ∠=∠=︒,60BCD ∴∠=︒,ACP BCQ ∴∠=∠,在CQB ∆和CPA ∆中,CBE DAC AC BCBCQ ACP ∠=∠⎧⎪=⎨⎪∠=∠⎩,()CQB CPA ASA ∴∆≅∆,CP CQ ∴=, 又60PCQ ∠=︒,PCQ ∴∆为等边三角形,60PQC DCE ∴∠=∠=︒,//PQ AE ∴,②正确,CQB CPA ∆≅∆,AP BQ ∴=③正确,AD BE =,AP BQ =,AD AP BE BQ ∴-=-,即DP QE =,60DQE ECQ CEQ CEQ ∠=∠+∠=︒+∠,60CDE ∠=︒,DQE CDE ∴∠≠∠,故④错误;//BC DE ,CBE BED ∴∠=∠,CBE DAE ∠=∠,60AOB OAE AEO ∴∠=∠+∠=︒,同理可得出120AOE ∠=︒,60DOE ∴∠=︒,故⑤正确;∴正确结论有:①②③⑤;故答案为:①②③⑤.11.(2019春•金牛区期末)如图,已知四边形ABCD 中,AB =12厘米,BC =8厘米,CD =14厘米,∠B =∠C ,点E 为线段AB 的中点.如果点P 在线段BC 上以3厘米秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为 厘米/秒时,能够使△BPE 与以C 、P 、Q 三点所构成的三角形全等.【解答】解:设点P 运动的时间为t 秒,则BP =3t ,CP =8﹣3t ,∵∠B =∠C ,∴①当BE =CP =6,BP =CQ 时,△BPE 与△CQP 全等,此时,6=8﹣3t ,解得t,∴BP=CQ=2,此时,点Q的运动速度为23厘米/秒;②当BE=CQ=6,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t,∴点Q的运动速度为6厘米/秒;故答案为:3或.三、解答题(共2小题)12.如图,Rt ABC⊥于D,CE AE∠=︒,直线l为经过点A的任一直线,BD l⊥,∆中,AB AC=,90BAC若BD CE>,试问:(1)AD与CE的大小关系如何?请说明理由;(2)线段BD,DE,CE之间的数量之间关系如何?并说明理由.【解答】解:(1)AD与CE的大小关系为AD CE=,理由是:90∠+∠=∠=︒,BAD EAC BAC又CE l⊥于E,90∴∠+∠=︒,ACE EAC∴∠=∠;BAD ACEBD l ⊥于D ,CE l ⊥于E ,90BDA AEC ∴∠=∠=︒;又AB AC =;()ABD CAE AAS ∴∆≅∆,AD CE ∴=.(2)线段BD ,DE ,CE 之间的数量之间关系为:BD DE CE =+,理由如下: ABD CAE ∆≅∆,BD AE ∴=,AD CE =,又AE DE AD =+,BD DE CE ∴=+.13.(2018秋•宿松县期末)(1)问题背景:如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,90B ADC ∠=∠=︒,E 、F 分别是BC ,CD 上的点且EAF ∠=60︒,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG BE =.连结AG ,先证明ABE ADG ∆≅∆,再证明AEF AGF ∆≅∆,可得出结论,他的结论应是 ;(2)探索延伸:如图2,若在四边形ABCD 中,AB AD =,180B D ∠+∠=︒.E ,F 分别是BC ,CD 上的点,且12EAF BAD ∠=∠,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30︒的A 处,舰艇乙在指挥中心南偏东70︒的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70︒,试求此时两舰艇之间的距离.【解答】解:(1)EF BE DF =+,证明如下:DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,()ABE ADG SAS ∴∆≅∆,AE AG ∴=,BAE DAG ∠=∠,12EAF BAD ∠=∠, GAF DAG DAF BAE DAF BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠, EAF GAF ∴∠=∠,在AEF ∆和GAF ∆中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS ∴∆≅∆,EF FG ∴=,FG DG DF BE DF =+=+,EF BE DF ∴=+;故答案为EF BE DF =+.(2)结论EF BE DF =+仍然成立;理由:延长FD 到点G .使DG BE =.连结AG ,如图2,在ABE ∆和ADG ∆中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,AE AG∴=,BAE DAG∠=∠,12EAF BAD∠=∠,GAF DAG DAF BAE DAF BAD EAF EAF∴∠=∠+∠=∠+∠=∠-∠=∠,EAF GAF∴∠=∠,在AEF∆和GAF∆中,AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,()AEF AGF SAS∴∆≅∆,EF FG∴=,FG DG DF BE DF=+=+,EF BE DF∴=+;(3)如图3,连接EF,延长AE、BF相交于点C,3090(9070)140AOB∠=︒+︒+︒-︒=︒,70EOF∠=︒,12EOF AOB∴∠=∠,又OA OB=,(9030)(7050)180OAC OBC∠+∠=︒-︒+︒+︒=︒,∴符合探索延伸中的条件,∴结论EF AE BF=+成立,即2(4560)210EF=⨯+=(海里).答:此时两舰艇之间的距离是210海里.。

全等直角三角形在实际生活中的应用

全等直角三角形在实际生活中的应用

全等直角三角形在实际生活中的应用全等直角三角形是一种非常常见且有趣的几何形状。

它在实际生活中有许多应用,下面将介绍其中一些。

建筑设计全等直角三角形在建筑设计中经常被用来计算和确定角度、长度和比例关系。

例如,在设计一个房屋的楼顶斜坡时,建筑师可以利用全等直角三角形的性质来确定合适的斜坡角度以及相关的长度关系。

地理测量全等直角三角形被广泛应用于地理测量领域。

它们可以用来测量难以达到的地点的高度或长度。

例如,在测量一个高山的高度时,可以使用全等直角三角形的原理来计算高山的高度与测量地点的距离。

航海导航全等直角三角形在航海导航中也起着重要的作用。

通过使用全等直角三角形的特性来测量方向和角度,船舶的航向和位置可以被准确地确定。

这对于导航和航海安全至关重要。

数学教学全等直角三角形在数学教学中是一个重要的概念,它帮助学生理解几何学基本原理。

通过实际应用,学生可以更容易地理解全等直角三角形的性质,并将其应用到解决实际问题中。

工程设计除了建筑设计之外,全等直角三角形在其他工程设计领域也起着重要的作用。

例如,在电子工程中,全等直角三角形的性质可以帮助工程师计算电路元件的有效阻抗和相位差。

这对于电路的正确设计和性能优化至关重要。

总结全等直角三角形在实际生活中有许多应用。

无论是在建筑设计、地理测量、航海导航还是数学教学和工程设计中,全等直角三角形的性质都发挥着重要的作用。

了解并应用这些性质可以帮助我们更好地理解和解决实际问题。

全等三角形的性质与判定的综合应用

全等三角形的性质与判定的综合应用

全等三角形的性质与判定的综合应用全等三角形的对应角、对应边是相等的,全等三角形的判定是“SAS”、“ASA”、“AAS”、“SSS”,在说明线段相等或角相等时,常常需要综合运用全等三角形的性质和判定,下面举例予以说明。

一、说明线段相等例1、如图1,在△ABC 与△ABD 的顶点A 和D 均在BC 的同旁,AB=DC ,AC=DB ,AD 与BC 相交于O 点,则OA 与OD 相等吗若相等,请说明理由。

分析:要使OA=OD ,可分析△ABO 与△DCO 是否全等,但是条件中有一组边对应相等(AB=DC ),一组角对应相等(对顶角),显然不具备全等的条件。

但由已知条件可推出△ABC ≌△DCB ,再根据全等的性质可得∠A=∠D ,再根据全等三角形的判定“AAS”推出△ABO ≌△DCO ,从而得到OA=OD 。

解:OA=OD ,理由如下:在△ABC 和△DCB 中,因为AB=DC ,AC=BD ,BC=CB ,所以△ABC ≌△DCB (SSS ),所以∠A =∠D ,在△ABO 与△DCO 中因为∠A =∠D ,∠AOB=∠DOC ,AB=DC所以△ABO ≌△DCO ,所以OA=OD点评:本题考查了全等三角形的判定和性质。

说明两条线段相等时,可考虑着两条线段所在的两个三角形是否全等,若由已知条件不能直接说明这两个三角形全等时,可以由已知条件先推出其它的三角形全等,再由全等三角形的性质得到一些线段或角相等,为说明前面的三角形全等提供条件。

二、说明角相等例2、如图2,AB 、MN 与CD 相交于点O ,OA=OB ,OM=ON ,试问:∠D 与∠C 相等吗若相等,请进行说明理由. O D C B A 图1分析:要得到∠D=∠C,只需说明△BOD≌△AOC Array即可,但是由已知条件不能直接说明这两个三角形全等,但是由已知条件可推出△BON≌△AOM,由全等三角形的性质得到∠A=∠B,再结合OA=OB,∠AOC=∠BOD,即可说明△BOD≌△AOC。

全等三角形的判定和性质的应用

全等三角形的判定和性质的应用
所以∠ABD=∠ECB.在△ABF 中△BCE 中, AFB BEC, 所以△ABF≌△BCE,所以 BF= AB BC,
CE=5 cm,AF=BE.因为 EF=2 cm,所以 BE=BF-EF=5-2=3 cm,所以 AF=3 cm.
(2)因为△ABF≌△BCE,所以AF=BE,BF=CE.因为BE+EF=BF,所以EF= CE-AF.
3. 含45°的直角三角尺如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则 点C的坐标为 (-3,2) .
4. (2018菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的 结论.
解:DF=AE.证明:因为AB∥CD,所以∠C=∠B.因为CE=BF,所以CE-EF=BF-FE,所以CF= BE.又因为CD=BA,所以△DCF≌△ABE(SAS),所以DF=AE.
(3)过B点在等腰△ABC外作一条直线,分别过A,C两点作直线的垂线段,垂 足分别是F,E,请画出图形,并探讨AF,EF,EC之间的数量关系并说明理由.
解:(3)如图,过 B 点在△ABC 外作一条直线,分别过 A, C 两点作直线的垂线段,垂足分别是 F,E,则 EF=CE+AF, 理由如下:因为 AF⊥BF,CE⊥BF,所以∠AFB=∠CEB=90°, 所以∠ABF+∠EBC=∠EBC+∠ECB=90°,所以∠ABF=∠ECB.
解:因为 AB∥CD,所以∠ABO=∠CDO.又因为 OD⊥CD,所以∠CDO=90°,所以 ∠ABO= 90°,即 BO⊥AB.因为 AB∥OH∥CD,相邻两平行线间的距离相等,所 以 OB=OD.在△ABO 和△CDO 中,因为∠ABO=∠CDO,OB=OD,∠AOB=∠COD,所以 △ABO≌△CDO(ASA).所以 CD=AB=20(米).即标语 CD 的长度为 20 米.

两边及一角的平分线相等的三角形全等

两边及一角的平分线相等的三角形全等

三角形是初中数学中重要的几何形状,而全等三角形是其中的一个重要概念。

全等三角形具有相同的形状和相同的大小,是重要的几何性质之一。

在本文中,我们将探讨两边及一角的平分线相等的三角形全等的性质和应用。

一、全等三角形的定义1.1 两个三角形全等的定义全等三角形是指在几何形状上,两个三角形的对应边相等,对应角相等的情况下,两个三角形全等。

1.2 全等三角形的符号表示两个全等三角形可以用符号来表示,常用的表示方法是△ABC ≌ △DEF,其中△ABC 代表一个三角形,△DEF 表示另一个三角形。

二、两边及一角的平分线相等的三角形全等的条件2.1 两个三角形的对应边相等当两个三角形的对应边分别相等时,可以推断这两个三角形全等。

2.2 两边及一角的平分线相等若两个三角形的一个角和它们的两边的切线相等,则这两个三角形全等。

2.3 证明方法要证明两边及一角的平分线相等的三角形全等,可以通过 SSS 全等判据(三边对应相等判据)、SAS 全等判据(两边及夹角对应相等判据)、AAS 全等判据(两角及夹边对应相等判据)进行证明。

三、全等三角形的性质和应用3.1 全等三角形的性质全等三角形具有以下性质:(1)全等三角形的对应边相等(2)全等三角形的对应角相等(3)全等三角形的面积相等3.2 全等三角形的应用全等三角形的性质和条件在几何问题中有着广泛的应用:(1)在证明几何定理时,可以利用全等三角形的性质进行证明。

(2)在计算三角形的面积时,可以利用全等三角形的面积相等性质,简化计算步骤。

(3)在解决实际问题中,可以利用全等三角形的特性,求解未知长度和角度。

四、如何判断两边及一角的平分线相等的三角形全等4.1 观察三角形的给定条件要判断两边及一角的平分线相等的三角形全等,需要观察给定的三角形条件,看是否满足两边及一角的平分线相等的条件。

4.2 应用全等三角形的判定条件根据全等三角形的判定条件,可以利用SSS 全等判据、SAS 全等判据、AAS 全等判据等进行判断。

中考数学复习:专题4-9 全等三角形在生活中的应用

中考数学复习:专题4-9 全等三角形在生活中的应用

专题09 全等三角形在生活中的应用【专题综述】学习了三角形全等的有关知识后,同学们会发现它可以解决许多生活中的实际问题,并且有利于考查同学们识别图形、动手操作的能力,更注重考查大家抽象、转化的思维能力以及运用几何知识解决实际问题的能力。

因此,同学们在学习过程中应该注意观察身边的实际问题,善于用数学的头脑去发现、分析、解决问题。

【方法解读】一、用于产品检验例1 如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD=CF;③量出DE的长a米,FG的长b米.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?【举一反三】如图,由两根钢丝固定的高压电线杆,按要求当两根钢丝与电线杆的夹角相同时,固定效果最好.现已知钢丝触地点到电线杆的距离相等,那么请你判断图中两根钢丝的固定是否合乎要求,并说明理由.(电线杆的粗细忽略不计)【来源】北师大版七年级数学下4.5 利用三角形全等测距离同步练习二、用于图形复原例2 如图是举世闻名的三星堆考古中挖掘出的一个三角形残缺玉片,工作人员想制作该玉片模型,则测量图中哪些数据,就可制成符合规格的三角形玉片模型?并说明其中的道理.【举一反三】小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【来源】2014-2015学年江苏省南苑中学八年级上学期第一次单元考试数学试卷(带解析)三、用于测量距离例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.图3【举一反三】小强为了测量一幢高楼高AB,在旗杆CD与楼之间选定一点P.测得旗杆顶C视线PC与地面夹角∠DPC=36°,测楼顶A视线PA与地面夹角∠APB=54°,量得P到楼底距离PB与旗杆高度相等,等于10米,量得旗杆与楼之间距离为DB=36米,小强计算出了楼高,楼高AB是多少米?【来源】北师大版七年级数学下册习题:4.5《利用三角形全等测距离》(详细答案)【强化训练】1.如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,如图所示的这种方法,是利用了三角形全等中的()A. SSSB. ASAC. AASD. SAS【来源】北师大版数学七年级下册第四章4.5利用全等三角形全等测距离课时练习2.山脚下有A、B两点,要测出A、B两点间的距离。

全等三角形及其应用(含解答)

全等三角形及其应用(含解答)

全等三角形及其应用专题辅导1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;③平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常需要借助全等三角形的知识。

全等三角形及其应用

全等三角形及其应用

全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用

全等三角形在实际生活中的应用三角形全等在解决实际问题中有广泛的应用,如测量无法直接测量的距离时,可根据三角形全等进行转化.有许多图形分割问题,也蕴含着全等思想.一、测量中的全等三角形例1.图1为人民公园中的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.要求:(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据(长度用,,,c b a …表示;角度用,,,γβα…表示);(3)根据你测量的数据,计算A 、B 两棵树间的距离.分析:此题的测量方法很多,这里用全等知识来解决,方案如图2,步骤为:(1)在地上找可以直接到达的一点O ,(2)在OA 的延长线上取一点C ,使OC=OA ;在BO 的延长线上取一点D ,使OD=OB ;(3)测得DC=a ,则AB=a . 点评:本题是一道全开放式的设计方案题,它的解题策略非常多,可以利用三角函数、三角形中位线定理、全等三角形、三角形相似等许多知识,本题来源于课本、来源于生活,可以激发学生“学有用的数学”,更激发学生的学习热情和创新热情以及求知欲望.例2.如图3所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距 B A C D O 图2 A • • • B图1 图3离。

你能解释其中的道理吗?解:这个战士实际上是运用了三角形全等的知识 . 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形。

如图4所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD 的长度可以测得,又战士与地面是垂直的,也就是∠BAC =∠EFD =900,另外战士的身高与姿态是不变的,所以BC =EF ,∠ABC =∠FED . 依据“SAS”可知△ABC ≌△DEF ,所以AC =FD . 所以只要测得FD的距离,就可得到AC 的距离 .二、修路中的全等三角形例3.如图5,有一块不规则土地ABCD ,分别被甲、乙二人承包,一条公路GEFH 穿过这块土地,EF 左边是甲,右边是乙,AB ∥CD.为方便通行,决定将这条公路尽量修直,但要求甲、乙二人的土地面积不变.请你设计一种方案,解决这个问题,并说明方案正确的理由.分析:将公路修直并不困难,关键是要保持甲、乙二人的土地面积不变.这里,我们应注意充分利用AB ∥CD 这一条件来构造全等三角形.解:取EF 的中点O ,连接GO 并延长交FH 于点M ,GM 就是修直后的公路.理由是:设GM 分别交AB 、CD 于点P 、Q ,由AB ∥CD ,可得∠PEO =∠QFO ,又因为EO =FO ,∠EOP =∠FOQ ,故△EOP ≌△FOQ ,所以这个方案能保持甲、乙二人的土地面积不变.三、其他问题中的全等三角形例4.如图6,某同学把一块三角形的玻璃打碎成了三块,现在要去玻璃店配一块完全一样的玻璃,请你设计一个最省事的配玻璃方案,并说明理由.解:最省事的配玻璃方案是带着碎玻璃块③去玻璃店.理由是:玻璃块③含有一条完整的边BC 和夹BC 的两个图 5图4图6完整的角,根据ASA,只需将∠B和∠C的不完整的边延长相交即可,得到的三角形与原三角形全等.例5.如图7,点C是路段AB的中点,两人从C同时出发以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?分析:因为两人是从点C同时出发,且同时到达D,E两点,所以CD=CE.要说明DA与EB是否相等,则只需说明△ADC和△BEC是否全等.解:D,E与路段AB的距离相等.理由:因为点C是AB的中点,所以CA=CB,又CD=CE,DA⊥AB,EB⊥AB,所以Rt△ADC≌Rt△BEC(Hl).所以DA=EB.即D,E与路段AB的距离相等.例6.如图8是用两根拉线固定电线杆的示意图,其中,两根拉线的长AB=AC,BD和DC的长相等吗?为什么?分析:因为电线杆和地面垂直,它和两根拉线分别构成两个直角三角形,所以通过全等三角形的知识解决.解:BD和DC相等.因为AD⊥BC,所以∠ADB=∠ADC=90°,又AB=AC,AD=AD,所以Rt△ABD≌Rt△ACD(HL).所以BD=DC.例7.如图9,海岛上有A,B两个观测点,点B在点A 的正东方,海岛C在观测点A的正北方,海岛D在观测点B 图7图8图9的正北方,从观测点A看海岛C、D的视角∠CAD与从观测点B看海岛C、D 的视角∠CBD相等,那么海岛C、D到观测点A、B所在海岸的距离相等吗?为什么?分析:本题是一道和三角形全等有关的实际问题,要看海岛C、D到海岸AB的距离是否相等,则要看△ABC与△BAD是否全等.解:海岛C、D到观测点A、B所在海岸的距离相等.理由:由已知得∠CAB=∠DBA=90°,又∠CAD=∠CBD,所以∠DAB=∠CBA,在Rt△ABC和Rt△BAD中,∠CAB=∠DBA,AB=BA,∠CBA=∠DAB,所以△ABC≌△BAD(ASA),所以CA=DB,即海岛C、D到观测点A、B所在海岸的距离相等.。

第2节 全等三角形的应用

第2节 全等三角形的应用

第二节全等三角形的应用一、课标导航1.证明线段相等的方法(1)等量代换.(2)面积法:若两个三角形面积相等,底等则高等(或高等则底等).(3)证明两条线段所在的两个三角形全等.2.证明角相等的方法(1)对顶角相等.(2)同角(等角)的余角(补角)相等.(3)利用平行线的性质进行证明.(4)证明两个角所在的两个三角形全等.3.证明两条线段的位置关系(平行和垂直)的方法(1)平行:利用平行线的判定进行证明.(2)垂直:垂直的定义.证明平行或垂直通常要进行导角,遇到在三角形里导角时,我们可以考虑证明两个三角形全等.4.证明三角形全等的思维方法(1)可以从结论出发,需要证明哪两个三角形全等.(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等.(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等.(4)有的问题一次全等不能解决问题,可能考虑二次全等.(5)若上述方法均不可行,可考虑添加辅助线,构造全等三角形.5.添加辅助线构造全等三角形的常用方法我们要学会从已知条件或所要证的结论出发,寻找恰当的辅助线(1)直接连接法:连接已知点构造全等三角形.(2)延长法:延长已知边构造全等三角形.(3)作高:作高构造全等三角形.(4)作平行线:引平行线构造全等三角形.(5)取中点:取某条线段的中点构造全等三角形.6.能够应用全等三角形解决实际问题解题规律:−−−→−−−−−→抽象成结合数学知识生活问题数学问题解决问题.7.常见的几何模型本节重点讲解:一类模型,五个方法.三、全能突破1.要测量河两岸相对的两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上,如图12-2-1所示,可以得到△EDC ≌△ABC ,所以ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 的理由是 ( ).A .SASB .ASAC .SSSD .HL2.如图12-2-2所示,AB ∥CD ,AC ∥DB ,AD 与BC 交于点O ,AE ⊥BC 于点E ,DF 垂直BC 于点F ,那么图中全等的三角形有( )对. A . 5B . 6C . 7D . 83.如图12-2-3所示,某三角形材料断裂成I ,II ,Ⅲ三块,现要配置与原材料一样的三角形材料,应该用 材料 ,理由是 .4.如图12-2-4所示,有两个长度相同的浴梯(即BC = EF ),左边滑梯的高度AC 与右边汾梯水平方向的长度DF 相等,则∠ABC +∠DFE = 度.5.如图12-2-5所示,AB = AC , EB = EC , AE 的延长线交BC 于点D ,试证明:BD =CD .6.已知:如图12-2-6所示,DE⊥AC,BF⊥AC,AD=CB,DE=BF.求证:AB//DC.7.已知:如图12-2-7所示,AB=AD,AE=AC,求证:BO= DO.8.如图12-2-8所示,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB,BC,CD三段路旁各有一个小石凳E,M,F,且BE=CF,M是BC的中点.试判断三个石凳E,M,F是否恰好在一条直线上?为什么?9.如图12-2-9所示,D为△ABC边BC上任意一点,F、E分别为AB、AC的中点,连接DF并延长至点M,使MF=FD,连接DE并延长至点N,使EN = DE,连接MN,试判断MN与BC的位置关系,并证明你的结论.10.如图12-2-10所示,△ABC中,AB = AC,现想利用证三角形全等证明∠B=∠C,则图中所添加的辅助线应是.11.如图12-2-11所示,AB=AC,BD=DC,若艺B=35°,则∠C= .12.如图12-2-12所示,在△ABC中,DB = DC,CD⊥AB于点D,BE平分∠ABC,且BE⊥AC于点E与CD相交于点F,DH⊥BC于点H,交BE于点G,下列结论:①AD+CF=BD;②GD=FD;③CE=12BF.④DH∥AF;其中正确的是.13.如图12-2-13(a),(b),(c)所示,点E,D分别是正△ABC、正四边形ABCM、正五边形ABCMN中以C点为顶点的相邻两边上的点,且BE=CD,DB交AE于P点.(1)在图12-2-13 (a)中,求∠APD的度数.(2)在图12-2-13(b)中,∠APD的度数为,图12-2-13(c)中,∠APD的度数为.(3)根据前面探索,你能否将本题推广到一般的正n边形情况.若能,写出推广问题和结论;若不能,请说明理由.14.如图12-2-14所示,AB∥CD,AD∥BC,求证:AB = CD.15.如图12-2-15所示,在Rt△ABC中,∠A=90°,点D是斜边BC上一点,且BD=BA,过点D 作BC的垂线,交AC于点E,求证:AE= DE.16.(1)如图12-2-16所示,AC与BD相交于点O,AC=DB,AB=DC,求证:∠B=∠C.(2)如图12-2-17所示,AC= DB,乙B=乙C,求证:AB = CD.18.如图12-2-19(a),E,F分别为线段AC上的两个动点,且DE⊥AC于点E,BF⊥AC于点F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB = MD,ME= MF.(2)当E,F两点移动到图12-2-19 (b)所示的位置时,其余条件不变,上述结论能否成立?若成立,请给予证明;若不成立,请说明理由.19.如图12-2-20所示,在Rt△ABC中,乙C= 90°,AC= BC,D是斜边AB上任一点,AE⊥CD于E,BF⊥CD交CD的延长线于点F,CH⊥AB于点H,交AE于点G.(1)直接写出EF,AE和BF之间的关系;(2)探究BD与CG之间的数量关系,并证明.20.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:如图12-2-21所示,△ABC,△A1 B1 C1均为锐角三角形,AB=A1B1,BC=B1C1 ,∠C=∠C1.求证:△ABC≌△A1B1C1.证明:分别过点B,B1作BD⊥CA于点D,B1D1⊥C1A1于点D1.∴∠BDC=∠B1D1C1= 90°.在△BCD和△B1C1D1,111111C CBDC B D C BC B C∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BCD≌△B1C1D1 (AAS).∴BD=B1D1.(请你将上述证明过程补充完整)(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.21.(2011·浙江)如图12-2-22所示,点D,E分别在AB,AC上.(1)已知,BD=CE,CD=BE,求证:AB=AC;(2)分别将“BD=CE”记为①,"CD=BE”记为②,"AB=AC”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是命题2的命题,命题2是命题(选择“真”或“假”填入空格).22.(2010·南宁)如图12-2-23所示,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE= 90°,BC与DE相交于点F,连接CD,EB.(1)图中还有几对全等三角形,请你一一列举;(2)求证:CF= EF.23.(1)如图12-2-24 (a)所示,以△ABC的边AB,AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图12-2-24(b)所示,小路由白色的正方形大理石和黑色的三角形大理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?24.如图12-2-25所示,已知△ABC中,乙B=乙C,AB =AC=10厘米,BC = 8厘米,点D为AB 的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.全等?(2)若点Q以②中的运动速度从点C出发,点尸以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?25.如图12-2-26所示,CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图12-2-26 (a)所示,若∠BCA = 90°,∠α = 90°,则BE CF,EF|BE-AF|(填“>”,“<”或“=”)②如图12-2-26(b)所示,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件使①中的两个结论仍然成立,并证明两个结论成立.(2)如图12-2-26(c)所示,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF 三条线段数址关系的合理猜想(不要求证明).。

全等三角形实际中的例子

全等三角形实际中的例子

全等三角形实际中的例子全等三角形是指具有相同的三个角和相等的三个边的三角形。

在实际生活中,我们可以找到很多与全等三角形相关的例子。

下面列举了十个例子来说明全等三角形的应用。

一、地图上的全等三角形在地理学中,地图上的三角形可以用来测量地球上的距离和角度。

当我们在地图上绘制三角形时,可以使用全等三角形来测量无法直接测量的距离和角度。

二、建筑物的设计在建筑设计中,全等三角形经常被用来保持建筑物的对称性和比例。

例如,在设计一座大型建筑物时,可以使用全等三角形来确定建筑物的比例和比例关系,从而保持建筑物的整体美观和稳定性。

三、裁剪布料在裁剪布料时,可以使用全等三角形来确保裁剪的布料均匀且正确。

通过使用全等三角形的性质,可以将布料正确地对齐,并确保裁剪的布料具有相同的形状和大小。

四、航海导航在航海导航中,全等三角形可以用来测量船只的位置和航向。

通过测量观测到的角度和距离,可以绘制全等三角形来确定船只的位置和目标位置的距离。

五、地面测量在土地测量中,全等三角形可以用来测量地面的高度和距离。

通过观测到的角度和已知的距离,可以绘制全等三角形来计算地面的高度和距离。

六、照相机的焦距调节在摄影中,照相机的焦距调节可以使用全等三角形来确定。

通过观察到的物体大小和距离,可以绘制全等三角形来计算出焦距的调节量。

七、地图的放大和缩小在地图制作中,全等三角形可以用来放大或缩小地图的比例。

通过观察到的角度和距离,可以绘制全等三角形来确定地图的比例尺。

八、建筑物的测量和绘制在建筑测量和绘制中,全等三角形可以用来测量建筑物的高度和距离。

通过观察到的角度和已知的距离,可以绘制全等三角形来计算建筑物的高度和距离。

九、地质勘探在地质勘探中,全等三角形可以用来确定地下的岩层和地质结构。

通过测量地面上的角度和距离,可以绘制全等三角形来计算地下的岩层和地质结构的位置和形状。

十、航空导航在航空导航中,全等三角形可以用来确定飞机的位置和航向。

通过测量观测到的角度和距离,可以绘制全等三角形来计算飞机的位置和目标位置的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲全等三角形及其应用
【知识精读】
1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;
4. 寻找对应元素的方法
(1)根据对应顶点找
如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找
全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

翻折
如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;
旋转
如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;
平移
如图(3),DEF≌ACB,DEF可以看成是由ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:
(1)边角边公理、角边角公理、边边边公理、斜边直角边公理
(2)推论:角角边定理
6. 注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

【分类解析】全等三角形知识的应用
(1)证明线段(或角)相等
例1:如图,已知AD=AE,AB=AC.求证:BF=FC
(2)证明线段平行
例2:已知:如图,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,AF=CE.求证:AB∥CD
D
C
B A
E F
(3)证明线段的倍半关系,可利用加倍法或折半法将问题转化为证明两条线段相等例3:如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,取AB的中点E,连接CD和CE. 求证:CD=2CE
(4)证明线段相互垂直
例4:已知:如图,A、D、B三点在同一条直线上,ΔADC、ΔBDO为等腰三角形,AO、BC的大小关系和位置关系分别如何?证明你的结论。

C
B
A
O
E
D
5、中考点拨:
例1.如图,在△ABC中,AB=AC,E是AB的中点,以点E为圆心,EB为半径画弧,交BC 于点D,连结ED,并延长ED到点F,使DF=DE,连结FC.
求证:∠F=∠A.
例2 如图,已知△ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=BD,连接CE、DE.求证:EC=ED
B
C D
E
F
A
题型展示:
例1 如图,△ABC中,∠C=2∠B,∠1=∠2。

求证:AB=AC+CD.
【实战模拟】
1. 下列判断正确的是()
(A)有两边和其中一边的对角对应相等的两个三角形全等
(B)有两边对应相等,且有一角为30°的两个等腰三角形全等
(C)有一角和一边对应相等的两个直角三角形全等
(D)有两角和一边对应相等的两个三角形全等
2. 已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且AO平分∠BAC.求证:OB=OC.
3. 如图,已知C 为线段AB 上的一点,ACM 和CBN 都是等边三角形,AN 和CM 相交于F 点,BM 和CN 交于E 点。

求证:CEF 是等边三角形。

A
B
C
M
N
E F
1
2
4.如图,在△ABC 中,AD 为BC 边上的中线.求证:AD<1
2 (AB+AC)
5. 如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .
N
M
E F
A
C
B
A
例6 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

(1) 当MDN ∠绕点D 转动时,求证DE=DF 。

(2) 若AB=2,求四边形DECF 的面积。

例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。

求证:
AB AC PB PC ->-。

相关文档
最新文档