一元二次方程增长率问题专题训练
用一元二次方程解决增长率问题含答案
![用一元二次方程解决增长率问题含答案](https://img.taocdn.com/s3/m/f1ee86d8541810a6f524ccbff121dd36a22dc442.png)
用一元二次方程解决增长率问题含答案1.解决增长率问题的一元二次方程1.1 平均变化率问题安徽中考题目:一种药品原价每盒25元,经过两次降价后每盒16元。
设两次降价的百分率都为x,则x满足(D)16(1+2x)=25.阳泉市平定县月考题目:共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆。
设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为(A)1000(1+x)2=1000+440.巴中中考题目:巴中市某楼盘准备以每平方米5000元的均价对外销售,由于有关部门关于房地产的新政策出台后,部分购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4050元的均价开盘销售。
若两次下调的百分率相同,求平均每次下调的百分率。
解:设平均每次下调的百分率为x,根据题意,得5000(1-x)2=4050.解得x=10%。
广东中考题目:某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元。
求3月份到5月份营业额的月平均增长率。
解:设3月份到5月份营业额的月平均增长率为x,根据题意,得400×(1+10%)(1+x)2=633.6.解得x=20%。
1.2 市场经济问题泰安中考题目:某种花卉每盆的盈利与每盆的株数有一定的关系。
每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元。
要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是(A)(3+x)(4-0.5x)=15.达州中考题目:新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每售出1件,价格就下降0.5元。
若该童装原价为10元/件,则在售完全部存货后,该童装的平均售价为(A) 9.5元/件。
为了迎接“六一”儿童节,商场决定采取适当的降价措施,每件童装盈利40元。
一元二次方程增长率应用题
![一元二次方程增长率应用题](https://img.taocdn.com/s3/m/ef69a352bb1aa8114431b90d6c85ec3a86c28b4a.png)
一元二次方程增长率应用题一、增长率问题的基本公式1. 若初始量为a,平均增长率为x,增长n次后的量为b,则b = a(1 + x)^n。
2. 若初始量为a,平均降低率为x,降低n次后的量为b,则b=a(1 - x)^n。
二、例题解析(一)正向增长率问题例1:某工厂去年1月份的产值为100万元,由于受市场经济的影响,2、3月份的产值逐月下降,平均每月下降率为x。
(1)写出3月份产值y(万元)关于x的函数关系式;(2)如果3月份产值为81万元,求x的值。
解析:1. (1)1月份产值为100万元,2月份产值是在1月份产值基础上下降x,则2月份产值为100(1 - x)万元。
3月份产值是在2月份产值基础上又下降x,所以3月份产值y = 100(1 - x)(1 - x)=100(1 - x)^2。
2. (2)已知3月份产值为81万元,即y = 81,那么100(1 - x)^2=81。
- 首先将方程两边同时除以100得到(1 - x)^2=(81)/(100)。
- 然后开平方可得1 - x=±(9)/(10)。
- 当1 - x=(9)/(10)时,x = 1-(9)/(10)=(1)/(10)=0.1 = 10%;- 当1 - x=-(9)/(10)时,x = 1+(9)/(10)=1.9(增长率不能大于1,舍去)。
(二)连续两年增长率问题例2:某公司前年缴税40万元,今年缴税48.4万元。
该公司缴税的年平均增长率为多少?解析:设该公司缴税的年平均增长率为x。
1. 前年缴税40万元,去年缴税是在前年基础上增长x,则去年缴税40(1 + x)万元。
2. 今年缴税是在去年基础上又增长x,所以今年缴税40(1 + x)(1 + x)=40(1 + x)^2万元。
3. 已知今年缴税48.4万元,则40(1 + x)^2=48.4。
- 方程两边同时除以40得(1 + x)^2=1.21。
- 开平方得1 + x=±1.1。
一元二次方程实际问题1(增长率)
![一元二次方程实际问题1(增长率)](https://img.taocdn.com/s3/m/f20bb67e25c52cc58bd6be88.png)
若平均增长(或降低)百分率为x, 增长(或降低)前的是基数量a, 增长(或降低)n次后的量是b, 则它们的数量关系可表示为
n
a (1 x) b
其中增长取+,降低取-
合作探究一
1.已知小明和小华今年二月份的实心球测试成绩分别是5米 和4米,四月份的实心球测试成绩分别为7.2米和4.84米。 问小明和小华谁的成绩的月平均增长率高?
解:设小明每个月成绩的平均增长率为x
5(1+x)2=7.2
解这个方程得:(1+x)2=1.44 1+x=±1.2 X1=0.2=20% x2=-2.2(不合题意,舍去) X= 20% ∴小明成绩的月平均增长率为20%
小华成绩的月平均增长率怎样计算呢?计算后比较
2.某电脑公司2008年的各项经营中,1月份 的营业额为2万元,如果平均每月营业额的 增长率相同设为x
A. 200(1+x)2=1000 B. 200+200×2x=1000 C.200+200×3x=1000 D. 200+200(1+x)+ 200(1+x)2=1000
D
4.青山村种的水稻2001年平均每 公顷产7200kg,2003年平均每公 顷产8450kg,求水稻每公顷产量的 年平均增长率.
3、某型号的手机连续两次降价,若两次 降价的百分率都为x,手机原来售价1285, 则: 第一次降价后,手机的售价为 ( ) 元; 第二次降价后手机的售价为 1285(1-x) ( ) 元(填含x的式子)
1285(1-x)2
4.两年前生产 1吨甲种药品的成本是3600元,
随着生产技术的进步,现在生产1吨甲种药品 的成本是2500元,甲种药品成本的年平均下 降率是多少?
一元二次方程实际问题(增长率)
![一元二次方程实际问题(增长率)](https://img.taocdn.com/s3/m/7f09b9ecaa00b52acfc7caf4.png)
由于升价的百分率不可能是负数,所以x2=-2.1不合题意,舍去
答:每次升价的百分率为10%.
8.小红的妈妈前年存了5000元一年期的定期储 蓄,到期后自动转存.今年到期扣除利息税(利 息税为利息的20%),共取得5145元.求这种储 蓄的年利率.(精确到0.1%) 9.市第四中学初三年级初一开学时就参加课程 改革试验,重视学生能力培养 . 初一阶段就有 48人在市级以上各项活动中得奖,之后逐年增 加,到三年级结束共有 183人次在市级以上得 奖.求这两年中得奖人次的平均年增长率.
2 2 ( 1 x ) 2 ( 1 x ) 9 . 5 则可列方程为 .
2
3.某城区绿地面积不断增加,2011年底的绿地面积为60 公顷,为满足城市发展的需要,计划到2013年底使城区 绿地面积达到72.6公顷,试求2012年,2013年两年绿地 面积的年平均增长率。
解:设2012年,2013年两年绿地面积的年平均增长率为x,根据题意,得 60 (1+x)2=72.6 . (1+x)2=1.21. ∴1+x=±1.1. ∴ x1 = 0.1=10%, x2 =-2.1(不合题意,舍去) 答: 2012年,2013年两年绿地面积的年平均增长率为10%.
n
a (1 x ) b
其中增长取+,降低取-
两年前生产 1吨甲种药品的成本是5000元, 探究 : 随着生产技术的进步,现在生产 1吨甲种药品 的成本是3000元,甲种药品成本的年平均下 降率是多少? 如果:设甲种药品成本的平均下降率为x ,填 表
一年前 两年前 甲 成本(吨/ 成本(吨/元 ) 种 元) 药 (基数量) (第一次下 降) 品 现在 成本(吨/元 ) (第二次下 降)
2、注意: (1)1与x的位置不要调换,增长取“+”, 下降取“-” (2)解这类问题列出的方程一般 用直接开平方法,注意验根,看是否 符合实际意义。
九年级一元二次方程应用题专题训练之增长率问题(正负增长率,在校生人数变化,绿化中的负增长率)
![九年级一元二次方程应用题专题训练之增长率问题(正负增长率,在校生人数变化,绿化中的负增长率)](https://img.taocdn.com/s3/m/c498c93cf111f18583d05a28.png)
应用题专题训练之增长率问题【例】1.如果人民币一年定期储蓄的年利率是x,一年到期后,银行将本金a元和利息自动按一年定期储蓄转存,到期支取时,银行将扣除利息的20%作为利息税.请你写出两年后支付时的本息和y(元)与年利率x的函数表达式。
【例】2.2009年中考题目22.数量关系:(上月的价格一本月的价格)÷上月的价格=本月下降的百分数(本月的价格一上月的价格)÷上月的价格=本月增长的百分数上月的价格一上月的价格×本月价格下降的百分数=本月的价格22.【实际背景】设0000W 月的5克肉价格月的5克玉米价格 当猪当.如果当月W<6,则下个月...要采取措施防止“猪贱伤农”.今年2月~5月玉米、猪肉价格统计表【问题解决】(1)若今年3月的猪肉价格比上月下降的百分数与5月的猪肉价格比上月下降的百分数相等,求3月的猪肉价格m;(2)若今年6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测7月时是否要采取措施防止“猪贱伤农”;(3)若今年6月及以后月份,每月玉米价格增长率是当月猪肉价格增长率的2倍,而每月的猪肉价格增长率都为a,则到7月时只用5.5元就可以买到500克猪肉和500克玉米.请你预测8月时是否要采取措施防止“猪贱伤农”.(10分)【例】3.“00后”,是指2000年1月1日00时至2009年12月31日24时出生的最新一代中国公民,有时泛指2000年以后出生的所有可爱的中国公民点军一中2012年度初开始招收第一批“00后”学生报名七年级,同时八年级报名人数650人,占全校报名人数的32.5%人,八年级报名人数比九年级报名人数少100人。
(1)求2012年第一批“00后”新生报名人数。
(2)如果2012年、2013年、2014年每年度初的新生报名人数不变,在2013年初八年级学生(“00后”的学生)、九年级学生(“90后”学生)的报名人数比他们在2012年初的所在年级的报名人数增长了一个相同的百分数x;预计在2014年初八年级学生(第二批“00后”的学生)、九年级学生(第一批“00后”学生)的报名人数比他们在2013年初的所在年级的报名人数都增长了一个相同的百分数2x,从而使全校报名总人数比2012年度初相比较同比增长5.6%(同比增长率,一般是指和2012年同期相比较的增长率)。
列一元二次方程解有关增长率问题专题训练
![列一元二次方程解有关增长率问题专题训练](https://img.taocdn.com/s3/m/78bd339f6bec0975f565e20f.png)
_
一
为—
—Hale Waihona Puke . 1‘ .
2 . 一 商 店把 货物 按标 价 的九 折 出售 ,仍 可 获
4 。 某人将 2 0 ( 0元人 民币按・年定期存人银
利2 0 %. 若该货物的进价为 2 1 元, 则每件
的标 价为 (
A. 2 7 . 7 2元
行, 到期 后 吏取 1 0 0 0 元用于购物, 剩 的
油 1 3 2 k g ,其 中花 生 出油 率 的增 长率 是 亩
1
( 4 ) ( + 1 ) 2 = 2 ( 2 x + 1 ) .
产 量 的 增 长 率 的 ÷, 则 新品 种
二
量
的增 长率 为 (
A. 2 0 %
,
) .
、
c . i 5 0 绶 { l 2 9 %
( 1 ) ( 一 6 ) = 2 ( 一 8 ) ;
2 . 某超市1 月份的营业额为2 0 0 万元 ! : § 第一 季度的总营业额共 1 0 0 0 万元 Ⅱ 果平均每月
增长率为 , 则 由题意列方程应为(
A . 2 0 0 ( 1 慨) 。 = 1 0 0 0
天拆迁 了 l 4 4 0 m 2 .
( 1 ) 求该 工 程 队第 一天 拆迁 的 面积 .
( 2 ) 若该 工 程 队第 二 天 、 第 三 天 每天 的拆 迁
面积 比前一 天 增 加 的百分 数 相 同 . 求 这 个 百 分数 . .
9 . 某 农 场 的 粮 食 产 量 在 两 年 内从 6 0 0 0万 斤
: B . 3 0 %
惑 巩 固提高( 3 0分钟)
【精排版】【专题训练】 一元二次方程的应用-1-增长率问题【含答案】【含解析】
![【精排版】【专题训练】 一元二次方程的应用-1-增长率问题【含答案】【含解析】](https://img.taocdn.com/s3/m/d88504b049649b6648d74765.png)
专题:一元二次方程的应用一、 增长率问题1. 我市某楼盘准备以每平方10000元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方8100元的均价开盘销售,则平均每次下调的百分率是( )A .8%B .9%C .10%D .11%2. 某服装原价为300元,连续两次涨价%a 后,售价为363元,则a 的值为( )A .5B .10C .15D .203. 与去年同期相比我国石油进口量增长了%a ,而单价增长了%2a ,总费用增长了15.5%,则(a ) A .5B .10C .15D .20 4. 一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的( )A .10%B .9.5%C .9%D .8.5%5. 某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为( )A .10%B .15%C .20%D .25%一元二次方程的应用——答案一、 增长率问题1. 我市某楼盘准备以每平方10000元的均价对外销售由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方8100元的均价开盘销售,则平均每次下调的百分率是( )A .8%B .9%C .10%D .11%【分析】设平均每次下调的百分率是x ,根据该楼盘的原均价及经过两次调价后的价格,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【解答】解:设平均每次下调的百分率是x ,依题意,得:210000(1)8100x -=,解得:10.110%x ==,2 1.9x =(舍去).故选:C .【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2. 某服装原价为300元,连续两次涨价%a 后,售价为363元,则a 的值为( )A .5B .10C .15D .20【分析】根据该服装的原价及经过两次涨价后的价格,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【解答】解:依题意,得:2300(1%)363a +=,解得:110a =,2210a =-(舍去).故选:B .【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.3. 与去年同期相比我国石油进口量增长了%a ,而单价增长了%2a ,总费用增长了15.5%,则(a = ) A .5 B .10 C .15 D .20【分析】设去年的石油进口量是“x ”、单价是y ,则今年我国石油进口量是(1%)a x +,单价是(1%)2a y +.根据“总费用增长了15.5%”列出方程并解答.【解答】解:设去年的石油进口量是“x ”、单价是y ,则今年我国石油进口量是(1%)a x +,单价是(1%)2a y +, 由题意,知(1%)(1%)(115.5%)2a a x y xy ++=+ 解得10a =(舍去负值)故选:B .【点评】考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.4. 一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的( )A .10%B .9.5%C .9%D .8.5%【分析】设平均每次降低成本的x ,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设平均每次降低成本的x ,根据题意得:210001000(1)190x --=,解得:10.110%x ==,2 1.9x =(舍去),则平均每次降低成本的10%,故选:A .【点评】此题考查了一元二次方程的应用,弄清题意是解本题的关键.5. 某商品经过连续两次降价,销售单价由原来的125元降到80元,则两次降价的平均百分率为( )A .10%B .15%C .20%D .25%【分析】解答此题利用的数量关系是:商品原来价格(1⨯-每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.【解答】解:设这种商品平均每次降价的百分率为x ,根据题意列方程得,2125(1)80x -=,解得10.220%x ==,2 1.8x =-(不合题意,舍去);答:平均每次降价的百分率是20%.故选:C .【点评】本题考查了一元二次方程的应用,此题列方程得依据是:商品原来价格(1⨯-每次降价的百分率)2=现在价格.。
增长率问题一元二次方程例题
![增长率问题一元二次方程例题](https://img.taocdn.com/s3/m/966de4a6fbb069dc5022aaea998fcc22bcd1430e.png)
增长率问题一元二次方程例题大家好!今天我们来聊聊增长率问题,这个话题可能听上去有点严肃,但别担心,我们会用简单的例子和直白的语言,把它讲得清清楚楚。
还记得数学课上那些让人头疼的方程吗?没错,今天我们就要用一元二次方程来解决实际问题,一起来看看怎么搞定这些数学难题吧!1. 增长率的概念1.1 增长率是什么?首先,我们得搞清楚“增长率”到底是什么。
简单来说,增长率就是一个量在一段时间内增加的速度。
比如说,你的口袋里有100块钱,你在一个月内又挣了20块钱,那么这20块钱就是你在这个月里的“增长”,增长率就是20块钱占原来100块钱的比例。
听起来是不是还蛮简单的?1.2 怎么计算增长率?增长率的计算公式是:[ text{增长率} = frac{text{新增量}}{text{原有量}} times 100% ]。
比如,你的存款从1000块钱增加到1200块钱,那么增长率就是:[ frac{1200 1000}{1000} times 100% = 20% ] 。
所以,你的存款增长了20%。
2. 一元二次方程介绍2.1 什么是一元二次方程?一元二次方程是指方程中含有一个未知数的二次方程。
比如说,方程 [ ax^2 + bx+ c = 0 ] 就是一个典型的一元二次方程,其中 ( x ) 是未知数,( a )、( b ) 和 ( c ) 是常数。
乍一看,可能觉得这个方程有点复杂,不过别担心,我们会用实际问题来拆解它。
2.2 一元二次方程怎么解?解一元二次方程有几种方法,比如因式分解法、配方法和求根公式法。
其中,求根公式法最为常见。
它的公式是这样的:[ x = frac{b pm sqrt{b^2 4ac}}{2a} ] 听上去有点拗口,但实际上,代入数值后,我们就可以找到方程的解了。
3. 实际应用举例3.1 增长率问题与方程的结合好啦,现在我们来看看一个实际应用的例子,看看增长率问题如何和一元二次方程结合起来解决。
(完整版)一元二次方程应用题经典题型汇总含答案
![(完整版)一元二次方程应用题经典题型汇总含答案](https://img.taocdn.com/s3/m/57ac677acc22bcd127ff0c39.png)
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
一元二次方程应用题-增长率
![一元二次方程应用题-增长率](https://img.taocdn.com/s3/m/97ac29912dc58bd63186bceb19e8b8f67d1cef48.png)
实验器材投资上的平均增长率是x,则可列方程
为
.
开启 智慧
某电冰箱厂每个月的产量都比上个月增长的百分数相同 。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月 份多生产了12000台,求该厂今年产量的月平均增长率为 多少?
解 :设该厂今年产量的月平均增长率为x,根据题意,得
5(1 x)2 51 x 1.2.
小结
(1)增长率问题: 平均增长率公式为a(1+x)n=b(a为原来数,x为
平均增长率,n为增长次数,b为增长后的 量.) (2)降低率问题: 平均降低率公式为a(1-x)n=b(a为原来数,x 为平均降低率,n为降低次数,b为降低后 的量.)
• 达标检测
• 1、恒利商厦九月份的销售额为200万元,十月份的销售额 下降了20%,商厦从十一月份起加强管理,改善经营,使 销售额稳步上升,十二月份的销售额达到了193.6万元,求 这两个月的平均增长率.
开启 智慧
2.某公司计划经过两年把某种商品的生产成本降低 19%,那么平均每年需降低百分之几?
解 :设每年平均需降低的百分数为x,根据题意,得
(1 x)2 1 19%.
解这个方程 : (1 x)2 0.81, (1 x) 0.9, x 1 0.9,
x1 1 0.9 10%; x2 1 0.9(不 合 题 意, 舍 去). 答 : 每 年 平 均 需 降 低 的 百 分 数 为10% .
整理得 : 25x2 25x 6 0.
解得 :
x 25 1225 5 7 ,
50
10
x1
5 10
7
0.2
20%;
x2
5 10
7
1.2
0(不合题意, 舍去).
[数学]-专题04 增长率问题(一元二次方程的应用)(原版)
![[数学]-专题04 增长率问题(一元二次方程的应用)(原版)](https://img.taocdn.com/s3/m/9441375c0a4e767f5acfa1c7aa00b52acfc79c07.png)
2022-2023学年浙教版八年级数学下册精选压轴题培优卷专题04 增长率问题(一元二次方程的应用)姓名:___________班级:___________考号:___________一、选择题(每题2分,共20分) 1.(本题2分)(2023春·八年级课时练习)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x ,那么x 应满足的方程是( )A . 40%10%2x += B .()()()2100140%110%1x +++= C .()()()2140%110%1x +++=D .()()()210040%10010%1001x +++= 2.(本题2分)(2022春·安徽合肥·八年级校考阶段练习)共享单车的投放,方便了市民的出行.某公司一期投放A 型号的单车,二期又投放了B 型号的单车.已知B 型号的单车的单价比A 型号的单价提高的百分率是B 型号的投放数量比A 型号投放数量的增长率的2倍,这样二期总投入是一期总投入的2倍,设B 型号的投放数量比A 型号投放数量的增长率为x ,则下列方程正确的是( )A .132x +=B .(1)(12)2x x ++=C .(1)(12)3x x ++=D .(1)(1)22x x ++= 3.(本题2分)(2021秋·上海·八年级期中)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A .2200(1)1000x +=B .200+200×2x =1000C .200+200×3x =1000D .22001(1)(1)1000x x ⎡⎤++++=⎣⎦4.(本题2分)(2022春·浙江温州·八年级统考期末)温州某镇居民人均可支配收入逐年增长,从2019年的5.2万元增长到2021年的6万元.设这两年该镇居民人均可支配收入的年平均增长率为x ,根据题意可以列方程为( )A .()5.2126x +=B .()25.216x +=C .()5.216x +=D .()25.216x +=5.(本题2分)(2022春·浙江金华·八年级校联考期中)电影《长津湖》讲述了一段波澜壮阔的历史,一上映就获得全国人民的追捧,全国第一天票房约3亿元,假设以后每天票房按相同的增长率增长,第三天的票房收入约4亿元,若把增长率设为x ,则下列方程正确的是( )A .(1+x )2=4B .3(1+x )2=4C .3(1+x )3=4D .(1+x )3=4 6.(本题2分)(2023春·八年级课时练习)在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a 分钟,经过去年下半年和今年上半年两次整改后,现在平均每周作业时长比去年上半年减少了70%,设每半年平均每周作业时长的下降率为x ,则可列方程为( )A .()2170%a x a -=B .()2170%a x a += C .()2130%a x a -= D .()230%1x a a += 7.(本题2分)(2021春·八年级课时练习)某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是A .12%7%%x +=B .()()()112%17%21%x ++=+C .12%7%2%x +=D .()()()2112%17%1%x ++=+ 8.(本题2分)(2020春·山东威海·八年级统考期中)今年“十一”长假某湿地公园迎来旅游高峰,第一天的游客人数是1.2万人,第三天的游客人数为2.3万人,假设每天游客增加的百分率相同且设为x ,则根据题意可列方程为( )A .2.3 (1+x )2=1.2B .1.2(1+x )2=2.3C .1.2(1﹣x )2=2.3D .1.2+1.2(1+x )+1.2(1+x )2=2.39.(本题2分)(2021春·广东深圳·八年级深圳外国语学校校考期末)若国家对某种药品分两次降价,该药品的原价是25元,降价后的价格是16元,平均每次降价的百分率均为x ,则可列方程为( )A .225(1)16x -=B .225(1)16x +=C .216(1)25x -=D .216(1)25x +=10.(本题2分)(2021春·广西南宁·八年级校考期中)由于新冠疫情影响,某口罩加工厂改进技术,扩大生产,从10月份开始,平均每个月生产量的增长率为50%,已知第四季度的生产量为2375万个,设10月份口罩的生产量为x 万个,则可列方程( )A .2(150%)2375x +=B .2(150%)2375x x ++=C .2(150%)(150%)2375x x x ++++=D .2(150%)(150%)2375x x +++=二、填空题(每题2分,共18分)11.(本题2分)(2023春·浙江·八年级专题练习)为了加快发展新能源和清洁能源,助力实现“双碳”目标,大力发展高效光伏发电关键零部件制造.青岛某工厂今年第一季度生产某种零件的成本是20万元,由于技术升级改进,生产成本逐季度下降,第三季度的生产成本为16.2万元,设该公司每个季度的下降率都相同.则该公司每个季度的下降率是__________.12.(本题2分)(2022秋·上海长宁·八年级上海市第三女子初级中学校考期中)某件商品在9月份的价格为100元,经过两个月后的价格为121元,如果这件商品价格每月的增长率相同,则这个增长率为______.13.(本题2分)(2022秋·上海静安·八年级上海市市西中学校考期中)某工程队承包了一项污水处理工程,原计划每天铺设污水管道1250米,因准备工作不充分,第一天铺设了原计划的80%,从第二天开始,该工程队加快了铺设速度,第三天铺设了1440米.若该工程队第二天、第三天每天的铺设长度比前一天增长的百分数相同,设这个百分数为x,列出方程____________.14.(本题2分)(2022春·辽宁大连·八年级统考期末)2022年北京冬奥会吉祥物“冰墩墩”深受大家的喜爱.某特许零售店冰墩墩毛绒玩具的销售日益火爆.据统计,该店2021年10月的销量为3万件,2021年12月的销量为3.63万件.求该店冰墩墩毛绒玩具销量的月平均增长率.15.(本题2分)(2022春·黑龙江哈尔滨·八年级统考期末)在“绿色低碳,节能先行”的倡导下,自行车正逐渐成为人们喜爱的交通工具,据统计,某商城4月份销售自行车100辆,6月份销售了121辆.若该商城2022年4-6月的自行车销量的月平均增长率相同,则商城自行车销量的月平均增长率为________.16.(本题2分)(2022春·黑龙江哈尔滨·八年级统考期末)某公司3月份的利润为200万元,5月份的利润为242万元,则平均每月利润的增长率是______.17.(本题2分)(2023春·八年级课时练习)某网络学习平台2019年的新注册用户数为100万,2021年x>),则x=_________(用百分数表的新注册用户数为169万,设新注册用户数的年平均增长率为x(0示).18.(本题2分)(2021春·上海松江·八年级校考期中)一辆汽车,新车购买价18万元,第一年的折旧率为20%,以后每年的年折旧率为x,如果该车在购买后第三年末的折旧价值为12.25万元,求年折旧率x 的值.那么可以列出关于x的方程式为___.(只列方程,不求解)19.(本题2分)(2022春·安徽滁州·八年级校联考期末)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对原有的小麦品种进行改良种植研究.在保持去年种植面积不变的情况下,今年预计小麦平均亩产量将在去年的基础上增加a%,因为优化了品种,预计每千克售价将在去年的基础上上涨2a%,全部售出后预计总收入将增加68%,则a的值为 _____.三、解答题(共62分)20.(本题6分)(2021春·浙江杭州·八年级杭州英特外国语学校校考期中)为助力脱贫攻坚,某村在“农村淘宝网店”上销售该村优质农产品,该网店于今年一月底收购一批农产品,二月份销售192袋,三、四月该商品十分畅销,销售量持续走高,在售价不变的基础上,四月份的销售量达到300袋.(1)求三、四这两个月销售量的月平均增长率.(2)该网店五月降价促销,经调查发现,若该农产品每袋降价4元,销售量可增加20袋,当农产品每袋降价多少元时,这种农产品在五月份可获利3250元?(若农产品每袋进价25元,原售价为每袋40元)21.(本题6分)(2023春·八年级课时练习)新能源汽车节能、环保,越来越受消费者喜爱,我国新能源汽车近几年出口量逐年增加,2020年出口量为20万台,2022年出口量增加到45万台.(1)求2020年到2022年新能源汽车出口量的年平均增长率是多少?(2)按照这个增长速度,预计2023年我国新能源汽车出口量为多少?22.(本题6分)(2023春·八年级课时练习)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?23.(本题6分)(2023春·八年级课时练习)乌克兰危机发生之后,外交战线按照党中央的部署紧急行动,在战火粉飞中已将5200多名同胞安全从乌克兰撤离,电影《万里归途》正是“外交为民”的真实写照,如表是该影片票房的部分数据,(注:票房是指截止发布日期的所有售票累计收入)影片《万里归途》的部分统计数据(1)平均每次累计票房增长的百分率是多少?(2)在(1)的条件下,若票价每张40元,求10月11日卖出多少张电影票24.(本题6分)(2022春·浙江绍兴·八年级校联考期中)某玩具销售商试销某一品种的玩具(成本为每个30元),以每个40元销售时,平均每月可销售100个.现为了扩大销售,销售商决定降价销售,在原来8月份平均销售量的基础上,经过市场调查,10月份调整价格后,月销售额达到5760元.已知该玩具价格每下降1元,月销售量将增加10个.(1)求8月份到10月份销售额的月平均增长率.(2)求10月份该玩具的销售量.25.(本题6分)(2022秋·上海奉贤·八年级校联考期中)今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?26.(本题6分)(2022春·黑龙江哈尔滨·八年级统考期末)“人与自然和谐共生”哈尔滨湿地节系列活动中,某景点接待游客逐渐增多,6月份第一周接待游客200人,第三周接待游客288人,若该景点接待游客数量的周平均增长率相同.(1)求该景点在6月份的第二周接待游客多少人?(2)该景点第四周接待游客数量是第二周接待游客数量的1.8倍,平均每位游客购买1件旅游纪念品.该景点只销售A,B两种旅游纪念品,A种纪念品每件利润5元,B种纪念品每件利润8元,且售出的B种纪念品的数量不多于A种纪念品的3倍,设第四周该景点售出A种旅游纪念品a件,获得的总利润为W元,求W与a的函数关系式,并求出获得的最大利润.27.(本题6分)(2021春·四川成都·八年级统考期末)由于医疗物资极度匮乏,许多工厂都积极宣布生产医疗物资以应对疫情.某工厂及时引进了1条口罩生产线生产口罩,开工第一天生产300万个,第三天生产432万个,若每天生产口罩的个数增长的百分率相同.请解答下列问题.(1)每天增长的百分率是多少?(2)经调查发现,一条生产线最大产能是900万个/天,如果每增加1条生产线,每条生产线的最大产能将减少30万个/天.①现该厂要保证每天生产口罩3900万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能通过增加生产线,使得该厂每天生产口罩9000万个?若能,应该增加几条生产线?若不能,请说明理由.28.(本题6分)(2019秋·八年级课时练习)某人将10000元存入银行,一年后取出5000元,再将余下的本利和再存入银行,但此时银行的年利率已下降3个百分点,且到期后还要缴20%的利息税·第二年到期他取出全部存款共5588元,求银行原来的年利率.29.(本题8分)(2017春·八年级单元测试)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多地进入普通家庭.据某市交通部门统计,2008年底该市汽车拥有量为75万辆,而截止到2010年底,该市的汽车拥有量已达108万辆.(1)求2008年底至2010年底该市汽车拥有量的年平均增长率;(2)为了保护城市环境,缓解汽车拥堵状况,该市交通部门拟控制汽车总量,要求到2012年底全市汽车拥有量不超过125.48万辆;另据统计,从2011年初起,该市此后每年报废的汽车数量是上年底汽车拥有量的10%.假设每年新增汽车数量相同,请你估算出该市从2011年初起每年新增汽车数量最多不超过多少万辆.。
一元二次方程的应用(增长率问题经典版)
![一元二次方程的应用(增长率问题经典版)](https://img.taocdn.com/s3/m/08744535f11dc281e53a580216fc700aba685240.png)
你能快速写出吗?
(1 x)n
探究
有一人患了流感,经过两轮 传染后共有121人患了流感,每轮传
染中平均一个人传染了几个人?
思考:如果按照这样的传染速度,三轮传染后有 多少人患流感?n轮后呢?
(1 x)n
你能快速 写出吗?
2003年我国政府工作报告指出:为解 决农民负担过重问题,在近两年的税 费政策改革中,我国政府采取了一系 列政策措施,2001年中央财政用于支 持这项改革试点的资金约为180亿元, 预计到2003年将到达304.2亿元,求 2001年到2003年中央财政每年投入 支持这项改革资金的平均增长率?
价10﹪,降价后每台售价为1000
元,问该厂的电视机每台原价应为
()
B A 0.92×1000元
B 1000元
0.92
C 1000元 1.12
D 1.12×1000元
2.某种药剂原售价为4元, 经过两次降价, 现 在每瓶售价为2.56元,问平均每次降价百分 之几? 3.某公司计划经过两年把某种商品的生产成本降低19%,那么平均每 年需降低百分之几?
D (1+x)+2(1+x)2=4
小结
平均增长(降低)率公式
a(1x)2 b
二. 注意: 1. 1与x的位置不要调换 2. 解这类问题列出的方程一般 ① 用 直接开平方法
演讲完毕,感谢观看
A LITTLE BREEZE
再见
乙种药品成本的年平均下降额较大.但是, 年平均下降额(元)不等同于年平均下降
率(百分数)
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成 为 5000(1-x)2 元,依题意得
21.3+实际问题与一元二次方程——增长率问题同步训练++2024—2025学年人教版数学九年级上册
![21.3+实际问题与一元二次方程——增长率问题同步训练++2024—2025学年人教版数学九年级上册](https://img.taocdn.com/s3/m/00366c4d15791711cc7931b765ce05087632752e.png)
人教版九年级上册数学21.3 实际问题与一元二次方程——增长率问题同步训练一、单选题1.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( )A .()()260160152x x -+-=B .()601252x -=C .()260152x -=D .()260152x -=2.某品牌服装原价为173元,连续两次降价x %后售价为127元,下面所列方程中正确的是 A .173(1+x %)2=127B .173(1﹣2x %)2=127C .173(1﹣x %)2=127D .127(1+x %)2=173 3.2021年9月份,全国新冠疫苗当月接种量约为1.4亿剂次,11月份新冠疫苗当月接种量达到2.3亿剂次,若设平均每月的增长率为x ,则下列方程中符合题意的是( )A .1.4x 2 =2.3B .1.4(1+x 2)=2.3C .1.4(1+x )2 =2.3D .1.4(1+2x )=2.34.小颖初一时体重是30kg ,到初三时体重增加到43.2kg ,则她的体重平均每年增加的百分率为( )A .10%B .15%C .20%D .22%5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( )A .2200(1)1000x +=B .200+200×2x =100C .200+2003x =1000D .22001(1)(1)1000x x ⎡⎤++++=⎣⎦6.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x ,根据题意得方程为( )A .50(1+x )2=175B .50+50(1+x )2=175C .50(1+x )+50(1+x )2=175D .50+50(1+x )+50(1+x )2=175二、填空题1.某商品原价80元,随着成本的提高,该商品经过两次提价后,现价格为120元,如果每次提价的百分率均为x ,那么可列出方程为 _____.2.某校为落实“光盘行动”,对每天的剩饭菜进行称重,第一周的剩余量为20kg,第三周为9.8kg,设每周剩余量的平均减少率为x,则由题意可列方程_______.3.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由225元降至144元,则平均每次降价的百分率为______________.4.某注册平台三月份新注册用户为653万,五月份新注册用户为823万,设四、五两个月新注册用户每月平均增长率为x,则列出的方程是_______.5.金滩商场4月份的利润是28万元,预计6月份的利润将达到40万元,设每月利润的平均增长率为x,则根据题意所列方程是__________________.6.汽车产业的发展有效促进我国现代化建设,某汽车销售公司2009年盈利1500万元,到2011年盈利2160万元,且从2009年到2011年,每年盈利的年增产率相同.若该公司的盈利年增产率继续保持不变,预计2012年盈利________万元?三、解答题1.学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.2.某核酸自检试剂盒生产厂生产的核酸自检试剂盒1月份平均日产量为20000盒,1月底因突然爆发新冠肺炎疫情,市场对核酸自检试剂盒需求量增大,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到24200盒.(1)求核酸自检试剂盒日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?3.疫情期间居民为了减少外出,更愿意选择线上购物,某购物平台今年二月份注册用户50万人,四月份达到了72万人,假设二月份至四月份的月平均增长率为x.(1)求x的值.(2)若保持这个增长率不变,五月份注册用户能否达到85万人?为什么?4.某大型电子商场销售某种空调,每台进货价为2500元,标价为3200元.(1)若电子商场连续两次降价,每次降价的百分率相同,最后以2592元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为3000元时,平均每天能售出10台,当每台售价每降100元时,平均每天就能多售出4台,若商场要想使这种空调的销售利润平均每天达到5400元,且顾客得到优惠,则每台空调的定价应为多少元?5.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.6.某水果店标价为10元/kg的某种水果经过两次降价且两次降价的百分率都是10%,请回答下列问题:时间/天x-销量/kg 1202x储藏和损耗费用/元2-+368409x x(1)该水果经过两次降价后的价格是______元/kg ;(2)从第二次降价的第1天算起,第x 天(x 为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg ,设销售该水果第x 天(110x ≤<)的利润为368元,求x 的值.。
人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练(word、含简单答案)
![人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练(word、含简单答案)](https://img.taocdn.com/s3/m/a49e993d17fc700abb68a98271fe910ef12daeb5.png)
人教版九年级上册数学22.3二次函数与一元二次方程---增长率问题专题训练一、单选题1.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2017年该产品的产量为y 吨,则y 关于x 的函数关系式为( )A .y =100(1﹣x )2B .y =100(1+x )2C .y =2100(1)x + D .y =100+100(1+x )+100(1+x )2 2.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价,设平均每次降价的百分率为x ,降价后的价格为y 元,原价为a 元,则y 与x 的函数关系为( )A .2(1)y a x =-B .2(1)y a x =-C .22(1)y a x =-D .2(1)y a x =- 3.某工厂一种产品的年产量是20件,如果每一年都比上一年的产品增加x 倍,两年后产品年产量y 与x 的函数关系是( )A .y =20(1﹣x )2B .y =20+2xC .y =20(1+x )2D .y =20+20x 2+20x 4.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a(x -1)2C .y =a(1-x)2D .y =a(l+x)2 5.你知道吗?股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )A .(1+x )2=1110B .x+2x=1110C .(1+x )2=109D .1+2x=109 6.国家决定对某药品价格分两次降价,若设平均每次降价的百分比为x ,该药品的原价为36元,降价后的价格为y 元,则y 与x 之间的函数关系为( ) A .72(1)y x =- B .36(1)y x =- C .236(1)y x =- D .236(1)y x =- 7.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++ 8.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,设该公司第二、三两个月投放单车数量的月平均增长率为x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y =a (1+x )2C .y =(1﹣x )2+aD .y =a (1﹣x )2二、填空题9.某印刷厂一月份印书50万册,如果从二月份起,每月印书量的增长率都为x ,那么三月份的印书量y (万册)与x 的函数解析式是______.10.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为(0)x x >,六月份的营业额为y 万元,那么y 关于x 的函数解式是______. 11.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.12.某学校去年对实验器材投资为2万元,预计今明两年的投资总额为y 万元,年平均增长率为 x .则y 与x 的函数解析式______________.13.某厂有一种产品现在的年产量是2万件,计划今后两年增加产量,如果每年都比上一年的产量增加x 倍,那么两年后这种产品的产量y (万件)将随计划所定的x 的值而确定,那么y 与x 之间的关系式应表示为________.14.随着国内新冠疫情逐渐好转,市场对口罩的需求量越来越少,据统计,某口罩厂6月份出货量仅为4月份的40%,设4月份到6月份口罩出厂量平均每月的下降率为x ,则可列方程为___. 15.农机厂第一个月水泵的产量为50(台),第三个月的产量y (台)与月平均增长率x 之间的关系表示为___________.16.某工厂1月份的产值是200万元,平均每月产值的增长率为(0)x x >,则该工厂第一季度的产值y 关于x 的函数解析式为_________.三、解答题17.某商场将一种每件成本价为10元的商品连续加价两次后,以每件24元作为定价售出.已知第二次加价的增长率比第一次加价的增长率多10%.(1)求第一次加价的增长率;(2)该商场在试销中发现,如果以定价售出,则每天可售出100个.如果销售单价每降低1元,销售量就可以增加10件.那么当销售单价为多少元时,该商场每天销售该商品获得的利润最大?最大利润是多少?18.疫情防控期间,在线教学引发手机支架畅销.某网店手机支架1月销量为256台,2月、3月销量持续走高,3月销量达到400台(售价不变).(1)求2月、3月这两个月销售量的月平均增长率;(2)手机支架进价为每台24元,售价为每台40元.调查发现:售价每降低1元,销售量增加50台.于是开展“红4月”促销活动.当售价降低多少元时,手机支架在4月的利润最大?最大利润是多少元?19.为积极响应国家“旧房改造”工程,该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?20.为积极应对人口老龄化,让老年人老有所依、老有所安。
一元二次方程应用题(2)增长率问题
![一元二次方程应用题(2)增长率问题](https://img.taocdn.com/s3/m/8cd48e54360cba1aa911da22.png)
探究二
某工厂一月份的生产零件1000个,以后
每月增长率为x,
二月份的产量是__1_0_0_0(_1_+_x_)__个。 三月份的产量是__1_0_0_0(_1_+_x_)_2__个。 四月份的产量是__1_0_0_0_(_1_+x_)_3__个。
解:设二、三月份平均每月的增长率为x,依题意得
50+50(1+x)+(1+x)2=165.5
整理得:x2+3x-0.31=0
解之得: x1 =0.1=10% x2 =-3.1(不合题意,舍去)
答:二、三月份平均每月的增长率是10% .
活学活用
3. 商店里某种商品在两个月里降价两次,现在
该商品每件的价格比两个月前下降了36%,
问平均每月降价百分之几?
解:设平均每月降价的百分数为x,商品原价为a元, 则现价为a(1-36%)元,依题意得 a(1-x)2=a(1-36%)
整理得:(1-x)2=0.64 解之得: x1 =0.2=20%
x2 =1.8(不合题意,舍去) 答:平均每月降价10% .
小结
增长率问题:a(1±x)2=b 注意:(1)找准各个量
跟踪训练
某企业所得2011年底向银行贷款200万 元用于生产某种新产品,约定2013年 底到期时一次性还本付息,两年总利 息为本金的8%,由于产销对路,两年 到期时,该企业除还清贷款的本金和 利息外,还盈余72万元,若每年的资 金增长率相同,求这个百分率。
跟踪训练
2.某厂一月份的产值为10万元,二、三 月份的总产值为70万元,设平均每月 的增长率为x,可列出方程为( B ) A.10(1-x)2=70 B.10(1+x)+10(1+x)2=70 C.10+10(1+x)+10(1+x)2=70 D.10(1+x)2=70
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程增长率问题专题训练命题人:潘五洲
一、选择题
1. 【题文】商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()
A.0.64 B.0.8 C.8 D.6.4
2. 【题文】某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为,可列方程为()
A.B.
C.D.
3. 【题文】某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()
A.144(1x) 2 =100 B.100(1x) 2 =144
C.144(1+x) 2 =100 D.100(1+x) 2 =144
4. 【题文】一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()
A.B.
C.D.
5. 【题文】某工厂由于管理水平提高,生产成本逐月下降. 原来每件产品的成本是1600元,两个月后,降至900元.如果产品成本的月平均降低率是x,那么根据题意所列方程正确的是()
A.B.
C.D.
6. 【题文】某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()
A.B.
C.D.
7. 【题文】某地区2010年投入教育经费2500万元,预计到2012年共投入8000万元.设这两年投入教育经费的年平均增长率为,则下列方程正确的是()A.2500+2500(1+x)+2500(1+x) 2 =8000
B.2500x 2 =8000
C.2500(1+x) 2 =8000
D.2500(1+x)+2500(1+x) 2 =8000
8. 【题文】某厂一月份生产某机器300台,计划二、三月份共生产980台.设二三月份每月的平均增长率为x,根据题意列出的方程是()
A.
B.
C.
D.
9. 【题文】某种商品零售价经过两次降价后的价格为降价前的,则平均每次降
价()
A.B.C.D.
10. 【题文】一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为x,则列方程为()
A.688(1+x) 2 =1299
B.1299 (1+x) 2 =688
C.688(1-x) 2 =1299
D.1299 (1-x) 2 ="688"
11. 【题文】原价为元的某商品经过两次降价后,现售价元,如果每次降价的
百分比都为,则下列各式正确的是()
A.B.C.D.
12. 【题文】某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂
八、九月份平均每月的增长率为x,那么x满足方程()
A.
B.
C.
D.
13. 【题文】某市化肥厂第一季度生产化肥100万吨,以后每季度比上一季度增产
x(增长率),前三季度共生产化肥360万吨,则下列方程正确的是()
A.100(1+x)=360
B.100(1+x) 2 =360
C.100+100(1+x)+100(1+x) 2 =360
D.100+100(1+x) 2 =360
14. 【题文】一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()
A.B.
C.D.
15. 【题文】北京奥运会的主会场“鸟巢”让人记忆深刻.据了解,在鸟巢设计的最后阶段,经过了两次优化,鸟巢的结构用钢量从5.4万吨减少到4.2万吨.若设平均每次用钢量降低的百分率为,则根据题意,可得方程()
A.
B.
C.
D.
二、填空题
16.【题文】据调查,某市2012年的房价为元/ ,预计2014年将达到
元/ ,求这两年的年平均增长率,设年平均增长率为,根据题意,所列方
程为
17. 【题文】某商品经过两次降价,每次降价的百分率相同.销售价由原来的50元降到了40.5元,则第一次降价后的价格为元.
18. 【题文】某药品经过两次降价,每瓶零售价由168元降到128元,已知两次降价的百分率相同,每次降价的百分率为x,根据题意列方程
得.
19. 【题文】某企业两年前创办时的资金为1000万元,现在已有资金1440万元.若设该企业这两年资金的年平均增长率为x,则根据题意可列方程为;
20. 【题文】某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100 元.设人均年收入的平均增长率为,则可列方
程.
21. 【题文】某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是.22. 【题文】某工厂利润两年间由45万元增加到88.2万元,工厂年利润的平均增长率为____ ___.
23. 【题文】由于国家对房屋限购,其价格原价8400元/,通过两年降价后,售价变为7200元/,设平均每年降价率为a列方程为_ _____. 24. 【题文】某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为,则满足的方程是()
A.
B.
C.
D.
三、解答题
25. 【题文】列方程(组)解应用题:
据媒体报道,2011年某市市民到郊区旅游总人数约500万人,2013年到郊区旅游总人数增长到约720万人.
(1)求这两年该市市民到郊区旅游总人数的年平均增长率.
(2)若该市到郊区旅游的总人数年平均增长率不变,请你预计2014年有多少市民到郊区旅游.
26. 【题文】某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,
每年盈利的年增长率相同.
(1)该公司2005年至2007年盈利的年增长率
(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元。