三相异步电动机及其控制电路

合集下载

三相异步电动机控制电路中互锁的定义

三相异步电动机控制电路中互锁的定义

三相异步电动机控制电路中互锁的定义篇一三相异步电动机在很多工业设备和日常生活的大型电器中都有着广泛的应用呢。

那先来说说三相异步电动机控制电路的基本构成和工作原理吧。

三相异步电动机控制电路主要有电源、接触器、继电器、熔断器、热继电器、按钮等部分组成。

电源为整个电路提供电能呀,就像人的心脏为身体供血一样重要。

接触器和继电器呢,它们就像是电路里的小管家,可以控制电路的通断。

熔断器就像一个忠诚的卫士,一旦电路中电流过大,它就会熔断,从而保护电路中的其他元件。

热继电器则是专门对电动机进行过载保护的。

按钮就是我们操作电动机启动停止等功能的小开关啦。

当按下启动按钮时,电流通过接触器的线圈,使接触器的主触点闭合,电动机就开始运转啦。

这时候电流就像一群勤劳的小蚂蚁,沿着电路的路径有序地流动,为电动机提供动力。

那互锁在这个电路里是啥呢?互锁在电路中的位置可是相当关键的哦。

互锁主要是为了防止电路出现短路等故障。

比如说在正反转控制电路中,如果没有互锁,当电动机正在正转的时候,突然按下反转按钮,那电路就会直接短路,这可就糟糕透顶了。

咱们来看看具体的电路示例是怎么实现互锁的吧。

就拿接触器来说,我们可以利用接触器的常闭触点来实现互锁。

当一个接触器得电动作时,它的常闭触点就会断开,这样就可以防止另一个接触器同时得电动作。

比如说接触器A得电,它控制电动机正转,此时它的常闭触点断开了与接触器B的电路连接,接触器B 就无法得电,也就避免了电动机同时正转和反转这种危险的情况。

互锁对于保障三相异步电动机安全、稳定运行那可是意义非凡呀。

要是没有互锁,电动机可能就会因为错误的操作或者电路故障而受到严重的损害。

就像一辆汽车没有刹车装置一样危险。

互锁就像是给电动机运行的道路上设置了一道道安全关卡,只有符合安全规则,电动机才能正常稳定地运行。

在复杂的工业生产环境中,有各种各样的设备同时运行,互锁能够确保三相异步电动机不受其他设备故障或者误操作的影响,始终保持良好的工作状态。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路;所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转;典型的三相异步电动机的点动控制电气原理图如图3-1a所示;点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成;其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止;点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源;按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转;当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转;在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行;2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头;接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用;它主要由按钮开关SB起停电动机使用、交流接触器KM用做接通和切断电动机的电源以及失压和欠压保护等、热继电器用做电动机的过载保护等组成;欠压保护:“欠压”是指线路电压低于电动机应加的额定电压;“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护;因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”即电动机接通电源但不转动的现象,以致损坏电动机;采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值一般指低于额定电压85%以下时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小;当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的;失压保护:失压保护是指电动机在正常运行中,由于外界某中原因引起突然断电时,能自动切断电动机电源;当重新供电时,保证电动机不能自行启动,避免造成设备和人身伤亡事故;采用接触器自锁控制线路,由于接触器自锁触头和主触头在电源断电时已经断开,使控制电路和主电路都不能接通;所以在电源恢复供电时,电动机就不能自行启动运转,保证了人身和设备的安全;控制原理:当按下启动按钮SB2后,电源U1相通过热继电器FR动断接点、停止按钮SB1的动断接点、启动按钮SB2动合接点及交流接触器KM的线圈接通电源V1相,使交流接触器线圈带电而动作,其主触头闭合使电动机转动;同时,交流接触器KM的常开辅助触头短接了启动按钮SB2的动合接点,保持交流接触器线圈始终处于带电状态,这就是所谓的自锁自保;与启动按钮SB2并联起自锁作用的常开辅助触头称为自锁触头或自保触头;3.三相异步电动机的正反转控制三相异步电动机接触器联锁的正反转控制的电气原理图如图3-4所示;线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制;这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序;控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路;控制原理:当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行;反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相即改变电源相序,从而达到反转目的;互锁原理:接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故;为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头;当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合;同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生;这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁或互锁;实现联锁作用的常闭触头称为联锁触头或互锁触头;4、三相异步电动机的Y—Δ起动控制1Y—Δ起动自动控制图3-5 三相异步电动机Y—Δ降压启动控制线路图三相异步电动机的Y—Δ起动自动控制如图3-5所示;主要元器件介绍:a.起动按钮SB2;手动按钮开关,可控制电动机的起动运行;b.停止按钮SB1;手动按钮开关,可控制电动机的停止运行;c.主交流接触器KM1;电动机主运行回路用接触器,起动时通过电动机起动电流,运行时通过正常运行的线电流;形连接的交流接触器KM3;用于电动机起动时作Y形连接的交流接触器,起动时通过Y形连接降压起动的线电流,起动结束后停止工作;e.Δ形连接的交流接触器KM2;用于电动机起动结束后恢复Δ形连接作正常运行的接触器,通过绕组正常运行的相电流;f.时间继电器KT;控制Y—Δ变换起动的起动过程时间电机起动时间,即电动机从起动开始到额定转速及运行正常后所需的时间;g.热继电器或电机保护器FR;热继电器主要设置有三相电动机的过负荷保护;电机保护器主要设置有三相电动机的过负荷保护、断相保护、短路保护和平横保护等;控制原理:三相异步电动机Y—Δ转换启动的控制原理大致如下:a.按下启动按钮SB2后,电源通过热继电器FR的动断接点、停止按钮SB1的动断接点、Δ形连接交流接触器KM2常闭辅助触头,接通时间继电器KT的线圈使其动作并延时开始;此时时间继电器KT虽已动作,接点应断开,但其延时接点是瞬间闭合延时断开的延时结束后断开,同时通过此KT延时接点去接通Y形连接的交流接触器KM3的线圈回路,则交流接触器KM3带电动作,其主触头去接通三相绕组,使电动机处于Y形连接的运行状态;KM3辅助常开触头闭合去接通主交流接触器KM1的线圈;b.主交流接触器KM1带电启动后,其辅助触头进行自保持功能自锁功能;而KM1的主触头闭合去接通三相交流电源,此时电动机启动过程开始;c.当时间继电器KT延时断开接点动断接点KT的时间达到或延时到电动机启动过程结束时间后,时间继电器KT接点随即断开;d.时间继电器KT接点断开后,则交流接触器KM3失电;KM3主触头切断电动机绕组的Y形连接回路;同时接触器KM3的常闭辅助触头闭合,去接通Δ形连接交流接触器KM2的线圈电源;e.当交流接触器KM2动作后,其主触头闭合,使电动机正常运行于Δ形连接状态;而KM2的常闭辅助触头断开使时间继电器KT线圈失电,并对交流接触器KM3联锁;电动机处于正常运行状态;f.启动过程结束后,电动机按Δ形连接正常运行;2Y—Δ起动手动控制图3-6 三相异步电动机Y—Δ降压启动接线图Y—Δ起动手动控制接线如图3-6所示;图中手动控制开关SA有两个位置,分别是电动机定子绕组星形和三角形连接;线路动作原理为:起动时,将开关SA置于“起动”位置,电动机定子绕组被接成星形降压起动,当电动机转速上升到一定值后,再将开关SA置于“运行”位置,使电动机定子绕组接成三角形,电动机全压运行;5. 三相异步电动机的自偶降压起动1电动机自耦降压启动自动控制接线图图3-7 电动机自耦降压起动接线图图3-7 是交流电动机自耦降压启动自动切换控制接线图,自动切换靠时间继电器完成,用时间继电器切换能可靠地完成由启动到运行的转换过程,不会造成启动时间的长短不一的情况,也不会因启动时间长造成烧毁自耦变压器事故控制过程如下:a、合上空气开关QF接通三相电源;b、按启动按钮SB2交流接触器KM1线圈通电吸合并自锁,其主触头闭合,将自耦变压器线圈接成星形,与此同时由于KM1辅助常开触点闭合,使得接触器KM2线圈通电吸合,KM2的主触头闭合由自耦变压器的低压低压抽头例如65%将三相电压的65%接入电动;c、KM1辅助常开触点闭合,使时间继电器KT线圈通电,并按已整定好的时间开始计时,当时间到达后,KT的延时常开触点闭合,使中间继电器KA线圈通电吸合并自锁;d、由于KA线圈通电,其常闭触点断开使KM1线圈断电,KM1常开触点全部释放,主触头断开,使自耦变压器线圈封星端打开;同时 KM2线圈断电,其主触头断开,切断自耦变压器电源;KA的常闭触点闭合,通过KM1已经复位的常闭触点,使KM3线圈得电吸合,KM3主触头接通电动机在全压下运行;e、KM1的常开触点断开也使时间继电器KT线圈断电,其延时闭合触点释放,也保证了在电动机启动任务完成后,使时间继电器KT可处于断电状态;f、欲停车时,可按SB1则控制回路全部断电,电动机切除电源而停转;g、电动机的过载保护由热继电器FR完成;2电动机自耦降压启动手动控制接线图3-8 电动机自耦降压起动接线图自耦变压器降压起动手动控制接线如图3—8所示,图中操作手柄有三个位置:“停止”、“起动”和“运行”;操作机构中设有机械连锁机构,它使得操作手柄未经“起动”位置就不可能扳到“运行”位置,保证了电动机必须先经过起动阶段以后才能投入运行;动作原理为:当操作手柄置于“停止”位置时,所有的动、静触点都断开,电动机定子绕组断电,停止转动;当操作手柄向上推至“起动”位置时,起动触点和中性触点同时闭合,电流经起动触点流入自耦变压器,再由自耦变压器的65%或85%抽头处输出到电动机的定子绕组,使定子绕组降压起动;随着起动的进行,当转子转速升高到接近额定转速附近时,可将操作手柄扳到“运行”位置,此时起动工作结束,电动机定子绕组得到电网额定电压,电动机全压运行;停止时须按下SB按钮,使失压脱扣器的线圈断电而造成衔铁释放,通过机械脱扣装置将运行触点断开,切断电源;同时也使手柄自动跳回到“停止”位置,为下一次起动作准备;自耦变压器备有65%和85%两挡电压抽头,出厂时接在65%抽头上,可根据电动机的负载情况选择不同的起动电压;自耦变压器只在起动过程中短时工作,在起动完毕后应从电源中切除;6. 三相绕线式异步电动机转子串电阻起动三相绕线式电动机转子串电阻启动接线如图3—9所示;3—9 三相绕线式电动机转子串电阻启动接线图主要元器件介绍一次部分从上到下依次a、电源;b、Q,隔离开关,一般按电机额定电流的—2倍选择;c、FU1,主保险,般按电机额定电流的倍选择,当Q采用空气开关等有过载、短路保护的开关时,不用;d、KM1,主接触器,一般按电机额定电流的2倍选择;e、热继电器,当Q采用空气开关等有过载、短路保护的开关时,不用;f、M、电动机,一般是大容量的电动机才采用转子串电阻启动7、等,启动电阻,组成限流电阻箱;g、KM2、KM3、KM4等,启动接触器常开触点.二次部分:从上到下依次a、FU2,二次保险5—10A;b、SB1,停止按钮;c、SB3,启动按扭;d、等,接触器线圈、常开或常闭触点;e、等,时间继电器的线圈、触点;f、接线端子排;7、三相异步电动机的软启动器图3—10软启动器外形图图3—11 软启动器主接线图软启动器的外型如图3—10所示,主接线如图3—11所示;软启动器的工作原理:控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加;软起动结束,旁路接触器闭合,使软起动器退出运行,直至停车时,再次投入,这样即延长了软起动器的寿命,又使电网避免了谐波污染,还可减少软起动器中的晶闸管发热损耗;软启动器内部结构虽然复杂,但使用却十分方便,用户只需接入电源,接出输出,操作按钮即可;用软启动器运行时不工作的特点,还可以实现一台软启动器启动多台电动机;图3—12 软启动器的一拖二示意图工作原理1 启动过程:首先选择一台电动机在软启动器拖动下按所选定的启动方式逐渐提升输出电压,达到工频电压后,旁路接触器接通;然后,软启动器从该回路中切除,去启动下一台电机;2 停止过程:先启动软启动器与旁路接触器并联运行,然后切除旁路,最后软启动器按所选定的停车方式逐渐降低输出电压直到停止; 三台以上以此类推……8、变频器变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有;随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用;。

三相异步电动机及控制电路(教案)

三相异步电动机及控制电路(教案)

三相异步电动机及控制电路(教案)三相异步电动机的⼯作原理及控制电路三相异步电动机和其他电动机想⽐较,具有结构简单,制造⽅便、运⾏可靠、价格低廉等⼀系列优点,因此应⽤⼴泛。

三相异步电动机的原理和结构⼀、三相异步电动机的⼯作原理(⼀)、三相交流电机的旋转磁场1、旋转磁场的产⽣:三相交流电通给三相定⼦绕组(三个线圈彼此互隔1200分布在定⼦铁⼼内圆的圆周上)经过画图分析不同时间产⽣的磁场的位置,发现旋转磁场,并找出其特点2、旋转磁场的特点:⼤⼩不变,以⼀个转速向某⼀个⽅向旋转,这个转速把它命名为旋转磁场的同步转速n1n1=60 f / p (f为电源频率;p为磁极对数)3、思考:如何改变旋转磁场的⽅向⽅法:任意调换三相电源中的任意两根相线(交换两根相线即改变了三相电源的相序,从⽽可以改变旋转磁场的⽅向)(⼆)、三相异步电动机的⼯作原理1、分析⼯作原理:三相电通给定⼦绕组,产⽣旋转磁场,静⽌的转⼦相对于旋转磁场有⼀个相对的切割磁⼒线的运动,产⽣感应电动势,产⽣感应电流,转⼦绕组上有了电流,在磁场中会受到电磁⼒的作⽤,形成电磁转矩T,驱动转⼦旋转起来,实现了电能转换成机械能的⽬的。

2、体会“三相异步电动机”名称的由来:“三相”:三相电通⼊三相定⼦绕组“异步”:不同步,⾁眼看不见的旋转磁场转速n1 和看到的转⼦转速n2⼤⼩不同(⽅向相同),且n1 >n2“电动机”:最终实现了电能转换成机械能 3、简化模型:在三相异步电动机的⼯作原理中:给定⼦绕组通电,然后转⼦绕组通过电磁感应产⽣电,这⼀点与变压器相似(⼀次侧通电,⼆次侧感应出电),所以经常为了分析的⽅便将三相异步电动机的结构⽐作变压器,如右图:4、思考:如何改变转⼦旋转的⽅向⽅法:通过任意调换两相电流的相序,改变旋转磁场的⽅向,就改变了转⼦的旋转⽅向5、转差率 S=(n 1-n )/n 1转⼦从静⽌开始运⾏,转差率S 是从1趋向于0(但不能等于0,0⼆、三相异步电动机的基本结构 1、三相异步电动机的结构基本结构:定⼦有定⼦铁⼼和定⼦绕组转⼦有转⼦铁⼼和转⼦绕组材料:铁⼼均由硅钢⽚叠压⽽成;转⼦绕组:可分为笼型和绕线型(其中笼型因结构简单等得到⼴泛应⽤)三、三相异步电动机的铭牌数据1、额定容量(功率)P N (单位:KW )含义:指转轴上输出的机械功率表达式:机械功率=电动机的有功功率?电动机效率 2、额定电压U N (单位:V ):加在定⼦绕组上的线电压3、额定电流IN(单位:A):输⼊定⼦绕组的线电流4、额定转速n N (单位:r/min)5、额定频率f N(单位:HZ):我国⼯频为50HZ6、绝缘等级7、接法:定⼦绕组有Y和△两种接法三相异步电动机的起动⼀、起动要求:1.应有⾜够⼤的起动转矩TS;2.在保证TS ⾜够⼤前提下,起动电流IS越⼩越好⼆、笼型异步电动机的起动(⼀)、直接起动(全压起动)1、分析过程:在起动瞬间n=0,切割旋转磁场的速度最快,所以产⽣的感应电动势和感应电流最⼤,相对应的定⼦绕组的起动电流过⼤,是额定电流(4-7)倍;2、存在问题:(1)起动电流过⼤,引起电⽹电压明显降低和电机发热(2)起动转矩由于磁通和功率因素低,所以起动转矩TS并不⼤,若低于负载转矩,则⽆法带动负载起动故⼀般直接起动只适⽤于⼩型的笼型异步电动机(与电源容量相⽐),可按经验公式来确定是否能直接起动(⼆)、笼型异步电动机的减压起动为了能安全起动,对笼型异步电动机实⾏减压起动1.定⼦串接电抗器或电阻的减压起动⽅法:起动时,电抗器或电阻接⼊定⼦电路;起动后,切除电抗器或电阻,进⾏正常运⾏特点:能耗较⼤,实际应⽤不多,不深⼊研究。

三相异步电动机的电气控制

三相异步电动机的电气控制
顺c)序实起现动了、M1逆起序动停后止,。M2才能起动,而M2停止后,M1才能停止的的控制要求,即
11
主电路实现的顺序的控制电路
12
控制电路实现顺序控制的控制电路
13
多地控制
概念
能在两地或多地控制同一台电动机的控制方式叫电动机的多地控制。
特点
两地的起动按钮并联在一起,停止按钮串联在一起。这样就可以分别在 甲、乙两地起、停同一台电动机,达到操作方便的目的。
互锁作用:正转时,SB3不起作用;反转时,SB2 不起作用。从而避免两接触器同时工作造成主回路 短路。
7
带有双重互锁的正反转控制
含有双重互锁的正反转控制
FR
SB1
SB2
SB3 KMR KMF
KM1 SB3
KMR
KMF KMR
SB2
机械 互锁
电气 互锁
8
自动往返控制
控制要求:
按下起动按钮后,电动机根据撞快1或2可以自动实现正反转的循环运动,并具 有零压、欠压、短路和过载保护。
21
Y-∆降压起动控制电路
控制电路
工作原理
KM1线圈得电
按下SB2
KM3线圈得电
KT线圈通电
KM2主触头闭合 KM2自锁触头闭合
KM2互锁触头分断
KM1自锁触头闭合 KM1主触头闭合 KM3主触头闭合 KM3互锁触头分断 KT常闭触头延时闭合
KM3主触头分断
KM3互锁触头闭合 KT常开触头延时闭合
电动机△形联结全压运行
KT线圈断电
KT触头分断
电动机Y形起动
KM3线圈得电 电动机暂时断电 电动机暂时断电
KM2线圈得电
22
Y-∆降压起动控制电路

三相异步电动机调速控制电路

三相异步电动机调速控制电路

U1 V1 U2 V2
W1 W2
U2 V2
L1
L2
L3
1、接触器手动控制的双速电动机调速电路
三只交流接触器双速控制 1、工作原理
低速启动:按下低速启动按钮SB2,其一组常闭触点断开,切断高速控制交 流接触器KM2,KM3线圈回路电源,起到停止高速及按钮互锁作用;其另一组常 开触点闭合,低速交流接触器KM1线圈得电吸和,KM1并联在低速启动按钮SB2 两端的辅助常开触点闭合,自锁,KM1三相主触点闭合,电动机得电为三角形低 速运行,同时指示灯HL1灭,HL2亮,说明电动机已经低速运转了。
按下中速启动按钮SB3的两组常闭触点断开,其中SB3 的一组常闭触点切断交 流接触器KM1线圈电源,KM1线圈断电释放,KM1三相主触点 断开,电动机绕 组U1、V1、W1失电而停止低速运转,KM1辅助常开触点断开,低速运转指示 灯HL2灭。其中串联在交流接触器KM2、KM4线圈回路中的另一组SB3常闭触点 断开,对KM2、KM4起互锁作用,在SB3启动按钮按下的同时,SB3常闭触点 闭合,接通中速交流接触器KM3线圈回路电源,KM3线圈得电闭合,KM3辅助 常开触点闭合自锁,KM3三相主触点闭合。电动机绕组U2、V2、W2通以三相 380V交流电源,结成Y型中速启动,与此同时KM3 的两组辅助常闭触点断开起 互锁作用。KM3辅助常开触点闭合,指示灯HL3亮,说明电动机以中速启动运 转了。
3、外加电阻调速控制电路
THE
END
Thank you!
高速启动:直接按下高速启动按钮SB3,其一组常闭触点断开,切断低速控制 交流接触器K行停止;其中SB3另一组常开触点闭合,高速交流接触器KM2,KM3 线圈得电吸和,KM2,KM3并联在高速启动按钮SB3 两端的辅助常开触点闭合, 自锁, KM2,三相主触点闭合,接通高速绕组电源, KM3,三相主触点闭合,电动 机得电为双星型连接高速运行;同时指示灯HL2灭,HL3亮,说明电动机已经高 速运转了。

三相异步电动机的基本控制电路精品PPT课件

三相异步电动机的基本控制电路精品PPT课件

M
采用此种接线方式。
3~
3.异步电动机的直接起动 + 过载保护
A BC
热继电
QS
器触头
FU
KM SB1 SB2
KM
FR
KM
发热
FR
元件
电流成回路,
M
只要接两相就可以了。
3~
4.多地点控制
例如:甲、乙两地同时控制一台电机。 方法:两起动按钮并联;两停车按钮串联。
KM
SB1甲
SB2甲
KM
甲地
SB3乙
先合上开关QS
1、正转控制
按下SB1
SB1常闭触点先分断对KM2的联锁 SB1常开触点后闭合 KM1线圈得电(自锁)
KM1常闭辅助触点断开 KM1辅助触点闭合 KM1主触点闭合
电动机M正转
继续
先合上开关QS
1、反转控制
按下SB2
SB2常闭触点先分断对KM1的联锁 SB2常开触点后闭合 KM2线圈得电
SQA
KM1
SQB
KM2
FR
KM2
KM1 限位开关
控制回路
行程控制(2) --自动往复运动
电机
逆程
正程
工作要求:1. 能正向运行也能反向运行 2. 到位后能自动返回
自动往复运动控制电路
FR
SB3
KM2
SQA KM1
SB1
关键措施
限位开关采用 复合式开关。正 向运行停车的同 时,自动起动反 向运行;反之亦 然。
三相异步电动机的 基本控制电路
基本控制电路
一、三相异步电动机起动、停车(点动、连续运 行、多地点控制等) 二、三相异步电动机正反转控制 三、顺序控制 四、行程控制 五、时间控制

三相异步电动机的基本控制电路分析

三相异步电动机的基本控制电路分析

压保护等。
一、点动控制
QS FU
SB
QS FU
KM
KM
SB
KM
M 3~ (a)接线示意图
M 3~ (b)电气原理图
按下按钮SB,接 触器KM线圈通 电,衔铁吸合, 常开主触点接通, 电动机定子接入 三相电源起动运 转。松开按钮SB, 接触器KM线圈 断电,衔铁松开, 常开主触点断开, 电动机因断电而 停转。
同时具有电气联锁和机械联锁的正 反转控制电路
• 采用复式按钮,将SB1按钮的常闭触点串接
在KM2的线圈电路中;将SB2的常闭触点串 接在KMl的线圈电路中;这样,无论何时, 只要按下反转起动按钮,在KM2线圈通电之 前就首先使KM1断电,从而保证KM1和KM2 不同时通电;从反转到正转的情况也是一 样。这种由机械按钮实现的联锁也叫机械 联锁或按钮联锁,
动按钮。如果操作错误,将引起主回路电源短路。
FR SB3 SB1 KM 1 SB2 KM 2 KM 1 KM 2 KM 2 KM 1
带电气联锁的正反转控制电路 • 将接触器KM1的辅助常闭触点串入KM2的线
圈回路中,从而保证在KMl线圈通电时KM2 线圈回路总是断开的;将接触器KM2的辅助 常闭触点串入KM1的线圈回路中,从而保证 在KM2线圈通电时KMl线圈回路总是断开的。 这样接触器的辅助常闭触点KMl和KM2保证 了两个接触器线圈不能同时通电,这种控 制方式称为联锁或者互锁,这两个辅助常 开触点称为联锁或者互锁触点。
合上开关S,三相电源被 引入控制电路,但电动机 还不能起动。按下按钮SB, 接触器KM线圈通电,衔 铁吸合,常开主触点接通, 电动机定子接入三相电源 起动运转。松开按钮SB, 接触器KM线圈断电,衔 铁松开,常开主触点断开, 电动机因断电而停转。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。

所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。

点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。

2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。

欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。

“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。

因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。

三相异步电动机常用控制电路图

三相异步电动机常用控制电路图

共享知识分享快乐三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。

1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。

SBKM,接触器按下按钮线圈通电,衔铁吸合,常SBS SFUFU开主触点接通,电动机定SB子接入三相电源起动运KMKMKMSB转。

松开按钮,M M3~~3KM线圈断电,衔接触器(a) 接线示意图(b) 电气原理图铁松开,常开主触点断开,电动机因断电而停转。

2).直接起动控制SB接触器按下起动按钮,1()起动过程。

1S KMSBKM的辅助常开触点并联的线圈通电,与FR1FU KMSB线圈持续通电,闭合,以保证松开按钮后SB11SBKMKMKM2KM的主触点持续闭合,串联在电动机回路中的FR 电动机连续运转,从而实现连续运转控制。

M~3.共享知识分享快乐SB,(2)停止过程。

按下停止按钮2S KMKMSB的接触器并联的线圈断电,与FRFU SB辅助常开触点断开,以保证松开按S1SKKK2KM串联在电动机回路中线圈持续失电,FR KM的主触点持续断开,电动机停转。

3KMSB的辅助常开触点的这种作并联的与1用称为自锁。

图示控制电路还可实现短路保护、过载保护和零压保护。

FU。

一旦电路发生a)起短路保护的是串接在主电路中的熔断器短路故障,熔体立即熔断,电动机立即停转。

FR。

当过载时,热继电器的发热元起过载保护的是热继电器b)KM线圈断电,串联在件发热,将其常闭触点断开,使接触器KMKM辅助的主触点断开,电动机停转。

同时电动机回路中的触点也断开,解除自锁。

故障排除后若要重新起动,需按下FRFR的复位按钮,使的常闭触点复位(闭合)即可。

KM本身。

当电源暂时断电c)起零压(或欠压)保护的是接触器KM线圈的电磁吸力不足,衔铁自或电压严重下降时,接触器行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

三相异步电动机电气控制线路

三相异步电动机电气控制线路
三相异步电动机的保护线路
过载保护线路
总结词
过载保护线路主要用于防止三相异步 电动机过载运行,以保护电机不受损 坏。
详细描述
过载保护线路通常通过热继电器实现, 当电机过载运行时,热继电器内部的 双金属片会因过热弯曲,带动触点断 开,切断电源以保护电机。
短路保护线路
总结词
短路保护线路用于在三相异步电动机发生短路故障时迅速切断电源,防止短路电流对电机造成损坏。
其他领域
如电动汽车、电动自行车等新 能源领域也有广泛应用。
02
CHAPTER
三相异步电动机的电气控制 线路
电气控制线路的基本概念
01 02
电气控制线路定义
电气控制线路是指由各种开关、接触器、继电器、电动机等电气设备按 照一定逻辑关系连接起来,实现对电动机启动、停止、正反转等控制的 一种线路。
电气控制线路的作用
失压保护线路
总结词
失压保护线路用于在三相异步电动机的电源电压突然消失后自动切断电源,防止电机在 失压状态下继续运行。
详细描述
失压保护线路通常使用接触器和失压继电器实现,当电源电压低于设定值时,失压继电 器动作,使接触器断开,切断电源。同时,在电源电压恢复正常后,失压继电器会自动
复位,重新接通电源。
三相异步电动机电气控制线路
目录
CONTENTS
• 三相异步电动机简介 • 三相异步电动机的电气控制线路 • 三相异步电动机的调速控制线路 • 三相异步电动机的保护线路 • 三相异步电动机的常见故障与排除方法
01
CHAPTER
三相异步电动机简介
三相异步电动机的定义与工作原理
定义
三相异步电动机是一种利用三相交流电产生旋转磁场的电动机,通过该磁场与转 子上的导体相互作用,使转子转动。

三相异步电动机基本控制电路全

三相异步电动机基本控制电路全

电源
一部分接成星形,
一部分接成三角形
原始状态
起动结束后
换成三角形联结法
投入全电压
3. 三相绕线转子电动机的起动控制
➢ 转子电路中串接电阻 ➢ 转子电路中串接频敏变阻器
转子绕组串接电阻起动
优点:减小起动电流、提高起动转矩 适用:要求起动转矩较大的场合
起动时,电阻被短接的方式: 三相电阻不平衡短接法(用凸轮控制器)
~ SB1
SBF
KMF
FR
KMF
SBR
KMR
KMR
KMR
KMF
互锁
电器联锁(互锁)作用:两个接触器的辅
助常闭触头互相控制。正转时,SBR不起 作用;反转时,SBF不起作用。从而避免 两接触器同时工作造成主回路短路。
1.鼠笼式电机的正反转控制(3)--双重联锁
~ SB1
机械联锁
SBF
KMF
SBR
KMR
可逆运行反接制动
正转:KSF合 反转:KSR合
可逆运行反接制动
正转:KSF合 反转:KSR合
2. 防止电源电压恢复时, 电动机自行起动而造成 设备和人身事故
3. 避免多台电动机同时起 动造成电网电压的严重 下降。
异步机的直接起动----点动+连续运行控制
方法一: 用钮子开关SA
✓ 断开:点动控制 ✓ 合上:长动控制
异步机的直接起动----点动+连续运行控制
方法二:用复合按钮。
QK
~ SB1
而使线圈保持通电的控制方式
自锁触头: 起自锁作用的辅助常开触头
工作原理:
按下按钮(SB1),线圈(KM)通电, 电机起动;同时,辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运行。

三相异步电动机控制电路

三相异步电动机控制电路

线圈(KM)通电 电机转动;
触头(KM)闭合
按钮松开
线圈(KM)断电 电机停转。
触头(KM)打开
(二) 单向连续运转控制电路
U QS FU KM V W 停车 按钮 SB2
SB1
起动 按钮 KM
C'
B'
自锁
自锁的作用
按下按钮(SB2),线圈(KM)通电, M 3~ 电机起动;同时辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运转。
U QS FU
V W 停车按钮 SB1 SB2
KM
KM
停机时: KM主触点断开 按下SB1 M 3~ KM线圈断电 KM辅助触点断开
电机断电停车 松开SB1,线圈保持断电
二、 电动机正反转控制电路
应用: 生产上往往要求运动部件能够向正反两个方向运动, 如:机床工作台的前进、后退;起重机的提升、下降等。 正、反转的实现: 把接入电源的任意两根联线对调。 用两个交流接触器实现两根电源线的调换。
控制方法: (一)倒顺开关可逆旋转控制电路,5.5kw以下 (二)按钮控制的正反转控制电路 (三)基于行程控制原则的正反转控制电路
(二)按钮控制的正反转 控制电路
主电路
U V
W
QS
FU
正转接触器KM1通电, 电动机正转;
反转接触器KM2通电, 电动机反转; KM1 FR
KM2
注意! 决不允许KM1和KM2 同时通电,否则,会 造成电源短路!
M 3~
控制电路(1)
控制过程:
按下SB2 按下SB3 按下SB1 电机正转 电机反转 电机停车
该电路必须先停车才能由正转到反转或 由反转到正转。SB2和SB3不能同时按下, 否则会造成短路!

三相异步电动机的基本控制电路

三相异步电动机的基本控制电路



基异
本步
控电
制动 电机 路的
点 动 控



1.2
第8页
(a)
图7-15 点动控制电路
(b)


基异
本步
控电
制动 电机 路的
正 反 转 控



1.3
1 接触器无互锁的正反转控制电路
第9页
如图7-16所示为接触器无互锁的正反转控制电路,其工作原理如下: 合上电源开关QS,按下正转启动按钮SB2,KM1线圈通电,其主触头闭 合,接通正序电源,电动机正转。同时,KM1辅助常开触头闭合自锁。按下 停止按钮SB1,KM1线圈断电,电动机停止。反转时,按下反转启动按钮 SB3,KM2线圈通电,其主触头闭合,接通反序电源,电动机反转。 此电路存在的问题是:若KM1,KM2同时通电动作,将会造成电源两相 (L1和L3相)短路,因此,此电路在实际中不能采用。
图7-14 接触器控制的单向控制电路


基异
本步
控电
制动 电机 路的
单 相 控



1.1
2 接触器控制的单向控制电路
第5页
电路的工作原理如下: 电动机启动时,合上电源开关QS,按下启动按钮SB2,KM线圈通电, 其三相主触头闭合,电动机接通三相电源启动。同时,与启动按钮SB2并联 的接触器常开辅助触头闭合。松开SB2后,KM线圈仍通过自身的常开辅助 触头保持通电状态,电动机继续运转。这种依靠接触器自身的常开辅助触头 保持线圈通电的方法称为自锁(或自保),这种起自锁作用的常开辅助触头 称为自锁触头(或自保触头)。 电动机停止时,按下停止按钮SB1,KM线圈断电,其三相主触头断开, 电动机停止旋转。同时,KM的常开辅助触头也断开。此时,即使放开停止 按钮SB1,KM线圈也不会通电,电动机不会再次启动。

三相交流异步电动机点动控制电路

三相交流异步电动机点动控制电路

三相交流异步电动机点动控制电路三相交流异步电动机是一种常见的电动机类型,其工作原理是基于电磁感应的原理。

为了控制三相交流异步电动机的启动和停止,可以使用点动控制电路。

点动控制电路是一种简单而常用的电路,可以实现对电动机的短暂启动或停止。

它由主控制电路和辅助控制电路组成。

主控制电路是点动控制电路的核心部分,它由接触器、过载保护器和控制按钮组成。

接触器是一种电磁开关,用于控制电动机的启动和停止。

过载保护器可以保护电动机免受过载的损坏。

控制按钮用于操作接触器和过载保护器。

辅助控制电路用于控制主控制电路的工作状态。

它由控制继电器、热继电器、时间继电器和电源组成。

控制继电器用于控制主控制电路的工作和停止。

热继电器可以检测电动机的温度,当温度过高时会自动停止电动机以防止过热。

时间继电器可以设置电动机的延时启动或停止。

电源为整个电路提供电能。

在点动控制电路中,当按下启动按钮时,控制继电器会闭合,同时接触器也会闭合,电动机开始启动。

当松开启动按钮时,控制继电器打开,但接触器保持闭合,电动机继续运行。

当按下停止按钮时,连接电源的继电器打开,接触器断开,电动机停止运行。

通过按下启动按钮控制电动机的启动,按下停止按钮控制电动机的停止,实现对电动机的点动控制。

三相交流异步电动机点动控制电路的优点是简单易懂、易于操作。

它适用于一些需要频繁启动和停止的场合,如机械加工、输送带等。

通过点动控制电路,可以实现对电动机的快速启动和停止,提高了工作效率和安全性。

总结起来,三相交流异步电动机点动控制电路是一种简单而常用的电路,通过按下启动按钮和停止按钮,可以实现对电动机的快速启动和停止。

它由主控制电路和辅助控制电路组成,通过控制继电器、接触器和过载保护器等元件的工作状态,实现对电动机的点动控制。

点动控制电路具有操作简单、易懂易学的特点,适用于一些需要频繁启动和停止的场合。

通过点动控制电路,可以提高电动机的工作效率和安全性。

三相异步电动机的基本控制电路

三相异步电动机的基本控制电路

• ③阅读主电路图。通常线路图中的主电
路都用粗黑实线画在图中左侧或上方, 很容易辨认。阅读时,弄清主电路由哪 些电气元件或电气元件的部件所组成, 熟悉这些电气元件或部件的用途和工作 情况。例如,有几台电动机拖动,各台 电动机的作用,各台电动机的启动方法, 有无正反转及保护电器的作用等。
• ④阅读控制电路图。通常线路图中的控制电路
四、顺序控制
QS FU
SB3
SB1 KM 1
KM 1
FR1
KM 1 FR1 M1 3~
KM 2 FR2 M2 3~
SB2 KM 2
KM 2
FR2
• 因为KM2线圈电路中串接有KM1的常开
触点,所以M1未起动时,即KM1线圈 未通电时,KM2线圈不可能通电,M2 不可能起动;只有当按下SB1,KM1线 圈通电,M1起动后,再按SB2,KM2线 圈通电,M2才起动。当按下SB3时, KM1、KM2线圈同时断电,M1、M2同 时停止运转。
完成电动机正反转的 自动切换,这种利用 运动部件的行程实现 的控制称为按行程原
则的自动控制。
按下正向起动按钮SB1,电动机正向起动运 行,带动工作台向前运动。当运行到SQ2位 置时,挡块压下SQ2,接触器KMl断电释放, KM2通电吸合,电动机反向起动运行,使工 作台后退。工作台退到SQl位置时,挡块压下 SQl,KM2断电释放,KM1通电吸合,电动机 又正向起动运行,工作台又向前进,如此一 直循环下去,直到需要停止时按下SB3,KMl 和KM2线圈同时断电释放,电动机脱离电源 停止转动。
压保护等。
一、点动控制
QS FU
SB
QS FU
KM
KM
SB
KM
M 3~ (a)接线示意图

三相异步电动机的混合控制电路原理

三相异步电动机的混合控制电路原理

三相异步电动机的混合控制电路原理
三相异步电动机的混合控制电路原理通常涉及对电动机转速和转矩的控制。

这种控制通常使用一种或多种控制策略,如矢量控制、直接转矩控制或滑动模态控制等。

1. 矢量控制:矢量控制旨在模拟直流电动机的控制,它可以独立地控制电动机的转速和转矩。

这种方法通常使用两个逆变器(每个逆变器控制一个电动机相)和一个clamp绕组。

通过调整每个逆变器的电压,可以控制电动机的转速和转矩。

2. 直接转矩控制:直接转矩控制旨在直接控制电动机的转矩,而不是先控制转速。

这种方法通常使用一个逆变器和一个clamp绕组。

通过调整逆变器的电压和相位,可以控制电动机的转矩。

3. 滑动模态控制:滑动模态控制旨在找到一个稳定的电动机状态,在这个状态下,电动机的转速和转矩都处于一个设定的值。

这种方法通常使用一个逆变器和一个clamp绕组。

通过调整逆变器的电压和相位,可以找到这个稳定的电动机状态。

这些控制策略可以单独使用,也可以结合使用,以提供对电动机更精确和有效的控制。

三相异步电动机启动运行的基本控制电路

三相异步电动机启动运行的基本控制电路

三相异步电动机启动运行的基本控制电路如下:
1.全压直接启动控制电路:在主电路中,开关QF闭合,接触器KM的线圈
得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

2.定子绕组串电阻启动控制电路:在主电路中,开关QF闭合,接触器KM1
的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM1的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

同时,KM1的常闭触点断开,接触器KM2的线圈不能得电。

当电动机转速达到一定值时,时间继电器KT 的常闭触点断开,KM2的线圈得电,常开主触点闭合,电动机在较小的电阻R下启动。

3.星-三角形启动控制电路:在主电路中,开关QF闭合,接触器KM1的线
圈得电,常开主触点闭合,电动机在额定电压下直接启动。

在控制电路中,开关QF闭合,按下按钮SB2,接触器KM1的线圈得电,常开主触点闭合,电动机在额定电压下直接启动。

同时,KM1的常闭触点断开,接触器KM2的线圈不能得电。

当电动机转速达到一定值时,时间继电器KT的常闭触点断开,KM2的线圈得电,常闭触点闭合,接触器KM3的线圈得电,常开主触点闭合,电动机在较小的三角形接法下启动。

这些基本控制电路可以满足不同情况下三相异步电动机的启动和运行需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章三相异步电动机及其控制线路5.1 三相异步电动机实现电能与机械能相互转换的电工设备总称为电机。

电机是利用电磁感应原理实现电能与机械能的相互转换。

把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。

它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。

5.1.1 三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

此外还有端盖、风扇等附属部分,如图5-1所示。

图5-1 三相电动机的结构示意图1).定子三相异步电动机的定子由三部分组成:定子定子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片内圆上有均匀分布的槽,其作用是嵌放定子三相绕组AX、BY、CZ。

定子绕组三组用漆包线绕制好的,对称地嵌入定子铁心槽内的相同的线圈。

这三相绕组可接成星形或三角形。

机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组2).转子三相异步电动机的转子由三部分组成:转子转子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。

转子绕组转子绕组有两种形式:鼠笼式-- 鼠笼式异步电动机。

绕线式-- 绕线式异步电动机。

转轴转轴上加机械负载鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

图5-2 三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

转子转动的方向和磁极旋转的方向相同。

(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

2).旋转磁场 (1).产生图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。

并接成星形与三相电源U 、V 、W 相联。

则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。

00sin sin(120)sin(120)U m V mW m i I ti I t i I t ωωω=⎧⎪=-⎨⎪=+⎩ 图 5-3 三相异步电动机定子接线当t=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。

当t=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。

A i Ai B i CX BYC Z当t=2400时,0C i ,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。

可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。

随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地旋,因此称为旋转磁场。

图 5-4 旋转磁场的形成(2).旋转磁场的方向旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。

这时,转子的旋转方向也跟着改变。

3).三相异步电动机的极数与转速ωtii Ai B i CO120° 240° 360°×××××······(a) ωt = 0° (b) ωt = 120° (c) ωt = 240°AA A XX X BBBY YY C C CZZZ×(1).极数(磁极对数p )三相异步电动机的极数就是旋转磁场的极数。

旋转磁场的极数和三相绕组的安排有关。

当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p )空间角。

极数p 与绕组的始端之间的空间角的关系为:120p θ=(2).转速n三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p= (5-1)由(5-1)可知,旋转磁场的转速n 0决定于电流频率f 1和磁场的极数p 。

对某一异步电动机而言,f 1和p 通常是一定的,所以磁场转速n 0是个常数。

在我国,工频f 1=50Hz ,因此对应于不同极对数p 的旋转磁场转速n 0,见表5-1表5-1(3).转差率s电动机转子转动方向与磁场旋转的方向相同,但转子的转速n 不可能达到与旋转磁场的转速n 0相等,否则转子与旋转磁场之间就没有相对运动,因而磁力线就不切割转子导体,转子电动势、转子电流以及转矩也就都不存在。

也就是说旋转磁场与转子之间存在转速差,因此我们把这种电动机称为异步电动机,又因为这种电动机的转动原理是建立在电磁感应基础上的,故又称为感应电动机。

旋转磁场的转速n 0常称为同步转速。

转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。

即:000n n ns n n -∆== (5-2)转差率是异步电动机的一个重要的物理量。

当旋转磁场以同步转速n 0开始旋转时,转子则因机械惯性尚未转动,转子的瞬间转速n =0,这时转差率S =1。

转子转动起来之后,n >0,(n 0-n )差值减小,电动机的转差率S <1。

如果转轴上的阻转矩加大,则转子转速n 降低,即异步程度加大,才能产生足够大的感受电动势和电流,产生足够大的电磁转矩,这时的转差率S 增大。

反之,S 减小。

异步电动机运行时,转速与同步转速一般很接近,转差率很小。

在额定工作状态下约为0.015~0.06之间。

根据式(4-2),可以得到电动机的转速常用公式()01n s n =- (5-3)例 有一台三相异步电动机,其额定转速 n =975r/min ,电源频率f =50Hz ,求电动机的极数和额定负载时的转差率S 。

解:由于电动机的额定转速接近而略小于同步转速,而同步转速对应于不同的极对数有一系列固定的数值。

显然,与975r/min 最相近的同步转速n 0=1000r/min ,与此相应的磁极对数p =3。

因此,额定负载时的转差率为:001000975100%100% 2.5%1000n n s n --=⨯=⨯=(4).三相异步电动机的定子电路与转子电路三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。

给定子绕组接上三相电源电压,则定子中就有三相电流通过,此三相电流产生旋转磁场,其磁力线通过定子和转子铁心而闭合,这个磁场在转子和定子的每相绕组中都要感应出电动势。

总结:1、三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

2、欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组,并且旋转的磁场和闭合的转子绕组的转速不同,这也是“异步”二字的含义;3、三相电源流过在空间互差一定角度按一定规律排列的三相绕组时,便会产生旋转磁场;4、旋转磁场的方向是由三相绕组中电源相序决定的;5、三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p=6、转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。

即:000n n ns n n -∆== 转差率是异步电动机的一个重要的物理量,异步电动机运行时,转速与同步转速一般很接近,转差率很小。

在额定工作状态下约为0.015~0.06之间。

7、三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。

5.1.2 三相异步电机的转矩特性与机械特性1.电磁转矩(简称转矩)异步电动机的转矩T 是由旋转磁场的每极磁通与转子电流I 2相互作用而产生的。

电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。

经理论证明,它们的关系是:22cos T T K I ϕ=Φ(5-4)其中T 为电磁转矩 K T 为与电机结构有关的常数为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值2为转子电流滞后于转子电势的相位角若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为:22122220()TsR U T K R sX '=+ (5-5)其中 TK '为常数 U 1为定子绕组的相电压 S 为转差率 R 2为转子每相绕组的电阻X 20为转子静止时每相绕组的感抗由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。

此外,转矩T 还受转子电阻R 2的影响。

图4-15为异步电动机的转矩特性曲线。

2.机械特性曲线图 5-5 三相异步电动机的机械特性曲线在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的关系曲aOTn n T max T q T N n bcT N T q T max Tss m1O(a) T =f (s )曲线 (b) n =f (T )曲线线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。

相关文档
最新文档