西安电子科技大学出版社:高西全 丁玉美《数字信号处理》第3版:第4章

合集下载

高西全-丁玉美-数字信号处理课件

高西全-丁玉美-数字信号处理课件

拉普拉斯变换:将信号从时 域变换到复频域,便于分析 信号的稳定性和收敛性
状态空间法:通过建立系统 的状态空间模型,分析系统 的动态特性和稳定性
信号流图法:通过绘制信号 流图,分析系统的信号流和 信号处理过程
信号通过非线性系统的分析方法
非线性系统的定义和分类
非线性系统的分析方法:如微分 方程、差分方程、傅里叶变换等
添加标题
添加标题
非线性系统的特性和特点
添加标题
添加标题
非线性系统的应用实例:如通信 系统、控制系统、图像处理等
03
离散时间信号与系统分析
离散时间信号的分类与表示
连续时间信号:在连 续时间上取值的信号
离散时间信号:在离 散时间上取值的信号
连续时间信号的表示: 通常用函数表示
离散时间信号的表示: 通常用序列表示
数字信号处理课件(第三版)
单击添加副标题
汇报人:
目录
01
课件概览
02
03
离散时间信号与系统分析
04
05 数 字 信 号 处 理 系 统 性 能 评 估 与 优 化
信号与系统基础 数字信号处理算法与实现
01
课件概览
作者介绍
作者:张辉
专业领域:数字 信号处理
教育背景:清华 大学电子工程系 博士
工作经历:清华 大学电子工程系 教授,从事数字 信号处理研究多 年
离散时间信号的分类: 周期信号和非周期信

周期信号:在离散时 间上重复出现的信号
非周期信号:在离散 时间上不重复出现的
信号
离散时间系统的分类与描述
线性系统:输入与输出之间 存在线性关系
添加标题
时不变系统:系统的特性不 随时间变化

高西全-丁玉美-数字信号处理课件(第三版)

高西全-丁玉美-数字信号处理课件(第三版)

出版信息
出版社:清华大学出版社 出版时间:2019年 作者:王志强、李志刚、张志强 内容简介:本书主要介绍数字信号处理的基本概念、原理和方法,以及其在通信、雷达、 图像处理等领域的应用。
主要内容
数字信号处理的 基本概念和原理
数字信号处理的 应用领域
数字信号处理的 算法和实现
数字信号处理的 发展趋势和挑战
感谢观看
汇报人:PPT
信号处理在音频处理中的应用
添加标题
添加标题
信号处理在图像处理中的应用
添加标题
添加标题
信号处理在雷达系统中的应用
04
学习资源
习题答案
教材配套习题 答案
教师提供的习 题答案
网络资源: 如CSDN、 GitHub等
同学之间的互 助解答
教学PPT
课件形式:图文并茂,动 画演示,互动问答等
课件内容:数字信号处理 基础知识、应用案例、实 验操作等
课件特点:简洁明了,逻 辑清晰,易于理解
课件下载:提供课件下载 链接,方便学生课后复习
和预习
学习笔记
教材:数字信号处理课件(第三 版)
学习资料:教材、课件、实验指 导书、习题集等
添加标题
添加标题
添加标题
添加标题
课程内容:数字信号处理基础知 识、数字信号处理算法、数字信 号处理应用等
学习工具:MATLAB、Python 等编程工具,数字信号处理软件 等
实验指导书
实验目的:掌握数字信号处理的基本概念和原理 实验内容:包括信号的采样、量化、编码、传输、解码等 实验步骤:详细描述每个实验的步骤和注意事项 实验结果:对实验结果进行分析和讨论,提出改进意见
05
使用指南

数字信号处理(丁玉美版)教案第4章

数字信号处理(丁玉美版)教案第4章

7
4.2.1 直接计算DFT的问题及改进的途径
DFT及IDFT的定义
X (k ) x (n )W
n 0
N 1
kn N
k=0, 1, …, N-1
kn N
1 x(n) N
X (k )W
k 0
N 1
n=0, 1, …, N-1
8
可见,DFT 与 IDFT 的计算成本基本相同。 直接计算N点DFT 时: 对应一个k需要N次复数乘和(N-1)次 复数加;对所有N个k值,则需要 N² 复数乘和N (N-1)次复数加 。 其中: 一次复数乘需要4次实数乘和2次实数加方能 完成。当N较大时,运算量很大。
分成四个1点的序列
24
the butterfly(蝶形运算)
2点DFT 4点DFT
x(0)
X1(0)
X(0)
x(2)
W20
-1
X1(1)
X(1)
x(1)
X2(0)
W40 W41
-1
X(2)
x(3)
W20
X2(1)
-1
-1
X(3)
1点序列的DFT就是序列本身,即不用计算
25
如N>4,则 将 x1(r) 再按r的奇偶进一步分解成两个 N/4点长的子序列:
x2(3)
0 2
W
W
0 8 1 8 2 8 3 8
34
求IFFT,也可用DIT-FFT的流程来实现。
x 3(l ) x1(2l )
N l 0,1,..., 1 4 x 4(l ) x1(2l 1)
26
X 1(k )
N / 4 1 l 0
x (2l )W

数字信号处理-丁玉美 高西全 编著-第4章

数字信号处理-丁玉美 高西全 编著-第4章

第 4 章 时域离散系统的网络结构及数字信号处理的实现
流图中的两个环路均与所有的前向通路相接触, 因此对 应于三条前向通路的Δ1=1, Δ2=1,Δ3=1。 这样可以直接写出 该流图的系统函数为
H (z) T11 T22 T33

b0 b1z 1 b2 z 2 1 a1z 1 a2 z 2
第 4 章 时域离散系统的网络结构及数字信号处理的实现
第4章 时域离散系统的网络结构及 数字信号处理的实现
4.1 教材第5章学习要点 4.2 按照系统流图求系统函数或者差分方程 4.3 按照系统函数或者差分方程画系统流图 4.4 例题 4.5 教材第 9 章学习要点 4.6 教材第 5 章习题与上机题解答
第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.4 例 题
[例4.4.1] 设FIR滤波器的系统函数为 H (z) 1 (1 0.9z 1 2.1z 2 0.9z 3 z 4 ) 10
求出其单位脉冲响应, 判断是否具有线性相位, 画出直 接型结构和线性相位结构(如果存在)。
位结构, 因此并不是所有FIR系统都能形成线性相位结构。
线性相位结构的优点是能节约近一半的乘法器。
第 4 章 时域离散系统的网络结构及数字信号处理的实现
4.3.2 FIR
由频率采样定理得到公式:
H (z) 1 z N N
N1 H (k) k0 1 WNk z 1
式中, H(k)是在0~2π区间对传数函数等间隔采样N点的采样值, 可以对单位脉冲响应h(n)进行DFT得到。 这里要注意采样点 数必须大于等于h(n)的长度, 否则会发生时域混叠现象。 因 为IIR系统的单位脉冲响应是无限长的, 因此不能用频率采 样结构实现。

数字信号处理教学大纲(配丁玉美书)

数字信号处理教学大纲(配丁玉美书)

《数字信号处理》教学大纲课程名称:数字信号处理学分:4学时:68+12课程性质:必修一、课程的地位、作用和任务本课程是电子信息工程、通信工程、信息工程、电子信息科学与技术等专业的必修课。

几乎所有的工程技术领域都会涉及到信号处理问题。

数字信号处理是对信号进行分析、变换、综合、估值与识别等,由于它具有精度高、高稳定性、灵活性强、便于集成以及可以对数字信号进行存储、运算等优点,目前已广泛应用于语音、雷达、声纳、地震、图像、通信、控制、生物医学等领域。

数字信号处理的理论和技术是目前高新理论和技术的有力支撑。

是电气信息类专业的专业基础课。

本课程的主要任务是:(1)加深学习信号处理的基础,使学生了解连续信号与离散信号相互转换的关系,掌握数字信号处理的基本思想、基本原理;(2)掌握数字信号处理实现的基本方法及各自的优缺点;(3)了解数字信号处理的应用场合及发展趋势。

为有关后继课程的学习和今后工作实践打下良好基础。

几乎所有的工程技术领域都会涉及到信号处理问题,信号处理有模拟信号处理和数字信号处理两种类型,数字信号处理的处理对象是数字信号,数字信号是幅度和时间都离散的离散信号。

数字信号处理是一门理论和实践密切结合的课程,它是采用数值分析计算的方法实现信号的处理,其实现方法有软件实现和硬件实现两种,软件实现方法指的是用户按照数字信号处理的原理和算法编写程序在通用计算机上实现,硬件实现是根据数字信号处理的原理和算法设计硬件结构图,用乘法器、加法器、延时器、存储器以及接口实现。

本课程的目的要求是:通过学习掌握是数字信号处理的基础理论,有离散信号和系统的描述方法、差分方程、时域分析、频域分析、Z域分析等,熟练掌握是数字滤波器的基本理论和设计方法,熟练掌握IIR数字滤波器、FIR滤波器的基本理论和设计方法,初步掌握是数字信号处理的技术实现,有软、硬件实现方法。

培养学生能够从数学方法、物理概念及工程概念去分析问题和解决问题。

数字信号处理课后答案+第4章(高西全丁美玉第三版)

数字信号处理课后答案+第4章(高西全丁美玉第三版)
一次N点FFT求得X1(k)和X2(k)。 具体方法如下:
令 y(n)=x1(n)+jx2(n) Y(k)=DFT[y(n)] 则
这样, 通过一次N点IFFT计算就完成了计算2N点DFT。 当然还要进行由Y(k)求X1(k)、 X2(k)和X(k)的运算(运算量相对
k=0, 1, …, N-1
⎧ ⎛n⎞ ⎪ x1 ⎜ 2 ⎟ ⎪ ⎝ ⎠ x (n) = ⎨ ⎪x ⎛ n −1 ⎞ ⎪ 2⎜ 2 ⎟ ⎠ ⎩ ⎝
n = 偶数 n = 奇数
在编程序实现时, 只要将存放x1(n)和x2(n)的两个数组的元 素分别依次放入存放x(n)的数组的偶数和奇数数组元素中 即可。
运算流图。 但画图占篇幅较大, 这里省略本题解答, 请 读者自己完成。
很少)。 (2) 与(1)相同, 设 x1(n)=x(2n) n=0, 1, …, N-1 x2(n)=x(2n+1) n=0, 1, …, N-1 X1(k)=DFT[x1(n)] X2(k)=DFT[x2(n)] 则应满足关系式
1 X 1 ( k ) = DFT[ x1 ( n)] = Yep ( k ) = [Y ( k ) + Y * ( N − k )] 2 1 jX 2 (k ) = DFT[ jx2 (n)] = Yep (k ) = [Y ( k ) − Y * ( N − k )] 2
4. 设x(n)是长度为2N的有限长实序列, X(k)为x(n)的 2N点DFT。 (1) 试设计用一次N点FFT完成计算X(k)的高效算法。 (2) 若已知X(k) ,试设计用一次N点IFFT实现求X(k)的 2N点IDFT运算。
x1(n)和x2(n)均为实序列, 所以根据DFT的共轭对称性, 可用
② 由X1(k)和X2(k)构成N点频域序列Y(k): Y(k)=X1(k)+jX2(k)=Yep(k)+Yop(k)

数字信号处理第三版西科大课后答案第3和4章

数字信号处理第三版西科大课后答案第3和4章
生物医学信号处理
采用数字信号处理技术对生物医学信号进行分析与处理,如心电图、 脑电图等信号的处理与识别。
04
重点难点总结与复习指导
第三章重点难点总结
离散时间信号与系统的时域分析
掌握离散时间信号的定义、性质及分类,理解离散时间系统的描述方式,掌握卷积和的计 算方法。
离散时间信号的频域分析
理解周期信号的傅里叶级数展开,掌握离散时间信号的傅里叶变换及其性质,了解频域采 样理论。
内部奇点的留数和。这种方法适用于X(z)在复平面上有奇点的情况。
系统函数H(z)求解方法
直接法
根据系统差分方程,直接写出系统函 数H(z)的表达式。这种方法简单直接, 但需要注意差分方程的初始条件和边 界条件。
间接法
先求出系统的单位冲激响应h(n),然 后根据h(n)求出H(z)。这种方法需要 先确定系统的单位冲激响应,计算量 相对较大。
课后习题解答与技巧
熟练掌握z变换的定义和性质,能够灵活运用这些 性质进行信号处理和系统分析。
理解系统函数H(z)的物理意义,掌握其求解方法 ,并能够根据H(z)分析系统的稳定性和频率响应 特性。
掌握z反变换的计算方法,能够根据具体情况选择 合适的方法进行求解。
在解答课后习题时,注意审题和理解题意,明确 题目要求和已知条件,选择合适的公式和方法进 行求解。同时,注意计算过程和结果的准确性, 避免出现计算错误或遗漏重要步骤的情况。
时不变性质
系统对输入信号的响应不随时间推移而改变,即 输入信号延迟或提前一定时间后,输出信号也相 应延迟或提前相同的时间。
稳定性判定
系统对任意有界输入信号的响应也是有界的,即 输出信号的幅度不会无限制地增长。
课后习题解答与技巧

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

数字信号处理-西安电子科技大学出版(_高西全丁美玉)第三版_课后习题答案(全)

18
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
28
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
第 1 章 时域离散信号和时域离散系统
解法(二) 采用解析法。 按照题7图写出x(n)和h(n)的表达式分别为
5. 设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输 出, 判断系统是否是线性非时变的。
(1)y(n)=x(n)+2x(n-1)+3x(n-2) (2)y(n)=2x(n)+3 (3)y(n)=x(n-n0) n0 (4)y(n)=x(-n)
15
第 1 章 时域离散信号和时域离散系统
非零区间如下:
0≤m≤3 -4≤m≤n
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0

数字信号处理Chapter_4(第三版教材)

数字信号处理Chapter_4(第三版教材)

Digital Processing of ContinuousTime Signals
Complete block-diagram
Antialiasing filter
S/H
A/D
DSP
D/A
Reconstruction filter
• Since both the anti-aliasing filter and the reconstruction filter are analog lowpass filters, we review first the theory behind the design of such filters • Also, the most widely used IIR digitae conversion of an analog lowpass prototype
-<n<
with T being the sampling period • The reciprocal of T is called the sampling frequency FT, i.e., FT =1/T
Sampling of Continuous-time Signals
• Now, the frequency-domain representation of ga(t) is given by its continuos-time Fourier transform (CTFT):
• gp(t) is a continuous-time signal consisting of a train of uniformly spaced impulses with the impulse at t = nT weighted by the sampled value ga(nT) of ga(t) at that instant t=nT

数字信号处理第三版(高西全丁玉美)信号处理章

数字信号处理第三版(高西全丁玉美)信号处理章
方框图能够形象地表明实现系统所要求的硬件数量、算法步骤以及 运算过程的复杂程度
第4章 数字滤波器的基本结构 2. 离散时间系统结构的信号流图表示法
第4章 数字滤波器的基本结构 2. 离散时间系统结构的信号流图表示法 例 二阶数字滤波器系统的信号流图可表示为
信号流图与方框图完全等效,但是画起来要更简单些
1 直接型 (Ⅰ型)
N阶的IIR滤波器的差分方程表示如下
M
N
y(n) bi x(n i) ai y(n i)
i0
i 1
令M=N时,方程对应的信号流图可表示成
第4章 数字滤波器的基本结构
M
N
y(n) bi x(n i) ai y(n i)
i0
i 1
直接I型结构
M
H (z)
Y (z) X (z)
第4章 数字滤波器的基本结构 直接型(II型 )---结构特点
➢ 两个网络级联,第一个有反馈的N节延时网络实现极点,第二 个横向结构M节延时网络实现零点。
➢ 实现N阶滤波器(N>=M),只需N级延时单元。所需延时单元 最少,故称典范型。
➢ 具有直接型实现的一般缺点。
第4章 数字滤波器的基本结构
系统函数为
bk z k
k 0
N
ak zk
k 0
第4章 数字滤波器的基本结构 直接型(I型 )---结构特点
➢ 两个网络级联,第一个横向结构M节延时网络实现零点,第二 个有反馈的N节延时网络实现极点。
➢ 共需(N+M)级延时单元。 ➢ 系数ai,bi不是直接决定单个零极点,因而不能很好地进行滤波
器性能控制。 ➢ 极点对系数的变化过于灵敏,从而使系统频率响应对系数变化
M

《数字信号处理》教学大纲(配丁玉美书)

《数字信号处理》教学大纲(配丁玉美书)

《数字信号处理》教学大纲课程名称:数字信号处理学分:4学时:68+12课程性质:必修一、课程的地位、作用和任务本课程是电子信息工程、通信工程、信息工程、电子信息科学与技术等专业的必修课。

几乎所有的工程技术领域都会涉及到信号处理问题。

数字信号处理是对信号进行分析、变换、综合、估值与识别等,由于它具有精度高、高稳定性、灵活性强、便于集成以及可以对数字信号进行存储、运算等优点,目前已广泛应用于语音、雷达、声纳、地震、图像、通信、控制、生物医学等领域。

数字信号处理的理论和技术是目前高新理论和技术的有力支撑。

是电气信息类专业的专业基础课。

本课程的主要任务是:(1)加深学习信号处理的基础,使学生了解连续信号与离散信号相互转换的关系,掌握数字信号处理的基本思想、基本原理;(2)掌握数字信号处理实现的基本方法及各自的优缺点;(3)了解数字信号处理的应用场合及发展趋势。

为有关后继课程的学习和今后工作实践打下良好基础。

几乎所有的工程技术领域都会涉及到信号处理问题,信号处理有模拟信号处理和数字信号处理两种类型,数字信号处理的处理对象是数字信号,数字信号是幅度和时间都离散的离散信号。

数字信号处理是一门理论和实践密切结合的课程,它是采用数值分析计算的方法实现信号的处理,其实现方法有软件实现和硬件实现两种,软件实现方法指的是用户按照数字信号处理的原理和算法编写程序在通用计算机上实现,硬件实现是根据数字信号处理的原理和算法设计硬件结构图,用乘法器、加法器、延时器、存储器以及接口实现。

本课程的目的要求是:通过学习掌握是数字信号处理的基础理论,有离散信号和系统的描述方法、差分方程、时域分析、频域分析、Z域分析等,熟练掌握是数字滤波器的基本理论和设计方法,熟练掌握IIR数字滤波器、FIR滤波器的基本理论和设计方法,初步掌握是数字信号处理的技术实现,有软、硬件实现方法。

培养学生能够从数学方法、物理概念及工程概念去分析问题和解决问题。

数字信号处理第三版西安科大出版高西全丁玉美课后答桉第3和4章

数字信号处理第三版西安科大出版高西全丁玉美课后答桉第3和4章
x(n) 2
1
N 1
X (k) 2
n0
N k0
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
7)
(1) 长度为N的共轭对称序列xep(n)与反共轭对称序列
xop(n):
xep(n) xep(N n)
xop (n) xop (N n)
序列x(n)的共轭对称分量与共轭反对称分量:
xep (n)
所以
~xN (n)
x(n rN )
r
即 ~xN (n) 是x(n)的周期延拓序列, 由DFT与DFS的关系
可得出
xN (n) IDFT[ X (k)] ~xN (n)RN (n) x(n rN )RN (n) r
第3章 离散傅里叶变换(DFT)及其快速算法
(FFT)
xN(n)=IDFT[X(k)]为x(n)的周期延拓序列(以N为延拓周期) 的主值序列。 以后这一结论可以直接引用。
DFT[x(n m)N RN (n)] WNkm X (k)
5) 频域循环移位性质
DFT[WNnm x(n)] X ((k m)) N RN (k)
第3章
6) 循环卷积:
离散傅里叶变换(DFT)及其快速算法 (FFT)
L1
yc (n) h(m)x((n m))L RL (n)=h(n) L x(n)
(1)在h(n)的尾部加L-N个零点, 在x(n)的尾部加L-M
(2)计算L点的H(k)=FFT[h(n)]和L点的X(k)=FFT [x(n)];
(3) 计算Y(k)=H(k)X(k) (4) 计算Y(n)=IFFT[Y(k)], n=0,1,2,3,…,L-1。 但当h(n)和x(n)中任一个的长度很长或者无限长时, 需用 书上介绍的重叠相加法和重叠保留法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6 教材第 章习题与上机题解答 教材第4章习题与上机题解答 章习题与上机题解答
快速傅里叶变换(FFT)是DFT的快速算法, 没有新的 物理概念。 FFT的基本思想和方法教材中都有详细的叙述, 所以只给出教材第4章的习题与上机题解答。 1. 如果某通用单片计算机的速度为平均每次复数乘需 要4 s, 每次复数加需要1 s, 用来计算N=1024点DFT, 问直接计算需要多少时间。 用FFT计算呢?照这样计算, 用 FFT进行快速卷积对信号进行处理时, 估计可实现实时处理 的信号最高频率。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
N 6 TF = 5 ×10 × lbN + NlbN ×10 2 6 1024 = 5 ×10 × ×10 + 1024 ×10 ×106 2 = 30.72 ms
6
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
n = 偶数 n = 奇数
,0≤n≤2N-1
在编程序实现时, 只要将存放x1(n)和x2(n)的两个数组的元 素分别依次放入存放x(n)的数组的偶数和奇数数组元素中 即可。
5. 分别画出16点基2DIT-FFT和DIF-FFT运算流图, 并计算其复数乘次数, 如果考虑三类碟形的乘法计算, 试计算复乘次数。 解: 本题比较简单, 仿照教材中的8点基2DIT-FFT 和DIF-FFT运算流图很容易画出16点基2DIT-FFT和DIF-FFT 运算流图。 但画图占篇幅较大, 这里省略本题解答, 请 读者自己完成。
1 Re[ y (n)] = [ y (n) + y* (n)] = DFT[Yep (k )] = x1 (n) 2 1 jIm[ y (n)] = [ y ( n) + y* ( n)] = DFT[Yop ( k )] = jx2 (n) 2
③ 由x1(n)和x2(n)合成x(n):
n x1 2 x ( n) = x n 1 2 2
X ( k ) = X 1 (k ) + W2kN X 2 (k )
k X ( k + N ) = X 1 (k ) W2 N X 2 (k )
k = 0,1, , N 1
还要进行由Y(k)求X1(k)、 X2(k)和 X(k)的运算(运算量相对很少)。 (2) 与(1)相同, 设 x1(n)=x(2n) n=0, 1, …, N-1 x2(n)=x(2n+1) n=0, 1, …, N-1 X (k ) = X (k ) + W X (k ) X)1 W X (k ) k = 0,1,, N 1 (k)=DFT[x1(n)] X (k + N ) = X (k k=0, 1, …, N-1 X (k)=DFT[x (n)]
x1(n)=x(2n) 1, …, N-1 x2(n)=x(2n+1) 1, …, N-1
n=0,
n=0,
根据DIT-FFT的思想, 只要 求得x1(n)和x2(n)的N点DFT, 再 经过简单的一级蝶形运算就可得
令 y(n)=x1(n)+jx2(n) Y(k)=DFT[y(n)] 则 k=0, 1, …, N-1
可实时处理的信号最高频率fmax为
f max
1 1 1024 1 Fs = = 3.1158 MHz=1.6129 MHz ≤ 2 2 Tc 2
由此可见, 用DSP专用单片机可大大提高信号处理速度。 所以, DSP在数字信号处理领域得到广泛应用。 机器周期 小于1 ns的DSP产品已上市, 其处理速度更高。
1 x( n) = [ f (n) + f ( n)] 2
1 y (n) = [ f (n) f (n)] 2j
4. 设x(n)是长度为2N的有限长实序列, X(k)为x(n)的 2N点DFT。 (1) 试设计用一次N点FFT完成计算X(k)的高效算法。 (2) 若已知X(k) ,试设计用一次N点IFFT实现求X(k)的 2N点IDFT运算。
1 X 1 ( k ) = DFT[ x1 (n)] = Yep (k ) = [Y (k ) + Y * ( N k )] 2 1 jX 2 (k ) = DFT[ jx2 (n)] = Yep ( k ) = [Y (k ) Y * ( N k )] 2
2N点DFT[x(n)]=X(k)可由X1(k)和X2(k)得到
点IFFT来完成的算法。 解: 因为x(n)和y(n)均为实序 列, 所以, X(k)和Y(n)为共轭 对称序列, jY(k)为共轭反对称 序列。 可令X(k)和jY(k)分别作为 复序列F(k)的共轭对称分量和共 轭反对称分量, 即
由DFT的共轭对称性可知 Re[f(n)]=IDFT[Fep(k)]=IDFT[X(k)]=x(n) j Im[f(n)]=IDFT[Fop(k)]=IDFT[jY(k)]=jy(n) 故
应当说明, 实际实现时, fmax还要小一些。 这是由于 实际中要求采样频率高于奈奎斯特速率, 而且在采用重叠 相加法时, 重叠部分要计算两次。 重叠部分长度与h(n)长 度有关, 而且还有存取数据和指令周期等消耗的时间。 2. 如果将通用单片机换成数字信号处理专用单片机 TMS320系列, 计算复数乘和复数加各需要10 ns。 请重复 做上题。 解: 与第1题同理。 直接计算1024点DFT所需计算时间TD为 TD=10×10-9×10242+10×10-9×1 047 552=20.961 28 ms
6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分别对 单位脉冲序列、 矩形序列、 三角序列和正弦序列进行FFT和 IFFT变换, 验证所编程序。
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
解: 当N=1024=210时, 直接计算DFT的复数乘法运算 次数为 N2=1024×1024=1 048 576次 复数加法运算次数为 N(N-1)=1024×1023=1 047 552次 直接计算所用计算时间TD为 TD=4×10-6×10242+1 047 552×10-6=5.241 856 s 用FFT计算1024点DFT所需计算时间TF为
用FFT计算1024点DFT所需计算时间TF为
N TF = 10 ×10 × l bN + 10 ×109 × N l bN 2 8 1024 = 10 × ×10 + 108 ×1024 ×10 2 = 0.1536 ms
9
快速卷积计算时间Tc约为
Tc = 2TF + 1024 次复数乘计算时间 = 2 × 0.1536 × 10 3 + 10 × 10 9 × 1024 = 0.317 44 ms
Tc = 2TF + 1024次复数乘计算时间 = 71680 s + 4 ×1024 s = 65536 s
所以 每秒钟处理的采样点数(即采样速率)
1024 Fs < = 15 625 次/秒 6 65536 × 10
由采样定理知, 可实时处理的信号最高频率为
f max
Fs 15625 < = = 7.8125 kHz 2 2
1 X 1 (k ) = [ X (k ) + X (k + N )] 2 1 X 2 ( k ) = [ X (k ) + X (k + N )]W2Nk 2
② 由X1(k)和X2(k)构成N点频域序列Y(k): Y(k)=X1(k)+jX2(k)=Yep(k)+Yop(k) 其中, Yep(k)=X1(k), Yop(k)=jX2(k), 进行N点IFFT, 得到 y(n)=IFFT[Y(k)]=Re[y(n)]+j Im[y(n)] n=0, 1, …, N-1 由DFT的共轭对称性知
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT
1 k 2N 2 1 k 2N 2
由上式可解出
1 X 1 (k ) = [ X (k ) + X (k + N )] 2 1 X 2 (k ) = [ X (k ) + X (k + N )]W2Nk 2
k = 0,1, 2, , N 1
由以上分析可得出运算过程如下: ① 由X(k)计算出X1(k)和X2(k):
x3n=ifft46(X3k, N)
%调
用ifft46函数计算X3k的IDFT 运行程序输出时域序列如下 所示, 正是原序列x1n、 x2n和 x3n。 x1n = 1 0 0 0 0 0 0 0
相关文档
最新文档