电压系统无功功率和电压调整

合集下载

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案

电力系统的无功补偿和电压调整的解决方案为了保证电力系统的稳定运行和电能质量的提高,无功补偿和电压调整是非常重要的技术手段。

本文将从技术和设备两方面,详细讨论电力系统的无功补偿和电压调整的解决方案。

1.静态无功补偿装置(SVC):SVC是通过控制可变电容器和可变电抗器的容量,实现电力系统的无功调节。

它具有快速响应、精确调节无功功率因数的特点,并且能够提供压力支撑和电压稳定功能。

2.静态同步补偿装置(STATCOM):STATCOM是利用电力电子器件和控制系统,通过直流电压的调节来实现对电力系统无功功率的调节。

它能够实现快速响应和灵活控制的特点,可以有效地提高电力系统的无功调节能力。

3.无功发电机(SVC):无功发电机是利用发电机的励磁系统来控制无功功率的输出,实现电力系统的无功补偿。

它可以根据需要灵活调节无功功率因数,提高电力系统的无功调节能力。

4.并联电容器补偿装置:并联电容器补偿装置是通过并联连接电容器,提供无功功率来补偿电力系统的无功功率缺陷。

它具有成本低、简单可靠的特点,并且能够有效改善电力系统的功率因数。

5.无功补偿滤波器:无功补偿滤波器是利用滤波器来抑制电力系统中的无功电流,实现无功补偿。

它可以有效减少电力系统中的谐波和电磁干扰,提高电力系统的电能质量。

1.电压调整变压器:通过调整变压器的变比来实现电力系统的电压调整。

它可以根据需要提高或降低电压水平,保证电力系统的电压稳定性。

2.电压调整容性器:通过并联连接容性器,提供额外的无功功率,实现电力系统的电压调整。

它可以根据需要灵活调整电压水平,保证电力系统的电压稳定性。

3.电压调整调压器:通过调节调压器的输出电压,实现电力系统的电压调整。

它具有调节范围广、快速响应的特点,并且能够适应不同负荷变化的需求。

4.电力电子设备:电力电子器件和控制系统可以通过改变电力系统中的电流、电压和频率等参数,实现对电力系统的电压调整。

它具有响应快、控制精度高的特点,并且能够适应不同负荷的变化。

电力系统无功功率和电压调整

电力系统无功功率和电压调整

3
二、无功补偿与调压配置技术要求
• 500千伏电网应分散、优化配置高压、低压并联电抗器, 千伏电网应分散、优化配置高压、低压并联电抗器, 千伏电网应分散 原则上要求高、低压并联电抗器总容量与500千伏线路 原则上要求高、低压并联电抗器总容量与 千伏线路 充电功率基本补偿。接入500千伏系统电厂升压站可考 充电功率基本补偿。接入 千伏系统电厂升压站可考 虑装设一定容量、通过开关投退的高压电抗器。 虑装设一定容量、通过开关投退的高压电抗器。500 千伏降压变容性无功补偿容量应按主变容量10%— 千伏降压变容性无功补偿容量应按主变容量 25%配置或经计算分析确定。 配置或经计算分析确定。 配置或经计算分析确定 • 220 千伏变电站无功补偿容量一般按 220 千伏主变容 配置, 千伏主变最大负荷时, 量 10%—25%配置,并满足 配置 并满足220千伏主变最大负荷时, 千伏主变最大负荷时 其高压侧功率因素不低于0.95。当220千伏变电站 千伏变电站110 其高压侧功率因素不低于 。 千伏变电站 千伏及以下出线以电缆为主或较大容量地区电源接入 该变电站110千伏系统时,容性无功补偿容量可按下限 千伏系统时, 该变电站 千伏系统时 配置。一般情况下无功补偿装置的单组容量, 配置。一般情况下无功补偿装置的单组容量,接入 35 千伏电压等级不宜大于12Mvar,接于 千伏电压等级 千伏电压等级不宜大于 ,接于10千伏电压等级 不宜大于8Mvar。 不宜大于 。
7
三、电压的监视与调整
• 各地区加强各地关口无功电压的调度管理及网 供力率的考核, 供力率的考核,协助用电管理部门对用户电容 器的运行管理,充分调用地区电源机组的无功 器的运行管理, 调节能力, 调节能力,加强对调度管辖内电厂的无功电压 运行管理及考核。 运行管理及考核。地区无功电压调整应遵循如 下原则: 下原则: 1、正常情况下地区网供力率应满足省调下达的 、 网供力率考核指标,同时按逆调压原则调节, 网供力率考核指标,同时按逆调压原则调节, 即地区网供力率高峰时段调高、低谷时段调低 即地区网供力率高峰时段调高、 运行。当地区电压考核点电压越限时, 运行。当地区电压考核点电压越限时,应就地 采取控制措施。 采取控制措施。 2、地区电网无功电压的调整应与220千伏电压协 、地区电网无功电压的调整应与 千伏电压协 8 调控制。 调控制。

第五章 电力系统的无功功率平衡与电压调整

第五章 电力系统的无功功率平衡与电压调整

u2
u2 N
U U T max S max : U 1max u2 N 1 f max
U1min U T min S min : U1 f min u2 N u2 min
u2 max
后面同降压式,对普通变要记得校验。
三. 改变无功功率分布调压 使用前提:(超)高压网络效果显著 要求:按照用户侧调压要求,选择无功补偿装 置的容量Qb(及变压器变比)。
正常情况下
10 kV : 7%
35kV : 0 ~ 10%
第5章 电力系统的无功功率平衡 与电压调整
§5-2 电力系统的无功电源和 无功平衡
一. 无功功率电源 无功电源 同步发电机、 某些情况的输电线路 : 无功补偿装置: 同步调相机、静电(并联)电容 器、静止补偿器 1. 同步发电机 唯一的有功电源,主要的无功电源。 发电机在正常运行状态下发出无功:
静电(并联)电容器 运行特点: 时,全投; 时,全切。 ① 时,根据变压器低压侧调压要求选择k 已知: 为 时用户侧电压, 为其归算 至高压侧的值
选择与 最接近的分接头电压,确定

时,按照调压要求确定Qb
查产品目录,选大于Qb且与其最接近电容器 。 ③ 根据所选 、 校验 和 时低压侧电 压是否满足要求。
u2 (u2C )
k :1
电源电压(恒定 )
(用户所需功率 (U 2C ) )
(无功补偿容量 (归算至高压侧 ) ) 说明:高压侧电压用大写符 k :实际变比 号,低压侧电压用小写符号, u :U 归算到高压侧的值 U u k 补偿后的参数在下标加字母 u :U 归算到高压侧的值 U u k ”c”.
2 2 2 2
2C
2C

第六章电力系统的无功功率和电压调整

第六章电力系统的无功功率和电压调整
无功功率为ΣQGCN时,系
统电压为UN,但电源提供
的无功功率下降为ΣQGC
时 . 无功也能平衡,但电 压要下降。 ■ 调节变压器分接头可以改 善局部电压,但电源提供 的无功不足时,电压不能 全面改善,而且有可能发 生电压崩溃的危险。
第二节电力系统中无功功率的 最优分布
一、负荷功率因数的提高
■ 异步电动机的无功功率:
二、无功功率的平衡
■ 负荷无功功率的静态电压特性
jXΣ
Q



1’

1
U
二、无功功率的平衡
■ 发电机的静态电压特性
■ 近似二次曲线,E ↑ , 曲 线 ↑
Ф
δ
Ф
U
Q 2’
2 E
U
二、无功功率的平衡
Q
2’ 2
1’ 1
U
二、无功功率的平衡
■ 图中所示的无功电源静态 电压特性和无功负荷静态 电压特性,当电源提供的
■ 静止补偿器和静止调相机是分别与电容器和调相 机相对应而又同属“灵活交流输电系统”范 畴 的两种无功功率电源。前者出现在70年代初,是 这一“家族”的最早成员,日前已为人们所 熟 知;后者则尚待扩大试运行的规模。静止补 偿 器的全称为静止无功功率补偿器(svc)。
■ 并联电抗器
■ 就感性无功功率而言,并联电抗器显然不是电 源而是负荷,但在某些电力系统中的确装有这 种设施,用以吸取轻载或空载线路过剩的感性 无功功率。而对高压远距离输电线路而言,它 还有提高输送能力,降低过电压等作用。
■ 最优网损微增率准则
■ 无疑,系统的无功资源越丰富,就可能节约越多 的网损,但也可能会使电网的建设投资增大。
■ 在进行电网规划时,希望以较小的投资,节约 较多的网损,所以无功规划的目标函数不能只 考虑网损,也不能只考虑投资,需要考虑将来 一个时间段内电网的综合效益最好。

电压系统无功功率和电压调整课件

电压系统无功功率和电压调整课件
无功功率与有功功率的关系
在电力系统中,无功功率和有功功率是相互依存的。有功功率用于消耗 电能并转换成其他形式的能量,而无功功率则用于维持系统的电压水平 和保障设备的正常运行。
02
电压调整的原理和方法
电压调整的必要性
1 2
保证电力系统的稳定运行
电压是电力系统稳定运行的重要因素,电压不稳 定可能导致设备损坏、系统崩溃等问题。
减少线路损耗
无功功率的传输和交换有助于减少线路损耗,提高电力系统的效率 。
无功功率的传输与交换
01
无功功率的传输
在电力系统中,无功功率主要通过变压器和线路进行传输。变压器通过
改变电压和电流的幅度和相位来实现无功功率的传输。
02 03
无功功率的交换
为了平衡区域间的无功功率需求,电力系统需要进行无功功率的交换。 这种交换通常通过无功补偿设备和装置来实现,如并联电容器、静止无 功补偿器等。
提高电力系统的经济性
合理调整电压可以降低线路损耗,提高电力系统 的经济性。
3
保证电能质量
电压质量对用户用电设备的安全和正常运行至关 重要,电压异常可能导致设备损坏或影响产品质 量。
电压调整的方法
变压器分接头调整
通过改变变压器的变比来调整电压。
调度指令调整
调度员根据系统运行状况,通过调度指令来 调整电压。
05
电压系统无功功率和电压 调整的实际应用
实际应用中的问题与挑战
01
02
03
04
电压波动问题
由于负载的随机变化,电压可 能在短时间内大幅度波动。
无功功率平衡问题
无功功率的不平衡可能导致电 压下降或上升,影响电力系统
的稳定性。
设备过载问题

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整

P
取决于发电机的视在
功率。以O点为圆心
B
, 以 OB 为 半 径 的 圆
弧S。
T
E qN
(U N xd
)
S
IN
xd
(U N xd
)
F
O'
U
N
U (
N
xd
)
O
Q
I N
图 2-4 隐 极 式 发 电 机 组 运 行 极 限 图
电力系统的无功功率和电压调整
2. 励磁绕组温升约束。取决 于发电机的空载电势。以 O’点为圆心,以O’B为半 径的圆弧F。
❖ 解决问题:无功补偿,无功电源的最优分布
电力系统的无功功率和电压调整
第一节 电力系统中无功功率的平衡
❖ 一、无功功率负荷和无功功率损耗
1.无功功率负荷 2.变压器中的无功功率损耗 3.电力线路上的无功功率损耗
❖ 二、无功功率电源
1.发电机 2.电容器和调相机 3.静止补偿器和静止调相机 4.并联电抗器
将异步电动机同步化运;
电力系统的无功功率和电压调整
第二节 电力系统中无功功率的最优分布
❖ 一、无功功率电源的最优分布 ❖ 二、无功功率负荷的最优补偿
电力系统的无功功率和电压调整
无功功率电源的最优分布
❖ 研究的是:在无功电源总量是定值时,每个 节点安装多少无功电源,使全网的有功损耗 最少?
❖ 等网损微增率准则
电力系统的无功功率和电压调整
无功功率负荷的最优补偿
❖ 如何确定无功补偿容量、补偿设备的分布使 无功补偿获得的收益最大?
❖ 最优网损微增率准则
电力系统的无功功率和电压调整
一、无功功率电源的最优分布
❖ 目标:

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整前言在今天的社会中,电力系统已经成为了我们日常生活中不可或缺的一部分,而电力系统中的无功功率和电压调整则是其最重要的组成部分之一。

无功功率和电压调整可以保证电力系统的正常运行和稳定性,从而保障了人们生活的安全和稳定。

本文将会针对电力系统的无功功率和电压调整进行介绍和分析。

无功功率定义无功功率是指在交流电中由于电容、电感电流的相位与电压不同而引起的电流,它不能转化为机械功或电能的功率。

虽然无功功率不能直接输出,但是在电力系统中同样是非常重要的,因为它能够影响到电力系统的正常稳定运行。

无功功率的作用在电力系统中,无功功率具有很重要的作用。

第一,无功功率能够平衡电力系统中的有功功率,从而保证电力系统的电压和频率的稳定性。

当有功功率的需求增加时,无功功率就会自动地增加以保持电力系统的稳态;而当有功功率的需求减少时,无功功率也会自动地减少。

第二,无功功率还可以改善电力系统的功率因数。

正常情况下,电力系统的功率因数应该在0.8至1之间,但有些设备如电容器和电感器等会使功率因数发生变化。

而通过对无功功率的调整,我们就可以将功率因数调整到正常范围内,从而保证电力系统的正常运行。

无功功率的调整方法一般来说,无功功率的调整主要有以下几种方法:•静态无功发生器。

静态无功发生器是通过静态电子管将直流电分解成交流电来产生无功功率的。

它具有无机械运动、静音、响应快等优点,因此得到了广泛应用。

•动态无功补偿设备。

动态无功补偿设备可以根据负载状况自动调整无功功率,从而保持电网的稳定性。

这种设备具有响应时间快、可控性强等优点,在大型电力系统中尤为重要。

•磁流控制器。

磁流控制器是利用变压器的饱和磁路特性,通过控制原边电流和二次电流的相位差,调节负载电流,从而达到调整无功功率的目的。

电压调整定义电压调整是指对电力系统电压的控制和调节。

在电力系统中,电压的稳定性对于保证电网正常运行是非常重要的。

如果电压过高或者过低,都会对电力系统的正常运行产生不利的影响。

电力系统的无功功率平衡和电压调整

电力系统的无功功率平衡和电压调整

◆ 利用无功补偿调压—同步调相机 · 最小负荷时,调相机按(0.5~0.65)
额定容量欠励磁运行; · 最大负荷时,调相机按额定容量
过励磁运行
◆ 低压配电线路和电缆线路,R>X,PR/V占电压损耗较大,无功补偿调压效果一般
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
◆ 线路串联电容补偿调压
◆ 改变变压器变比调压 · 降压变压器分接头选择
V1 RT+jXT k:1 V2
P+jQ
· 升压变压器分接头选择
V2 1:k G
RT+jXT V1 P+jQ
· 根据计算得到的分接头电压选择最接近的变压器分接头额定电压;
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
◆ 改变变压器变比调压 · 采用固定分接头的变压器调压,电压损耗不会改变,负荷变化时次级电压
电力系统的无功功率平衡和电压调整—无功功率电源
□ 静电电容器
◆ 输出无功与节点电压平方成正比,无功功率调节性能较差;
◆ 装设容量可大可小,既可集中安装,亦可分散安装;
◆ 单位容量投资费用较小,与总容量无关; ◆ 运行功率损耗小,约为额定容量的0.3%~0.5%;
QC=V 2/XC
◆ 无旋转元件,运行维护方便;
电力系统的无功功率平衡和电压调整—电压调整的原理和措施
□ 电压调整的基本原理 ◆ 调节励磁电流改变VG
◆ 适当选择变压器变比k
VG 1:k1 G
R+jX
k2:1 Vb P+jQ
◆ 改变线路参数
◆ 改变无功功率分布
□ 电压调整的措施 ◆ 发电机调压 ◆ 改变变压器变比 ◆ 无功补偿调压 · 采用静电电容器 · 采用同步调相机

电力系统无功功率平衡和电压调整

电力系统无功功率平衡和电压调整
具有更高的动态响应性能,可实现无功功率 的连续调节,但成本较高。
无功补偿装置的应用场景和效果
高峰负荷时段
提高电压稳定性,减少电压波动和闪变现象。
电网故障时
快速响应无功功率变化,维持系统电压稳定。
风电、光伏等新能源接入
平滑新能源发电的功率输出波动,提高并网性能。
工业园区和大型建筑物
降低能耗,提高供电质量。
电力系统无功功率平衡和电 压调整
目 录
• 电力系统无功功率平衡 • 电压调整的原理和方法 • 电力系统无功补偿装置 • 电力系统无功管理和优化 • 电力系统电压稳定性和控制 • 电力系统无功功率平衡和电压调整的未来发展
01
电力系统无功功率平衡
无功功率的产生和影响
无功功率的产生
在电力系统中,电动机、变压器等感 性负载需要消耗无功功率来建立磁场 ,以实现能量的转换和传输。
Байду номын сангаас谢您的观看
THANKS
06
电力系统无功功率平衡和 电压调整的未来发展
新能源并网对无功功率平衡和电压调整的影响
01
新能源并网将增加电力系统的复杂性和不确定性,对无功功率 平衡和电压调整带来挑战。
02
新能源并网将促进无功功率平衡和电压调整技术的发展,推动
电力系统向更加智能化、高效化的方向发展。
新能源并网将促进电力系统的优化配置,提高电力系统的可靠
电压波动可能导致电力设备过载或欠载,影响 其正常运行和寿命。
对用户设备的影响
电压波动可能导致用户设备工作异常,影响生 产和生活。
对系统稳定性的影响
电压波动可能导致电力系统不稳定,甚至引发系统崩溃。
电压调整的原理
根据电力系统的无功功率平衡原理, 电压水平取决于无功功率的分布和平 衡情况。

电力系统分析:第06章 电力系统无功功率平衡与电压调整

 电力系统分析:第06章 电力系统无功功率平衡与电压调整

jB T
励磁支路损耗的百分值基本上等于空载电流I0的百分值,约为1% ~ 2%不随负荷大小的改变而变化,称之为不变损耗;绕组漏抗中损耗
与所带负荷的大小有关,称为可变损耗。在变压器满载时,基本上等于
短路电压Uk的百分值,约为10%。 但对多电压级网络。变压器中的无 功功率损耗就相当可观。变压器的无功损耗是感性的
(三)无功储备
无功平衡的前提是系统的电压水平正常。和有功一样,系统中也应该保 持一定的无功储备。一般取最大负荷的7~8%。
12
例6-1
T-1 110kV
T-2
S% =
G
2 ×100kM
40LD+ j30MVA
某输电系统各元件参数如下:
发电机: 变压器T-1
P每N =台50SMN=W31,.5McVoAs,△= P0.=80358.5kWU,N =
= 42.27 + j37.618(MVA)
若发电机在满足有功需求时按额定功率因数运行,其输出功率
SG = 42.27 + j42.27×tg =42.27+j26.196 (MVA )
此时无功缺额达到
37.618 26.196=11.422(Mvar)
根据以上对无功功率缺额的初步估算,拟在变压器T-2的低压 侧设置10Mvar补偿容量,补偿前负荷功率因数为0.8,补偿后 可提高到0.895.计及补偿后线路和变压器绕组损耗还会减少, 发电机将能在额定功率因数附近运行
(c)饱和电抗器型SR
电容和电感组成滤波电路,滤去高次谐波,以免产生电流和电压的畸变 运行维护简单,损耗较小,对冲击负荷有较强的适应性,可装于枢纽变 电所进行电压控制,也可装于大的冲击负荷侧,如轧钢厂做无功补偿

第5章-电力系统无功功率与电压调整

第5章-电力系统无功功率与电压调整

第五章电力系统无功功率与电压调整①电力系统电压调整概述②电力系统无功功率平衡③电力系统中枢节点电压管理④电力系统电压调整措施⑤电压调整与频率调整的关系一、电力系统电压调整概述1、电压调整的必要性电力系统运行中各种电气设备和用电设备都是按照其额定电压设置制造的只有在额定电压下运行才能取得最佳的运行效果,并保证其使用寿命。

因此,电压是电力系统正常运行的重要性能指标之一,通过电压调整,使得电力系统各节点电压保持在允许的范围是电力系统运行的基本任务。

电压偏移过大给电力系统本身以及用电设备带来不良的影响:(1)工作效率下降,寿命降低;(2)电压过低引起工业产品出现次品;(3)电压过低引起电机发热;(4)电压过低引起电压和功率损耗增加;(5)电压过高引起设备绝缘受损、缩短设备使用寿命(6)可能引起系统电压崩溃。

一、电力系统电压调整概述虽然我们期望电力系统中各节点的电压保持在额定值,但是在实际电力系统运行中是无法做到的。

2、电力系统允许的电压偏移为什么呢?(1)设备及线路压降(2)负荷随机波动(3)系统运行方式改变由此可见,严格保证所有电气设备和用电设备在任何时刻的电压都为额定值几乎是不可能的。

因此,大多数设备都允许有一定的电压偏移。

电力系统一般规定一个电压偏移的最大允许范围,例如:35kV 及以上供电电压正负偏移±5%;10kV及以下在±7%以内。

(不同的电压等级,不同的用户类型,允许的电压偏移范围也不一样)二、电力系统无功功率平衡1、无功功率负载和无功损耗电压是衡量电能质量的重要指标。

电力系统的运行电压水平取决于无功功率的平衡。

系统中各种无功电源的无功出力应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值。

•异步电动机电压下降,转差增大,定子电流增大。

在额定电压附近,电动机的无功功率随电压升降而增减;而当电压明显低于额定值时,无功功率主要由漏抗无功损耗决定,随着电压下降反而上升。

电网无功功率和电压及其调整

电网无功功率和电压及其调整

1. 电压质量监测点的设置原则 (1)电网电压质量监测点的设置
220kV及以上发电厂的高压母线; 220kV及以上电压等级的变电站的母线电压。 (2)供电电压质量监测点的设置 A: 带地区负荷的变电站、发电厂10kV母线。 B:35kV 专线和110kV供电的用户端电压。 C:10kV 供电的用户,每10MW负荷至少有一个点。 D:380/220 的用户,每百台配变至少设两个。
28
18
二、 无功功率平衡方案的编制
1. 无功电源
ZQ-EQ,2Q+EQe+ZQ, 2. 无功负荷
ZQ.-ZQm+2AQ,EAQ. 3. 无功功率平衡
2Q-2Q-2Q

时,系统总的无功功率能够平衡。
19
4. 无功平衡方案编制
(1)运行方式的确定。 (2)进行各种方式无功平衡的计算(潮流、电压计算),并绘制出各种方 式全系统的无功潮流图。 (3)绘制全系统总的无功平衡表。
发电机、静止补偿器、并联电容器、电抗器等。 2. 改变有功和无功的重新分布进行调压
有载和无载调压变压器调压、改变运行方式。 3. 改变网络参数进行调压
加大导线截面,线路中装设串联电容器。
26
三、 如何合理应用各种调压措施
1. 电网必须拥有足够的无功功率电源,若不足,应先采取措施解决。 2. 应优先采用发电机调压和无激励调压变压器调压。 3. 变电站应配置足够的无功补偿设备,完好率应在95%以上。 4. 在无功平衡略有富裕的电网,应在220kV、110kV电网中普遍采用有载调压 变压器。对低压侧同时安装有 时,应先投切电容器组,后调有载开关。
7
2. 电压质量合格率的统计
△ 监测点电压合格率: △ 电网电压合格率:

第二节 电力系统无功功率与电压的调整

第二节  电力系统无功功率与电压的调整

图9-7 综合负荷的电压静态特性图9-8 发电机有功与无功功率的出力图第二节 电力系统无功功率与电压的调整电压是衡量电能质量的重要指标,各种电气设备都是设计在额定电压下运行的,这样既安全又有最高的效率。

电力系统在正常运行时,由于网络中电压损耗的存在,当用电负荷变化或系统运行方式变化时,网络中的电压损耗也将发生变化,从而网络中的电压分布将不可避免地随之而发生变化。

随着电力工业的发展,供电范围不断扩大,网络的电压损耗也增大,要使系统中各处的电压都在允许的偏移范围内,需要采取多种调压措施。

电力系统的负荷由各种类型的用电设备组成,一般以异步电动机为主体。

综合负荷的电压静态特性,即电压与负荷取用的有功功率和无功功率的关系如图9-7所示。

分析负荷的电压静态特性可见,在额定电压附近,电压与无功功率的关系比电压与有功功率的关系密切得多,表现为无功功率对电压具有较大的变化率,所以分析系统运行的电压水平应从系统的无功功率分析入手。

一、电力系统的无功功率平衡1.无功电源 电力系统的无功电源有发电机、同步调相机、静电电容器及静止补偿器等。

同步发电机不仅是电力系统唯一的有功电源,也是电力系统的主要无功电源。

当发电机处于额定状态下运行时,发出的无功功率为 Q GN =S GN sin φN =P GN tg φN (9-6)式中,S GN ——发电机的额定视在功率;P GN ——发电机的额定有功功率;Q GN ——发电机的额定无功功率;φN ——发电机的额定功率因数角。

现在以图9-8所示的汽轮发电机有功与无功功率出力图为例来分析发电机在非额定功率因数下运行时,可能发出的无功功率。

图中OA 代表发电机额定电压GN U ,GN I 为发电机额定定子电流,它滞后于GN U 一个额定功率因数角φN 。

AC 代表GNI 在发电机电抗X d 上引起的电压降,正比于定子额定电流,所以AC 亦正比于发电机的额定视在功率S GN 。

这样,C 点表示了发电机的额定运行点。

电力系统无功功率以及电压调整

电力系统无功功率以及电压调整
技术发展
随着科技的进步,电力系统无功功率与电压调整技术也在不断发展。未来技术发展的趋势包括:采用先进的传感 技术和智能算法实现无功功率和电压的快速、准确检测与控制;发展基于电力电子技术的动态无功补偿装置和有 源滤波器;利用大数据和云计算技术实现电网无功功率与电压的优化调度等。
THANKS FOR WATCHING
通过投切无功补偿设备, 如并联电容器、静止无功 补偿器等,来调整系统无 功功率,进而稳定电压。
有载调压
通过调整变压器分接头档 位来改变电压,以满足系 统电压要求。
串联电容器补偿
通过在输电线路中串联电 容器来补偿线路的感抗, 提高线路的电压水平。
电压调整的优化目标与原则
经济性
电压调整应尽量降低系统运行 成本,提高经济效益。
实施效果
无功补偿装置的应用显著减少了该工业园区在生产高峰期的无功功率 消耗,稳定了电压,降低了电能损耗,提高了生产效率。
05 结论与展望
电力系统无功功率与电压调整的重要性和挑战
重要性
电力系统无功功率与电压调整是保障电力系统的稳定运行和电能质量的关键环节。通过合理的无功功 率补偿和电压调整,可以有效降低线路损耗、提高设备利用率、增强系统稳定性,满足用户对电能质 量的需求。
挑战
随着电力系统的规模不断扩大和运行方式的复杂化,无功功率与电压调整面临诸多挑战。例如,无功 功率的合理分布和补偿、电压波动与闪变的抑制、动态无功补偿装置的性能优化等,需要不断研究和 改进。
未来研究方向与技术发展
研究方向
未来电力系统无功功率与电压调整的研究方向将主要集中在以下几个方面:一是无功功率补偿与电压调节的协调 优化;二是智能电网下的无功功率与电压控制策略;三是新能源并网对电力系统无功功率与电压的影响及其应对 措施。

第六章电力系统无功功率和电压调整

第六章电力系统无功功率和电压调整

QGC QLD QL Qres
• Qres>0表示系统中无功功率可以平衡且有适量的
备用; •Qres<0表示系统中无功功率不足,应考虑加设无 功补偿装置。
五、电力系统的电压调整
一、电力系统电压偏移的原因及影响 1.造成电压偏移的原因
(1)设备及线路压降
(2)负荷波动
(3)运行方式改变
(4)无功不足或过剩
七、电力系统的电压调整
1.电压调整的基本原理
:1 :1
图5-20
电压调整原理图
PR QX Vi (VG / k1 V ) / k2 VG / k1 k2 VN
V ( R jX ) I ( R jX )

S
~ *
V*
P jQ PR QX PX QR ( R jX ) j VN VN VN
发电机无功
2
负荷无功
图6-2 无功平衡与电压水平
应该力求实现在额定电压下的系统无功功率平衡。
三、无功功率电源
•电力系统的无功功率电源有发电机、同步调相机、静 电电容器及静止补偿器,后三种装置又称为无功补偿 装置。
1. 发电机
发电机在额定状态下运行时,可发出无功功率:
QGN SGN sin N PGN tg N
2.电压偏移的影响
(1)电压偏移,效率下降,经济性变差。 (2)电压过高,照明设备寿命下降,影响绝缘。 (3)电压过低,电机发热。 (4)系统电压崩溃。
图6-6“电压崩溃”现象
六、中枢点的电压管理
电压中枢点:指那些能够反映和控制整个系统电 压水平的节点(母线)。 1.电压中枢点的选择 一般可选择下列母线作为电压中枢点: (1)大型发电厂的高压母线;

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整电力系统的无功功率电源1)同步发电机2)并联无功补偿设备(装置)一一同步调相机、并联电容器、静止无功补偿器等。

电压中枢点的调压方式1)逆调压一一高峰负荷时增大中枢点的电压、低谷负荷时减少中枢点的电压的调压方式。

适用于当电压中枢点供电的各负荷变化规律大致一样,且负荷的变动较大、供电线路较长时。

2)恒(常)调压一一中枢点的电压在任何负荷下基本保持不变的调压方式。

适用于当电压中枢点供电的各负荷变动较小、供电线路电压损耗也较小时。

3)顺调压一一高峰负荷时允许中枢点的电压略低,低谷负荷时允许中枢点的电压略高的调压方式。

适用于负荷变动和供电线路都较小时、或用户的电压要求较低时。

电压调整的基本原理和措施4节点的实际电压为:为调整4节点电压,可以采取的措施:调UG调变压器分接头改变网络无功分布(装并联无功补偿设备)改变线路参数(装串联电容器、更换导线)双绕组降(/升)压变压器分接头的选择设高压侧实际电压为Ul,变压器阻抗RT、XT已归算到高压侧,变压器低压绕组的额定电压为UTL,变压器高压绕组的分接头电压为UTH o如果低压侧要求得到的电压为U2,则U2=(Ul-∆UT)∕k=(U1-∆UT)UTL/UTHUTH=(U1-ΔUT)UTL∕U2其中:4UT=(PRT+QXT)∕U1负荷变化时,AUT及U2都要变化,而分接头只能用一个,可以同时考虑最大、最小负荷情况:UTHmax=(Ulmax-ΔUTmax)UTL/U2maxUThmin=(Ulmin-∆UTmin)UTL/U2min然后取平均值:UTHav=(UTHmax+UTHmin)/2根据计算的UTHaV选择一个与它最接近的分接头,最后校验最大、最小负荷时低压母线的实际电压是否符合要求。

合理使用调压措施开展调压1)优先考虑调发电机端电压UG2)调变压器分接头的手段应充分利用。

普通变压器需停电调分接头;使用有载调压变压器,调压灵活而且有效,但价格较贵,而且一般要求系统无功功率供给较充裕。

电力系统的无功功率和电压调整

电力系统的无功功率和电压调整

UL
U L k2
(UGk1
PR QX UN
)
/
k2
要改变负荷点电压: ➢改变 UG-借改变发电机机端电压调压 ➢改变k1, k2 -借改变变压器变比调压 ➢改变Q-借无功补偿设备调压 ➢改变X-借串联电容调压 ➢组合调压
29
第三节 电力系统的电压调整
调压手段之一:借改变发电机端电压调压
实施:调节发电机的励磁 方式:机端无负荷时,调节范围95%~105%;
电力系统的电压调整 保证中枢点电压偏移不越 限
22
第三节 电力系统的电压调整
中枢点电压曲线的编制
目的:确定中枢点的电压允许变动范围 编制方法:根据各负荷点的负荷曲线和电压要求,
计及中枢点到负荷点的电压损耗,从而确定对中 枢点电压的要求。
举例说明
中枢点 i
U ij U ik
负荷点
j
k 负荷点
静止调相机(Statcom)
11
第一节 电力系统中无功功率的平衡
静止补偿器
可吸可发感性无功; 只能发感性无功;
连续调节
不能连续调节
可吸可发无功; 连续调节
12
第一节 电力系统中无功功率的平衡
静止调相机
A
.
R<<X
I k:1
a
. . UA
I
jX L
逆变器
理想变 k:1
.
C
Ua
.
I
.
kUa
.
U A
电压调整的必要性 电压波动和电压管理 电压调整的手段
18
第三节 电力系统的电压调整
3.1电压调整的必要性
电压调整的含义:在正常运行状态下,随着负 荷变动及运行方式的变化,使各节点电压在允 许的偏移范围内而采取的各种技术措施
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

25
二、中枢点的电压管理
电压中枢点:指那些能够反映和控制整个系统电 压水平的节点(母线)。 1.电压中枢点的选择 一般可选择下列母线作为电压中枢点: (1)大型发电厂的高压母线;
(2)枢纽变电所的二次母线;
(3)有大量地方性负荷的发电厂母线。
例:
中枢点 中枢点
图5-16 电力系统的电压中枢点
2.中枢点电压和负荷电压的关系
(2) 顺调压
• 最大负荷时降低电压,但不低于线路额定电压 的2.5%,即1.025VN; • 最小负荷时升高电压,但不超过线路额定电压 的7.5%,即1.075VN。
(3) 常调压
• 电压保持在较线路额定电压高2%~5%的数值, 即(1.02~1.05)VN ,不随负荷变化来调整中枢点的 电压。

电力系统一般规定一个电压偏移的最大允许范围,例 如:35kV及以上供电电压正负偏移的绝对值之和不超过 10%;10kV及以下在±7%以内。
第二节 电力系统的无功功率平衡
•电压是衡量电能质量的重要指标。
•电力系统的运行电压水平取决于无功功率的平衡。 •系统中各种无功电源的无功出力应能满足系统负荷 和网络损耗在额定电压下对无功功率的需求,否则 电压就会偏离额定值。
(或吸取)的无功功率,进行电压调节。因而调
节性能较好。
缺点:
•同步调相机是旋转机械,运行维护比较复杂;
•有功功率损耗较大,在满负荷时约为额定容量的 (1.5~5)%,容量越小,百分值越大; •小容量的调相机每kVA容量的投资费用也较大。故 同步调相机宜大容量集中使用,容量小于5MVA的一 般不装设。
(4)无功不足或过剩
2.电压偏移的影响
(1)电压偏移,效率下降,经济性变差。 (2)电压过高,照明设备寿命下降,影响绝缘。 (3)电压过低,电机发热。 (4)系统电压崩溃。
24
3 我国规定的允许电压偏移
35kV及以上电压供电负荷: ±5% 10kV及以下电压供电负荷: ±7% 低压照明负荷: +5%~ -10% 农村电网: +7.5%~-10%
4. 静止补偿器
•静止补偿器由静电电容器与电抗器并联组成 •电容器可发出无功功率,电抗器可吸收无功功率, 两者结合起来,再配以适当的调节装置,就能够平 滑地改变输出(或吸收)的无功功率。
图5-6 静止无功补偿器的原理图
(a)可控饱和电抗器型;(b)自饱和电抗器型; (c)可控硅控制电抗器型; (d)可控硅控制电抗器和可控硅投切电容器组合型
备用; •Qres<0表示系统中无功功率不足,应考虑加设无 功补偿装置。
无功不足应采取的措施
电力系统的无功功率平衡应分别按正常运行时的最大和最 小负荷进行计算。 经过无功功率平衡计算发现无功功率 不足时,可以采取的措施有: (1)要求各类用户将负荷的功率因数提高到现行规程规定 的数值。
(2)挖掘系统的无功潜力。例如将系统中暂时闲置的发电 机改作调相机运行;动员用户的同步电动机过励磁运行等。
2
V2 EV 2 Q P X X
发电机无功 异步电机无功
2
图5-11 无功平衡与电压水平 应该力求实现在额定电压下的系统无功功率平衡。 例5-1
第三节 电力系统的电压调整
一、电力系统电压偏移的原因及影响 1.造成电压偏移的原因
(1)设备及线路压降
(2)负荷波动
(3)运行方式改变
2.变压器的无功损耗
S QLT Q0 QT U BT X T U
2 2
I0 % U K %S 2 U N SN 100 100 S N U
2
假定一台变压器的空载电流I0%=2.5,短路电压VS%=10.5, 在额定满载下运行时,无功功率的消耗将达额定容量的13%。 如果从电源到用户需要经过好几级变压,则变压器中无功 功率损耗的数值是相当可观的。
(3)根据无功平衡的需要,增添必要的无功补偿容量,并 按无功功率就地平衡的原则进行补偿容量的分配。小容量 的、分散的无功补偿可采用静电容电器;大容量的、配置 在系统中枢点的无功补偿则宜采用同步调相机或静止补偿 器。
19
四、无功功率平衡和电压水平的关系
问题:在什么样的电压水平下实现无功功率平衡?
QGC=QLD+QL
Vi max Vmax Vmin
例:中枢点电压允许范围的确定
只满足i节点负荷时,中枢点电压VO应维持的电压为
0 ~ 8h VO Vi VOi
(0.95 ~ 1.05)VN 0.04VN (0.99 ~ 1.09)VN
8 ~ 24h VO Vi VOi (0.95 ~ 1.05)VN 0.10VN (1.05 ~ 1.15)VN
ΔVT (PRT QXT )/V1 V2 (V1 ΔVT )/k
k =V1t/V2N
图5-22 降压变压器
V1 VT V1t V2 N V2
V1t max (V1 max VT max ) V2 N V2 max
V1t min (V1 min VT min ) V2 N V2 min
17
三、无功功率平衡
•电力系统无功功率平衡的基本要求:系统中的无 功电源可以发出的无功功率应该大于或至少等于 负荷所需的无功功率和网络中的无功损耗。 QGC QLD QL Qres
QL Q LT QL QB
QGC QG QC
• Qres>0表示系统中无功功率可以平衡且有适量的
3.输电线路的无功损耗
图5-4 输电线路的π 型等值电路
2 P12 Q12 P22 Q2 Q L X X 2 2 V1 V2
B 2 QB (V1 V22 ) 2
线路的无功总损耗为
P12 Q12 V12 V22 QHale Waihona Puke L Q B X B 2 V1 2
同步调相机常安装在枢纽变电所 。
3. 静电电容器
• 静电电容器可按三角形和星形接法连接在变电所 母线上。它供给的无功功率 QC 值与所在节点电压的 平方成正比,即
QC=U 2/XC
• 缺点:电容器的无功功率调节性能比较差。 • 优点:静电电容器的装设容量可大可小,既可集 中使用,又可以分散安装。且电容器每单位容量的 投资费用较小,运行时功率损耗亦较小,维护也较 方便。
同时考虑i、j两个负荷对O 点的要求,可得出O点电 压的变化范围。
图5-19 中枢点O 电压容许变化范围
3.中枢点电压调整的方式
• 中枢点电压调整方式一般分为三类: 逆调压、顺调压和常调压。 (1)逆调压 • 最大负荷时升高电压,但不超过线路额定电压 的105%,即1.05VN; • 最小负荷时降低电压,但不低于线路的额定电 压,即1.0VN。
中枢点i的电压满足Vimin≤Vi ≤ Vimax
图5-17 负荷电压与中枢点电压
•中枢点i的最低电压Vimin等于在地区负荷最大 时某用户允许的最低电压Vmin加上到中枢点的 电压损耗△Vmax。
Vi min Vmin Vmax
•中枢点i的最高电压Vimax等于地区负荷最小时 某用户允许的最高电压Vmax加上到中枢点的电 压损耗△Vmin。
一般情况下,35kV及以下系统消耗无功功率; 110kV及以上系统,轻载或空载时,成为无功电源, 传输功率较大时,消耗无功功率。
二、无功功率电源
•电力系统的无功功率电源有发电机、同步调相机、静 电电容器及静止补偿器,后三种装置又称为无功补偿 装置。
1. 发电机
发电机在额定状态下运行时,可发出无功功率:
第五章 电力系统无功功率和电压调整
第一节 电压调整的必要性
•电压偏移过大对电力系统本身以及用电设备会带来不良 的影响。 (1)效率下降,经济性变差。 (2)电压过高,照明设备寿命下降,影响绝缘。 (3)电压过低,电机发热。 (4)系统电压崩溃 •不可能使所有节点电压都保持为额定值。 (1)设备及线路压降 (2)负荷波动 (3)运行方式改变 (4)无功不足
一、无功功率负荷和无功功率损耗
1.无功功率负荷
•异步电动机
U2 QM Qm Q I 2 X Xm
jX 电压下降,转差 增大,定子电流 增大.
图5-2
异步电动机的简化等值电路
受载系数:实际负载和额定负载之比.
在额定电压附近,电动 机的无功功率随电压的 升降而增减
图5-3
异步电动机的无功功率与端电压的关系
只满足j节点负荷时,中枢点电压VO应维持的电压为
0 ~ 16h VO V j VOj (0.95 ~ 1.05)VN 0.01VN (0.96 ~ 1.06)VN
16 ~ 24h VO Vi VOj
(0.95 ~ 1.05)VN 0.03VN (0.98 ~ 1.08)VN
V1t av (V1t max V1t min ) / 2
最大运方式
最小运行方式
算数平均值
根据V1t.av值可选择一个与它最接近的分接头。然后根据所 选取的分接头校验最大负荷和最小负荷时低压母线上的实 际电压是否满足要求。
例5-2
(3)发电机只有在额定电压、额定电流和额定功 率因数(即运行点C)下运行时视在功率才能达到 额定值,使其容量得到最充分的利用。
2. 同步调相机
•同步调相机相当于空载运行的同步电动机。
•在过励磁运行时,它向系统供给感性无功功率
而起无功电源的作用,能提高系统电压;
•在欠励磁运行时(欠励磁最大容量只有过励磁 容量的(50% ~65%)),它从系统吸取感性无功 功率而起无功负荷作用,可降低系统电压。 •它能根据装设地点电压的数值平滑改变输出
三、电力系统的电压调整
1.电压调整的基本原理
相关文档
最新文档