四川大学光电子学与激光技术期末复习资料
激光技术复习题
![激光技术复习题](https://img.taocdn.com/s3/m/788bea261611cc7931b765ce05087632311274ac.png)
激光技术复习题一、激光的基本原理激光,全称为“受激辐射光放大”,是一种具有高亮度、高方向性、高单色性和高相干性的光。
要理解激光的产生,首先得从原子的能级结构说起。
原子中的电子处于不同的能级,当电子从高能级跃迁到低能级时,会释放出光子。
在普通光源中,光子的发射是自发的,各个原子的发光是随机的,没有固定的相位和方向关系。
而在激光产生的过程中,存在着受激辐射的现象。
处于高能级的原子受到外来光子的激励,会跃迁到低能级,并发射出与激励光子具有相同频率、相位、偏振方向和传播方向的光子,从而实现光的放大。
为了实现激光的持续输出,还需要有光学谐振腔。
光学谐振腔通常由两块平行的反射镜组成,使得在腔内往返传播的光能够不断得到放大,同时只有满足一定频率和方向条件的光才能形成稳定的激光输出。
二、激光的特性1、高亮度激光的亮度极高,比普通光源要强得多。
这使得激光在材料加工、医疗手术、激光武器等领域有着广泛的应用。
例如,在激光切割中,高亮度的激光能够瞬间将材料熔化甚至气化,实现高精度的切割。
2、高方向性激光具有极好的方向性,其光束的发散角非常小。
这使得激光能够传播很远的距离而不发生明显的扩散,可用于激光通信、激光测距、激光雷达等。
3、高单色性激光的单色性好,即其波长范围非常窄。
这对于光谱分析、光学测量等领域具有重要意义,能够提供更精确的测量结果。
4、高相干性激光的相干性强,意味着其光波的相位关系非常稳定。
这使得激光在干涉测量、全息摄影等方面发挥着重要作用。
三、激光的产生方式1、气体激光器常见的有氦氖激光器、二氧化碳激光器等。
气体激光器的工作物质是气体,通过放电等方式激发气体原子产生激光。
2、固体激光器如红宝石激光器、钕玻璃激光器等。
其工作物质是固体晶体,具有较高的能量存储能力和输出功率。
3、液体激光器以有机染料溶液为工作物质,具有波长可调谐的特点。
4、半导体激光器体积小、效率高、寿命长,广泛应用于光通信、光存储等领域。
四、激光的应用1、工业领域激光切割、焊接、打孔、打标等工艺已经在制造业中得到广泛应用,提高了生产效率和加工精度。
光电子技术复习要点
![光电子技术复习要点](https://img.taocdn.com/s3/m/666bdae2db38376baf1ffc4ffe4733687e21fc68.png)
光电子技术复习要点第一篇:光电子技术复习要点第1章1.电磁波的性质:横波、偏振、色散2.光辐射:以电磁波形式或粒子形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射,波长在10nm-1mm,分为可见光(390nm-770nm),紫外辐射(1nm-390nm),红外辐射(0.77-1000um)3.表1-44.光视效能:同一波长下测得的光通量与辐射通量比值。
光视效率是光视效能归一化的结果。
5.光与物质相互作用的三个过程:自发辐射、受激辐射、受激吸收。
图1-7自发辐射:处在高能级的原子,没有任何外界激励,自发地跃迁到低能级,并发射光子。
受激辐射:处在高能级的原子,受到外来光子的激励,跃迁到低能级并发射光子。
受激吸收:处在低能级的原子,受到光子的照射时,吸收光子而跃迁到高能级。
6.粒子数的反转,增益系数,增益曲线,损耗系数,激光器的三部分7.典型激光器组成:工作物质、泵浦源、谐振腔。
作用:工作物质:在这种介质中可以实现粒子数反转。
泵浦源(激励源):将粒子从低能级抽运到高能级态的装置。
谐振腔:(1)使激光具有极好的方向性(沿轴线)(2)增强光放大作用(延长了工作物质(3)使激光具有极好的单色性(选频)8.习题1-2Le亮度定义:强度定义:IedIe∆Arcosθr= dΦedΩ可得辐射通量:dΦe=Le∆AscosθsdΩ在给定方向上立体角为:dΩ第1.2题图∆Accosθc 2l0dΦeLe∆Ascosθscosc则在小面源在∆A上辐射照度为:Ee==2dAl0=c第2章1.大气衰减包括四个部分,瑞利散射和米氏散射2.大气湍流效应3.电光效应,相位延迟两种方式,相位差,半波电压,两种方式比较纵向调制器优点: 具有结构简单、工作稳定、不存在自然双折射的影响等。
缺点: 电场方向与通光方向相互平行, 必须使用透明电极, 且半波电压达8600伏,特别在调制频率较高时,功率损耗比较大。
光电子学与激光技术考试试题
![光电子学与激光技术考试试题](https://img.taocdn.com/s3/m/a960f93a03768e9951e79b89680203d8ce2f6ae7.png)
光电子学与激光技术考试试题第一部分:选择题(共30小题,每题1分,共30分)1. 光电子学是研究光与电子相互作用的学科,其主要研究内容包括以下哪些方面?A. 光的发射和吸收B. 光的传播和检测C. 光的调制和放大D. 光的干涉和衍射E. 光的散射和束缚2. 下列哪个物理现象是激光器工作的基础?A. 斯托克斯反馈B. 场致电子发射C. 弛豫振荡D. 光子传导E. 反受激辐射3. 下列哪种材料可以实现光的放大效应?A. 金属B. 液体D. 常温等离子体E. 电解质4. 激光器的输出特性可以通过以下哪个参数来描述?A. 散射率B. 反射率C. 出射功率D. 聚焦能力E. 相干长度5. 下列哪个激光器适用于进行组织切割和焊接等医疗手术?A. 氦-氖激光器B. 二氧化碳激光器C. 氮化镓激光器D. 半导体激光器E. 铒光纤激光器6. 在激光器中,激光能量被放大的过程涉及以下哪个物理过程?A. 激发C. 辐射D. 寿命短E. 冷却7. 光纤通信是现代通信技术的重要组成部分,光纤通信系统中常用的光纤材料是?A. 金属光纤B. 塑料光纤C. 多模光纤D. 单模光纤E. 混合光纤8. 激光技术被广泛应用于以下哪个领域?A. 化学分析B. 材料加工C. 医学诊断D. 通信传输E. 光学显示9. 激光器的输出波长是由哪个物理量决定的?A. 光子能量B. 材料厚度C. 折射率D. 能带宽度E. 能级差10. 光电二极管广泛应用于以下哪个领域?A. 集成电路制造B. 光学计量C. 医学成像D. 触摸屏显示E. 激光雷达第二部分:填空题(共10小题,每题2分,共20分)11. 激光的特点是_________。
12. 光通信系统中,光纤是一种_________。
13. 激光放大器中,补偿模块的主要作用是_________。
14. 半导体激光器的能级结构是由_________组成的。
15. 光的散射现象包括_________散射和_________散射。
(整理)光电子技术复习资料
![(整理)光电子技术复习资料](https://img.taocdn.com/s3/m/2ced5af502d276a201292e57.png)
光电子技术复习资料一.填空题1. 声光相互作用可以分为拉曼-纳斯衍射和布喇格衍射两种类型。
2. 激光器的三个主要组成部分是:工作物质 , 泵浦源 , 谐振腔3. 彩色阴极射线管(CRT)主要由电子枪、偏转线圈、荫罩、荧光粉层和玻璃外壳五部分组成。
4. 1917年, 爱因斯坦提出了受激辐射可实现光放大的概念, 为激光的发明奠定了理论基础。
1960年7月,美国休斯公司实验室梅曼制成世界上第一台红宝石固态激光器,标志着激光器诞生。
5. 要实现脉冲编码调制,必须进行三个过程:抽样,量化,编码。
6.光纤通信系统的三个传输窗口包括短波长的 850 nm波段,长波长的 1300 nm及 1550 nm波段。
7按照形成条件液晶可分为溶致液晶和热致液晶,作为显示技术应用的液晶都是热致液晶8.常见的固体激光器有红宝石激光器 , 掺钕钇铝石榴石激光器(写出两种),常见的气体激光器有He-Ne 激光器 , CO2激光器或Ar+激光器(写出两种) 9.氦-氖(He-Ne)激光器的工作物质是氦氖混合气体,激光由氖发射. 10.光电探测器的物理效应通常分为两大类:光电效应和光热效应。
11.光纤色散主要有模式色散, 材料色散 , 波导色散三种。
12.光电池是根据光伏效应效应制成的将光能转换成电能的一种器件13. 激光器按按工作物质分类可分为: 固体激光器, 液体激光器,和气体激光器 14.半导体的载流子是电子和空穴。
15.在彩色电视中,通常选用红、绿、蓝作为三种基色光。
D 的基本功能为电荷存储和电荷转移;CCD 按结构可分为线阵CCD 和面阵CCD 。
17.热致液晶可以分为近晶相、向列相和胆甾相三种。
18.波分复用器分为发端的合波器器和收端的分波器器。
19.开放式光学谐振腔(开腔)通常可以分为稳定腔和非稳定腔 ,共轴球面腔的稳定性条件是:20. 光波在大气中传播时,由于大气气体分子及气溶胶的吸收和散射会引起光束的能量衰减;由于空气折射率不均匀会引起光波的振幅和相位起伏。
光电子技术复习提纲(含标准答案)要点
![光电子技术复习提纲(含标准答案)要点](https://img.taocdn.com/s3/m/b2bc2aecc9d376eeaeaad1f34693daef5ef713ca.png)
光电⼦技术复习提纲(含标准答案)要点第1章绪论1.半导体光电器件是利⽤什么效应制作的器件?答:利⽤半导体光电效应制成的器件。
2.半导体光电器件是哪两种粒⼦相互作⽤的器件?答:是⼀种利⽤光⼦与电⼦相互作⽤所具有的特性来实现某种功能的半导体器件。
3.半导体发光器件主要包括哪两种?答:(1)发光⼆极管;(2)半导体激光器。
4.光电器件主要有利⽤哪些效应制作的器件?答:光电器件主要有利⽤半导体光敏特性⼯作的光电导器件,利⽤半导体光伏打效应⼯作的光电池和半导体发光器件等。
5.什么是半导体发光器件?答:利⽤半导体PN结正向通过电时载流⼦注⼊复合发光的器件称为半导体发光器件。
6.光电探测器件是如何转换信号的器件?答:通过电⼦过程探测光信号的器件,即将射到它表⾯上的光信号转换为电信号。
7.光电检测器⼯作在反向偏置状态。
8.光电池是利⽤什么效应制作的?答:光伏打效应。
9. 光纤通信的两个重要窗⼝是哪些?答:1.55um和1.3um。
第2章1. 光信号的频率在哪个频段?需要⽤什么器件检测?答:光信号的频率在1014 Hz以上,常⽤的电⼦器件⽆法对这⼀频率段产⽣良好的响应,必须使⽤光电⼦器件。
2. 常⽤的光电检测器:PIN、APD3. 光电检测器的⼯作过程?答:光电检测器件的⼯作过程:(1)光吸收——(2)电⼦-空⽳对产⽣——(3)载流⼦扩散和漂移——(4)检测4. 光信号(光束)⼊射到半导体材料后,如何产⽣电⼦空⽳对?答:光信号(光束)⼊射到半导体材料后,⾸先发⽣的过程就是半导体材料对光⼦的吸收,吸收光⼦以后才能产⽣价带电⼦的跃迁,从⽽产⽣电⼦空⽳对。
5. 半导体材料中的吸收过程可以分为哪两⼤类?答:本征吸收和⾮本征吸收6. 本征吸收⼜包括哪些?答:(1)直接吸收;(2)间接吸收7. ⾮本征吸收包括哪些?答:(1)激⼦吸收;(2)带内吸收;(3)杂质吸收8.本征吸收的必要条件?9.直接吸收中参与的粒⼦是什么?遵守哪两种守恒?答:只有电⼦和光⼦的参与,没有第3种粒⼦的参与。
激光期末复习题
![激光期末复习题](https://img.taocdn.com/s3/m/9297c304b207e87101f69e3143323968011cf4a9.png)
激光期末复习题激光期末复习题激光,全称为“光的放大与激射辐射”,是一种特殊的光源。
它具有高度的单色性、方向性和相干性,广泛应用于科学研究、医疗、通信、制造业等领域。
即将到来的期末考试,我们将回顾一些关于激光的重要概念和原理。
以下是一些激光期末复习题,帮助我们巩固对激光的理解。
1. 什么是激光?它与普通光有何不同?激光是一种特殊的光源,具有高度的单色性、方向性和相干性。
与普通光相比,激光具有更高的亮度和更窄的光束。
激光的波长可以非常短,从红外到紫外都有。
2. 激光的放大过程是如何实现的?激光的放大过程基于光的受激辐射原理。
当一个光子通过一个被激发的原子时,它会引起原子的另一个电子跃迁到一个更高的能级。
这个过程会释放出另一个同样频率和相位的光子,导致光的放大。
3. 请解释激光的相干性是什么意思?激光的相干性是指光波的相位关系在时间和空间上的稳定性。
激光光束中的光波具有相同的频率和相位,这使得激光能够形成一束高度聚焦的光束。
4. 激光在医疗领域的应用有哪些?激光在医疗领域有广泛的应用,包括激光手术、激光治疗、激光诊断等。
激光手术可以用于眼科手术、皮肤手术和神经外科手术等。
激光治疗可以用于减轻疼痛、促进伤口愈合和治疗癌症等。
激光诊断可以用于检测眼部疾病、癌症和心血管疾病等。
5. 激光通信是如何工作的?激光通信利用激光光束传输信息。
发送端将信息转换为激光脉冲,然后通过光纤或自由空间传输到接收端。
接收端使用光电探测器将激光信号转换为电信号,然后解码以获取原始信息。
6. 激光切割和激光打标有何不同?激光切割是利用激光束的高能量和高聚焦性来切割材料。
它可以用于金属、塑料、木材等材料的切割。
激光打标是利用激光束的高能量和高精度来在材料表面刻上标记。
它可以用于金属、塑料、玻璃等材料的打标。
7. 激光在制造业中的应用有哪些?激光在制造业中有许多应用,如激光焊接、激光切割、激光打孔和激光雕刻等。
激光焊接可以用于汽车制造、电子制造和航空航天等行业。
光电子技术复习要点
![光电子技术复习要点](https://img.taocdn.com/s3/m/8bb1e620effdc8d376eeaeaad1f34693daef10f8.png)
第一章 绪论1. 光电子技术(optoelectronic technology )准确地应该称为信息光电子技术,是电子技术与光子技术相结合而形成的一门新兴的综合性的交叉学科,主要研究光与物质中的电子相互作用及其能量相互转换的相关技术,涉及光显示、光存储、激光等领域,是未来信息产业的核心技术。
2. 本课程主要讲了四大部分分别是:激光光源、光波的传输、光波的调制与控制、光波的探测。
第二章 激光原理与半导体光源1. 世界上第一台激光器是1960年梅曼制作的红宝石激光器。
2. 原子从高能级向低能级跃迁时,相当于光的发射过程;而从低能级向高能级跃迁时,相当于光的吸收过程;两个相反的过程都满足玻尔条件:n m n m E E h E E hνν-=-=或。
3. 处于热平衡状态的原子体系,设其热平衡绝对温度为T ,则原子体系的各能级上粒子数目的分布将服从波尔兹曼分布律:exp(/)n n N E kT ∝-,其中N n 为在能级E n 上的粒子数,k 为波尔兹曼常数, k=1.3807×10-23 J·K -1。
即,随着能级增高,能级上的粒子数N n 按指数规律减少。
4. 爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。
该文提出的受激光辐射理论是激光理论的核心基础。
在这篇论文中,爱因斯坦将光与物质的作用分为三种过程:受激吸收、自发辐射、受激辐射。
5. 在二能级系统中,粒子在高能级E 2 能级上停留的平均时间称为粒子在该能级上的平均寿命,简称寿命6. 下面三个图分别描述了二能级系统中光与物质的作用的三种过程:它们可以由下面三个方程描述:对于受激辐射过程(E2→E1 ):21212()dN B u v N dt= 对于受激吸收过程(E1→E2):12121()dN B u v N dt= 对于自发辐射过程(E2→E1 ):21212dN A N dt = 其中u(v)为辐射场中单色辐射能量密度:()()30348(),exp 1h u v T c c hv kT πνγν==-7. 二能级系统中,当(N 2/N 1)>1时,高能级E 2上的粒子数N 2大于低能级E 1上的粒子数N 1,出现所谓的“粒子数反转分布”情况,它是形成激光的必要条件之一。
(完整版)激光原理期末知识点总复习材料,推荐文档
![(完整版)激光原理期末知识点总复习材料,推荐文档](https://img.taocdn.com/s3/m/805c219367ec102de2bd89a3.png)
激光原理期末知识点总复习材料2.激光特性:单色性、方向性、相干性、高亮度3.光和物质的三种相互作用:自发辐射,受激吸收,受激辐射4.处于能级u 的原子在光的激发下以几率 向能级1跃迁,并发射1个与入射光子全同的光子,Bul 为受激辐射系数。
5.自发辐射是非相干的。
受激辐射与入射场具有相同的频率、相位和偏振态,并沿相同方向传播,因而具有良好的相干性。
6.爱因斯坦辐射系数是一些只取决于原子性质而与辐射场无关的量,且三者之间存在一定联系。
7.产生激光的必要条件:工作物质处于粒子数反转分布状态8.产生激光的充分条件:在增益介质的有效长度内光强可以从微小信号增长到饱和光强Is9.谱线加宽特性通常用I 中频率处于ν~ν+d ν的部分为I(ν)d ν,则线型函数定义为线型函数满足归一化条件:10.的简化形式。
11.四能级比三能级好的原因:更容易形成粒子数反转 画出四能级系统的能级简图并写出其速率方程组()()()() Rll l l l N N n f f n dt dN nn n n n A n W n s n dtdn S n S A n N n f f n dt dn A S n W n dtdn τυννσυννσ-⎪⎪⎭⎫ ⎝⎛-==++++-=++-⎪⎪⎭⎫ ⎝⎛--=+-=021112203213030010103232121202111222313230303,,ρul ul B W =1)(=⎰∞∞-ννd g 121212)(-+=S A τ12E 2112.13.14.15.程的本征函数和本征值。
研究方法:①几何光学分析方法②矩阵光学分析方法③波动光学分析方法。
处于运转状态的激光器的谐振腔都是存在增益介质的有源腔。
16.腔模沿腔轴线方向的稳定场分布称为谐振腔的纵模,在垂直于腔轴的横截面内的稳定场分布称为谐振腔的横模。
17.腔长和折射率越小,纵模间隔越大。
对于给定的光腔,纵模间隔为常数,腔的纵模在频率尺上是等距排列的不同的横模用横模序数m,n 描述。
光电子技术期末知识点总结
![光电子技术期末知识点总结](https://img.taocdn.com/s3/m/e187b9880d22590102020740be1e650e52eacf83.png)
光电子技术期末知识点总结一、光电子技术基础知识1. 光的本质光是一种电磁波,具有波粒二象性,既可以表现为波动,也可以表现为光子。
光的波动特性可以用来解释干涉、衍射等现象,而光的粒子特性可以用来解释光电效应等现象。
2. 光的传播光在真空中的传播速度等于光速,光在不同介质中传播时会发生折射和反射。
光的衍射、干涉等现象也表明光是一种波动。
3. 光的产生光的产生可以通过一些原子、分子等的激发和退激发过程,这些过程会导致光的辐射。
在实际应用中,常用的光源包括激光器、LED、半导体激光器等。
4. 光的检测光的检测可以通过光电二极管、光敏电阻、光电倍增管等光电探测器实现。
这些探测器可以将光信号转化为电信号,并输出到后续的电路中进行处理。
5. 光的调制光信号可以通过调制技术来进行信息传输。
在光通信中,常用的调制方式包括振幅调制、频率调制和相位调制等。
二、光电子器件1. 光纤光纤是一种用来传输光信号的导光材料,具有较低的损耗和较大的带宽。
光纤的制备工艺和材料选择对光纤的性能有着重要的影响。
2. 激光器激光器是产生激光的器件,它可以将电能转化为光能,并形成一束集中的光束。
激光器包括气体激光器、固体激光器、半导体激光器等类型。
3. 光电子器件光电子器件包括光电二极管、光电倍增管、光电探测器等,在光通信、光测量、光探测等领域有着重要的应用。
4. 光电调制器件光电调制器件可以实现对光信号的调制,包括调制器、光电调制器、半导体光调制器等。
5. 光电子器件的集成在光电子器件集成电路中,可以将多种光电子器件集成到同一芯片上,实现多功能和高集成度的光电子系统。
三、光电子技术应用1. 光通信光通信是一种基于光波传输的通信方式,它具有大带宽、低损耗、抗干扰等优点,在长距离通信和高速数据传输中有着重要的应用。
2. 光存储光存储是通过利用激光或其它光源记录和读取信息的技术,包括光盘、DVD、蓝光光盘等媒体。
3. 光测量光测量是利用光进行各种参数的测量,包括光谱分析、光学显微镜、激光雷达等。
光电子技术课后答案期末考试
![光电子技术课后答案期末考试](https://img.taocdn.com/s3/m/bc1c46ce690203d8ce2f0066f5335a8103d26612.png)
光电子技术课后答案期末考试一、简答题(共10题,每题2分)1.光电效应是指什么现象?请举例说明。
光电效应是指当光照射到金属表面时,金属中的自由电子被光子激发后脱离金属表面成为自由电子的现象。
例如,太阳能电池中的光电效应将太阳光转化为电能。
2.光纤通信的工作原理是什么?光纤通信是利用光纤作为传输介质,通过光的全反射来传输信号。
光信号被转换为光脉冲后,通过发射器发送到光纤中。
光脉冲沿着光纤传输,在传输过程中会发生衰减和色散,因此需要使用光纤放大器和补偿器来补偿这些损耗。
最后,光脉冲到达接收器,转换为电信号进行解析和处理。
3.请简述激光有哪些特点,并说明其应用领域。
激光具有单色性、方向性、相干性和高亮度等特点。
单色性指激光是单一频率的光束;方向性指激光具有非常狭窄的束发散角,能够聚焦在非常小的区域;相干性指激光光束的波长相位关系保持稳定;高亮度指激光具有很高的光功率密度。
激光的应用领域非常广泛,包括激光加工、医疗器械、通信、测量仪器等。
它在材料切割、焊接、打标、光刻等方面有重要应用;在医学领域,激光被用于手术切割、皮肤美容等;在通信领域,激光被用于高速光纤通信;在测量仪器中,激光被用于测距、测速等。
4.光栅的工作原理是什么?光栅是一种光学元件,可以通过光的干涉作用将入射光分解成多个不同波长的次级光波。
光栅的工作原理基于光的干涉,当入射光线通过光栅时,光栅上的间隙会产生光的干涉,使得光被分解成不同波长的光,从而形成光的光谱。
光栅的分辨本领取决于光栅的刻线数量和入射光的波长。
5.请简述光电二极管的结构和工作原理。
光电二极管是一种半导体器件,其结构由P型半导体和N型半导体组成。
当光线照射到P-N结上时,光子激发了半导体材料中的电子,使其跃迁到导带中,产生电子-空穴对。
这些电子-空穴对在电场的作用下会转移到两侧的电极上,产生电流。
6.光电二极管的特性曲线是什么样的?光电二极管的特性曲线呈现出光电流和反向饱和电流之间的关系。
光电子期末考试参考资料
![光电子期末考试参考资料](https://img.taocdn.com/s3/m/10cda2f1a76e58fafbb00321.png)
1-1光电子器件按功能分为哪几类?每类大致包括哪些器件?光电子器件按功能分为光源器件、光传输器件、光控制器件、光探测器件、光存储器件、光显示器件。
光源器件分为相干光源和非相干光源。
相干光源主要包括激光器和非线性光学器件等。
非相干光源包括照明光源、显示光源和信息处理用光源等。
光传输器件分光学元件(如棱镜、透镜、光栅、分束器等等)、光波导和光纤等。
光控制器件包括调制器、偏转器、光开关、光双稳器件、光路由器等。
光探测器件分光电导型探测器、光伏型探测器、热伏型探测器、各种传感器等。
光存储器件分为光盘(包括CD 、VCD 、DVD 、LD 等)、光驱、光盘塔等. 光显示器件包括CRT 、液晶显示器、等离子显示器、LED 显示.1—2谈谈你对光电子技术的理解光电子技术主要研究物质中的电子相互作用及能量相互转换的相关技术,以光源激光化,传输波导(光纤)化,手段电子化,现代电子学中的理论模式和电子学处理方法光学化为特征,是一门新兴的综合性交叉学科。
1—5据你了解,继阴极射线管显示(CRT )之后,哪几类光电显示器件代表的技术有可能发展成为未来显示技术的主体?等离子体显示(PDP ),液晶显示(LCD),场致发射显示(EL ),LED 显示。
第二章光学基础知识与光场传播规律2—1填空题⑴ 光的基本属性是光具有波粒二象性,光粒子性的典型现象有光的吸收、发射以及光电效应等;光波动性的典型体现有光的干涉、衍射、偏振等.⑵ 两束光相干的条件是频率相同、振幅方向相同、相位差恒定;最典型的干涉装置有杨氏双缝干涉、迈克耳孙干涉仪;两束光相长干涉的条件是(0,1,2,)m m δλ==±±,δ为光程差。
⑶两列同频平面简谐波振幅分别为01E 、02E ,位相差为φ,则其干涉光强为22010201022cos EE E E φ++,两列波干涉相长的条件为2(0,1,2,)m m φπ==±±⑷波长λ的光经过孔径D 的小孔在焦距f 处的衍射爱里斑半径为1.22fDλ.2—2在玻璃( 2.25,1)r r εμ==上涂一种透明的介质膜以消除红外线(0.75)m λμ=的反射。
激光原理与技术期末复习
![激光原理与技术期末复习](https://img.taocdn.com/s3/m/894c2b386d175f0e7cd184254b35eefdc8d315bb.png)
激光原理与技术期末复习激光原理与技术期末复习第一章、辐射理论概要与激光产生的条件1、光量子能量E与波长成反比: E ? 1/λ; 波长越长;光量子能量E 越小;(频率越低) ;波长越短; 光量子能量E越大; (频率越高)。
2、原子处于最低的能级状态称为(基态)。
能量高于基态的其它能级状态称为激发态。
3、能级有两个或两个以上的不同运动状态称为简并能级。
同一能级所对应的不同电子运动状态的数目称为(简并度)。
4、在热平衡条件下,原子数按能级分布服从(波尔兹曼定律)。
5、原子能级间跃迁发射或吸收光子的现象称为辐射跃迁。
原子在不同能级跃迁时并不伴随光子的发射和吸收,而是把多余的能量传给了别的原子或吸收别的原子传给它的能量的现象称为(非辐射跃迁)。
6、辐射场中单位体积内,(单位频率间隔)中的辐射能量称为单色辐射能量密度。
7、光与物质的相互作用有三种不同的基本过程:(自发辐射);受激吸收;受激辐射。
8、自发辐射:高能级的原子自发地从(高能级E2)向低能级E1跃迁,同时放出能量为E=hv 的光子的现象称为自发辐射。
9、自发辐射系数(A21):表示单位时间内,发生自发辐射的粒子数密度占处于E2能级总粒子数密度的百分比。
即每一个处于E2能级的粒子在单位时间内发生的自发跃迁几率。
自发辐射跃迁几率就是自发辐射系数本身。
各个原子自发辐射的光向空间各个方向传播,是(非相干光)。
10、原子数密度由起始值降至它的1/e的时间为自发辐射的(平均寿命)。
A21就是原子在能级E2的平均寿命的倒数。
11、当受到外来能量为hv=E2-E1 的光照射时,高能级E2上的原子向低能级E1跃迁,同时发射一个与外来光子完全相同的光子的现象称为受激辐射。
受激辐射的光子与外来光子的特性一样。
频率、位相、偏振和传播方向相同称之为(全同光子)。
12、受激辐射的跃迁几率(W21)为单位时间内,在外来单色能量密度的光照下,E2能级上发生受激辐射的粒子数密度占处于E2能级总粒子数密度的(百分比)。
激光原理与技术期末知识点总结
![激光原理与技术期末知识点总结](https://img.taocdn.com/s3/m/3aab47b89ec3d5bbfc0a7428.png)
=
h
2
h
=
mc
c2
h
h
h 2
h
n0 = n0 =
n0 =
k
c
2
2
式(1-17)和式(1-18)把表征粒子性的能量ε和动量P与表征波动性的
频率ν和波长λ联系起来,体现了光的波粒二象性的内在联系。
原子能级示意图
原子能级和简并度
En
微观粒子(电子)只能处于一系列本征状态
E2
每一状态具有分立的能量值——能级
兹曼分布:
ni g i e − Ei
kT
式中 gi — Ei 的简并度;k — 波尔兹曼常数(1.38·10-23K·J);T — 热
平衡时的绝对温度;ni—处在Ei能级的原子数
2. 分别处于Em和En能级上的原子数nm和nn必然满足下一关系
−
nm g m
=e
nn g n
( Em − En )
kT
2 kT ν0
1/2
2 ln 2
f D (v0 ) =
vD
0.939
vD
ν − ν0
2 ln 2 1 2 −[4ln 2( νD ) ]
f D (ν ) =
( ) e
νD
2
c
ν0
f (v)
1.5.1 介质中光的受激辐射放大
1. 要能形成激光,首先必须使介质中的受激辐射大于受激吸收
dt
dn1
= R1 + n2 A21 + ( n2 B21 − n1 B12 ) f (ν ) − n1 A1
dt
激光技术考试复习资料
![激光技术考试复习资料](https://img.taocdn.com/s3/m/acc983c0185f312b3169a45177232f60ddcce7bd.png)
激光技术考试复习资料1.国际上激光发展历史上的⼀些关键发明与发现国外激光技术研究历史和现状1893年,布卢什就已经指出,两⾯靠近和平⾏镜⼦之间反射的黄钠光线随着两⾯镜⼦之间距离的变化⽽变化。
他虽然不能解释这⼀点,但为未来发明激光发现了⼀个极为重要的现象?1917年,爱因斯坦提出“受激辐射”的概念。
1942年,汤斯产⽣微波激射的想法。
1950年,光泵。
1951年,核⾃旋能级反转。
1953年,汤斯造出第⼀台微波激射器。
1954年,巴索夫与普罗霍罗夫合作,制出⼀台氨分⼦束量⼦振荡器。
他提出建⽴不平衡量⼦系统的三能级⽅法,这种⽅法可放⼤激发辐射。
这个⽅法⽴即被⼴泛应⽤于⽆线电光波段的量⼦振荡器和放⼤器上。
1958年,肖洛和汤斯提出了“激光原理”,发表了关于激光器的经典论⽂,奠定了激光发展的基础。
1958年,巴索夫提出利⽤半导体制造激光器的可能性1960年,梅曼发明了世界上第⼀台红宝⽯激光器;四能级机制;He-Ne激光器;1960~1965年间,巴索夫实现了p-n结、电⼦束和光泵激发各种类型的激光器。
1961年,调Q振荡。
1962年,玻璃体激光器;拉曼激光;GE公司的Hall第⼀台GaAs半导体激光器问世。
1963年发明光纤激光器。
⽡级光纤激光功率输出的技术飞跃在1990年得到了实现,当年⼀台4⽡的掺铒光纤激光器被报道。
1963年,N2激光器;及紫外激光器;光纤激光器。
1964年,离⼦激光器;染料饱和调Q;锁模激光;CO2激光器;⾼温YAG连振荡;电⼦束激励CdS激光器。
1965年,化学激光;光参量振荡;⾊⼼激光;第⼀台可产⽣⼤功率激光的器件——⼆氧化碳激光器诞⽣。
1966年,染料激光器问世;第⼀台X射线激光器研制成功,亚⽪秒脉冲(fs)。
1968年,巴索夫还利⽤⼤功率激光器产⽣了热核反应。
1970年,TEA CO2激光器(横向激励);Xe2准分⼦激光器;⽓体动⼒激光器;室温连续半导体激光器;光激励远红外振荡。
光电子技术复习总结
![光电子技术复习总结](https://img.taocdn.com/s3/m/83b89b8884254b35effd3415.png)
光电子技术复习题总结(第一章:光的基础知识及发光源1.光的基本属性?光具有波动和粒子的双重性质,即具有波粒二象性。
2.激光的特性?(1)方向性好(2)单色性好(3)亮度高(4)相干性好3.玻尔假说:定态假设和跃迁假设?(1)定态假设;原子存在某些定态,在这些定态中不发出也不吸收电磁辐射能。
原子定态的能量只能采取某些分立的值E1、 E2 、……、En ,而不能采取其它值。
(2)跃迁假设;只有当原子从较高能量En的定态跃迁到较低能量Em的定态时,才能发射一个能量为h4.光与物质的共振相互作用的三种过程?受激吸收、自发辐射、受激辐射5.亚稳态?自发辐射的过程较慢时,粒子在E2能级上的寿命就长,原子处在这种状态就比较稳定。
寿命特别长的激发态称为亚稳态。
其寿命可达10-3~1s,而一般激发态寿命仅有10-8s。
6.受激辐射的光子性质?受激辐射的光子的频率、振动方向、相位都与外来光子一致。
7.受激吸收和受激辐射这两个过程的关系?宏观表现?两能级间受激吸收和受激辐射这两个相反的过程总是同时存在,相互竞争,其宏观效果是二者之差。
当吸收过程比受激辐射过程强时,宏观看来光强逐渐减弱;反之,当吸收过程比受激辐射过程弱时,宏观看来光强逐渐加强。
8.受激辐射与自发辐射的区别?最重要的区别在于光辐射的相干性,由自发辐射所发射的光子的频率、相位、振动方向都有一定的任意性,而受激辐射所发出的光子在频率、相位、振动方向上与激发的光子高度一致,即有高度的简并性。
9.光谱线加宽现象?由于各种因素影响,自发辐射所释放的光谱并非单色,而是占据一定的频率宽度,分布在中心频率v0附近一个有限的频率范围内,自发辐射的这种现象称为光谱线加宽。
10.谱线加宽的原因?由于能级有一定的宽度,所以当原子在能级之间自发发射时,它的频率也有一个变化范围△vn.11.谱线加宽的物理机制分为哪两大类?它们的区别?分为均匀加宽和非均匀加宽两大类。
均匀加宽:引起加宽的物理因素对每个原子都是等同的。
激光原理与技术期末总复习
![激光原理与技术期末总复习](https://img.taocdn.com/s3/m/35337fdf9f3143323968011ca300a6c30c22f13d.png)
激光原理与技术期末总复习激光原理与技术期末总复习考试题型一. 填空题(20分)二.选择题(30分)三.作图和简答题(30分)四.计算题(20分)第一章辐射理论概要与激光产生的条件1、激光与普通光源相比较的三个主要特点:方向性好,相干性好和亮度高2、光速、频率和波长三者之间的关系:线偏振光:如果光矢量始终只沿一个固定方向振动。
3、波面——相位相同的空间各点构成的面4、平波面——波面是彼此平行的平面,且在无吸收介质中传播时,波的振幅保持不变。
5、单色平波面——具有单一频率的平面波。
6、ε= h v v —光的频率 h —普朗克常数7、原子的能级和简并度(1)四个量子数:主量子数n、辅量子数l、磁量子数m和自旋磁量子数ms。
(2)电子具有的量子数不同,表示电子的运动状态不同。
(3)电子能级:电子在原子系统中运动时,可以处在一系列不同的壳层状态活不同的轨道状态,电子在一系列确定的分立状态运动时,相应地有一系列分立的不连续的能量值,这些能量通常叫做电子的能级,依次用E1,E2,…..En表示。
基态:原子处于最低的能级状态成为基态。
激发态:能量高于基态的其他能级状态成为激发态。
(4)简并能级:两个或两个以上的不同运动状态的电子可以具有相同的能级,这样的能级叫做简并能级。
简并度:同一能级所对应的不同电子运动状态的数目,叫做简并度,用g表示。
8、热平衡状态下,原子数按能级分布服从波耳兹曼定律(1)处在基态的原子数最多,处于越高的激发能级的原子数越少;(2)能级越高原子数越少,能级越低原子数越多;(3)能级之间的能量间隔很小,粒子数基本相同。
9、跃迁: 粒子由一个能级过渡到另一能级的过程(1.)辐射跃迁:发射或吸收光子从而使原子造成能级间跃迁的现象①发射跃迁: 粒子发射一光子ε = hv=E2-E1而由高能级跃迁至低能级;②吸收跃迁: 粒子吸收一光子ε=hv=E2-E1 而由低能级跃迁至高能级.(2)非辐射跃迁:原子在不同能级跃迁时并不伴随光子的发射和吸收,而是把多余的能量传给了别的原子或吸收别的原子传给它的能量10、光和物质相互作用的三种基本过程:自发辐射、受激辐射和受激吸收(要求会画图,会说原理过程)(1)普通光源中自发辐射起主要作用(2)激光器工作中受激辐射起主要作用(3)自发辐射、受激辐射和受激吸收的定义(4)三者之间的关系:自发辐射光子数+受激辐射光子数=受激吸收光子数11、光谱线增宽(1)光谱线的半宽度即光谱线宽度:相对光为最大值的1/2处的频率间隔(2)三种谱线增宽:自然增宽、碰撞增宽和多普勒增宽自然增宽:粒子的衰减碰撞增宽:发光原子间相互碰撞作用多普勒增宽:发光原子相对于观察者运动(3)均匀增宽:每一发光原子所发的光,对谱线宽度内任一频率都有贡献,而且这个贡献对每个原子都是相同的。
(完整word版)光电子技术期末考试试卷及其知识点大汇总.doc
![(完整word版)光电子技术期末考试试卷及其知识点大汇总.doc](https://img.taocdn.com/s3/m/7bd314140029bd64783e2cb2.png)
一、选择题( 20 分, 2 分/ 题)1、光电子技术在当今信息时代的应用主要有(abcd)A.信息通信B.宇宙探测C.军事国防D. 灾害救援2、激光器的构成一般由(a)组成A.激励能源、谐振腔和工作物质B.固体激光器、液体激光器和气体激光器C.半导体材料、金属半导体材料和PN 结材料D. 电子、载流子和光子3、光波在大气中传播时,引起的能量衰减与(abcd)有关A.分子及气溶胶的吸收和散射B. 空气折射率不均匀C.光波与气体分子相互作用D. 空气中分子组成和含量4、2009 年 10 月 6 日授予华人高锟诺贝尔物理学奖,提到光纤以SiO2为材料的主要是由于(a)A. 传输损耗低B.可实现任何光传输C.不出现瑞利散射D. 空间相干性好5、激光调制器主要有(abc)A. 电光调制器B.声光调制器C.磁光调制器D. 压光调制器6、电光晶体的非线性电光效应主要与(ac)有关A. 外加电场B.激光波长C.晶体性质D. 晶体折射率变化量7、激光调制按其调制的性质有(cd)A.连续调制B. 脉冲调制C.相位调制D. 光强调制8、光电探测器有(abc)A. 光电导探测器B.光伏探测器C.光磁电探测器D. 热电探测元件9、 CCD 摄像器件的信息是靠(b)存储A.载流子B. 电荷C.电子D. 声子10、LCD 显示器,可以分为(abcd)A. TN 型B. STN 型C. TFT 型D. DSTN型二、判断题( 20 分, 2 分/ 题,对用“√”、错用“ ×”标记)11、世界上第一台激光器是固体激光器。
( T)12、在辐射度学中,辐射能量Q 是基本的能量单位,用J( 焦耳 ) 来度量。
(T )13、在声光晶体中,超声场作用像一个光学的“相位光栅”,其光栅常数等于光波波长。
(F) 14、在磁光晶体中,当磁化强度较弱时,旋光率与外加磁场强度是成正比关系。
(T)15、为了获得线性电光调制,通过引入一个固定/ 2 相位延迟,一般该调制器的电压偏置在T=50%的工作点上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川大学光电子学与激光技术期末复习资料光电子学是以光频波段电磁波的电子学效应基本理论和应用原理为研究对象,并由近代光学与电子学相互交叉与渗透而形成的一门新兴学科。
光电子技术——研究光与物质中的电子相互作用及其能量相互转换的相关技术特点:1、角分辨率高2、距离分辨率高3、频带宽,通信容量大4、光谱分辨率高5、非线性光学效应强21世纪光电子技术发展?以智能化超高速计算机系统和全光网为代表的超高速、超大容量信息处理和传输将成为未来信息科学发展的两个重大方向微电子技术受分布电容影响,难以突破纳秒的门槛,在实现超高速、超大容量、超低功耗的集成系统方面遇到了根本的困难21世纪的信息化社会依赖光电子技术什么叫光辐射?以电磁波形式或粒子(光子)形式传播的能量,它们可以用光学元件反射、成像或色散,这种能量及其传播过程称为光辐射。
在辐射度单位体系中,基本量是辐通量或者辐射能,它是只与辐射客体有关的量。
其基本单位是瓦特(W)或者焦耳(J)。
辐射度学适用于整个电磁波段。
光度单位体系,是一套反映视觉亮暗特性的光辐射计量单位,被选作基本量的不是光通量而是发光强度,其基本单位是坎德拉。
光度学只适用于可见光波段。
任何0K以上温度的物体都会发射各种波长的电磁波,这种由于物体中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
热辐射具有连续的辐射谱,波长自远红外区到紫外区,并且辐射能按波长的分布主要决定于物体的温度。
在同样的温度下,各种不同物体对相同波长的单色辐射出射度与单色吸收比之比值都相等,并等于该温度下黑体对同一波长的单色辐射出射度。
基尔霍夫辐射定律为了表示一个热辐射光源所发出光的光色性质,常用到色温度这个量,单位为K。
色温度是指在规定两波长处具有与热辐射光源的辐射比率相同的黑体的温度。
如果将光也看做粒子(一种特殊的粒子)——我们称之为光量子,则光辐射场与物质相互作用,就产生粒子的跃迁过程,包括自发辐射、受激吸收与受激辐射三种类型的跃迁。
爱因斯坦关系由于各种因素影响,自发辐射并非单色的,而是分布在中心频率 0附近一个有限的频率范围内,这一现象称为光谱线展宽。
在热平衡状态下,处于高能级的粒子数总是小于处于低能级的粒子数,因此入射光强总是不断的减少。
为使入射光得以放大,必须激活入射介质,使其高能级的粒子数多于处于低能级的粒子数,即实现粒子数反转。
必要条件粒子数反转分布、减少振荡模式数(得到方向性很好、单色性很好)充分条件阈值条件、稳定振荡条件光在介质中的放大增益能超过谐振腔内能量损失(吸收、反射、散射等)的总和时,光波才能真正被放大,从而在腔内振荡起来,激光器必须满足这个条件才能“起振”,我们就称这个条件为激光振荡的阈值条件。
当入射光强度足够弱时,增益系数与光强无关,是一个常量;而当入射光强增加到一定程度时,增益系数将随光强的增大而减小,这种增益系数随着光强的增大而减小的现象,就称为增益饱和效应。
外加光场I( )越强,造成粒子数反转的减少就越严重,因而随着光束往返振荡,光强I( )不断增大,使得增益系数G( )不断减小,直到光所获得的增益恰好等于在激光腔内的损耗时,就建立了稳态的振荡,并形成稳定的激光输出。
一台激光器,其基本结构应包括三个部分:激光工作物质(提供形成激光的能级结构体系,是激光产生的内因)泵浦源(提供形成激光的能量激励,是激光形成的外因)光学谐振腔(提供反馈放大机构,使受激发射的强度、方向性、单色性进一步提高)三能级系统要在亚稳能级与基态能级之间实现粒子数反转,对激励源的泵浦能力要求很高,其激光阈值很高。
四能级结构,使粒子数反转很容易实现,激光阈值很低,因此现在绝大多数的激光器都是采用这种结构。
激光特点:方向性好(基本上沿激光器光轴方向向前传播,空间发散角小)单色性好(发出的激光拥有极小的线宽)相干性好(时间相干性和空间相干性均很大)亮度高(能量在时间和空间方面高度集中)以气体为工作物质的激光器称为气体激光器特点:大多数气体激光器能连续工作,采用气体放电中的电子碰撞激发,根据气体激光工作物质的能级跃迁类型,又可将之分为原子、离子、分子、准分子型气体激光器。
激光工作物质为液体的激光器主要优点:波长连续可调(调谐范围从紫外直到红外)、价格低、增益高、效率较高、激光均匀性好、制备容易、可以循环操作、利于冷却,其中最重要的一类是染料激光器以固体(一般为晶体)为工作物质的激光器特点:体积小、结构稳定、易于维护、输出功率大且适用于用调Q法产生高功率脉冲、用锁模法产生超短脉冲,典型的例子有红宝石激光器、Nd:Y AG(掺钦的亿铝石榴石激光器)、钛蓝宝石激光器等。
以半导体材料作为工作物质,以电流注入作为激励方式的一种小型化激光器,特点:输入能量低,效率高,体积小,重量轻,可以直接调制,结构简单,具有集成电路生产的全部优点,价格低廉,可靠性高,寿命长,目前销售总数量已占各种激光器的99%,成为世界激光器市场上的绝对主流。
激光器模式选择技术:偏振选择技术(控制输出激光的偏振特性)谱线选择技术(对输出激光的波长进行控制)横模选择技术(压缩振荡激光束的发散角、从而改善其方向性)纵模选择技术(限制振荡激光频谱数目)光调制:将激光作为信息的载体,通过改变激光的振幅、波长(频率)、相位、偏振、方向等各参量,使光携带信息的过程。
激光称为载波,起控制作用的低频信息称为调制信号内调制在激光振荡过程中直接加载信号,以调制信号改变激光器的振荡参数,从而改变激光器输出特性以实现调制。
特点:调制在激光器内部进行,多用于半导体激光器外调制指激光形成之后,在激光器之后的光路上放置调制器,用调制信号改变调制器的物理性能,当激光束通过调制器时,使光波的某个参量受到调制。
特点:调制不涉及激光器结构,应用更广泛。
光束调制按其调制的性质可分为振幅调制、角度调制(频率调制&位相调制)、强度调制、脉冲调制电光效应:当介质的两端所加外加电场较强时,介质内的电了分布状态发生变化,以致介质的极化强度以及折射率也各向异性地发生变化,从而影响光在介质中传播规律的现象。
利用晶体的电光效应可以实现对晶体中传播光波的控制,改变传播光的幅度、频率、偏振态、传播方向等,这种基于电光效应的原理对光进行的调制就称为电光调制。
πΓ时对应的偏振光相对入射光旋转了90°,定义其相应的电压为半波电压=半波电压是表征电光晶体调制特性的一个重要参数,其数值越小,表明在相同的外加电压条件下可以获得的相位延迟就越大,因而调制器的调制效率也就越高。
实际上,晶体的电光系数越大,相应半波电压越低,通过测量半波电压可以计算出相应的电光系数。
波片作用:给调制器增加一个直流偏压,使调制器的工作点移到中心点,在此工作点4/附近,输出光强随外加电压的变化近似线型,于是很小的正弦信号就能引起不畸变的正弦输出调制光强。
横向:优点:①横向电光调制器克服了电极对调制信号的影响;②可以通过晶体长度的选择来调节天然双折射相位延迟大小,从而调节工作点的位置。
③电光相位延迟与晶体厚度成反比,可通过晶体长度与厚度的协调选择,使调制器工作于中点而且具有合适的相对位相延迟弹光效应:晶体在外加应力的作用下发生形变,分子间的相互作用力改变,造成局部密度随之改变,以致介质的介电常量以及折射率也发生变化,从而影响光在介质中传播规律的现象。
声光衍射当外加应力周期变化时,其在晶体中也产生周期变化的应变场(超声波场),这将引起晶体的局部压缩或伸长,造成分子疏密相间的分布,这种由于机械应力引起的弹光效应使晶体的介电常量及折射率发生变化,于是,在介质中形成周期性的有不同折射率的间隔层分布,这些间隔层以声速运动,层间保持声波波长一半的距离.当光通过这种分层结构时,就发生衍射,引起光强度、频率和方向随超声场的变化,效果类似光栅。
在低声频和声光相互作用长度(声场厚度)不太大的情况下,发生拉曼—奈斯衍射。
在高声频和相互作用长度较大的情况下,发生布拉格衍射,其衍射光谱一般只包含两个级次,大多数声光器件都是在布拉格衍射方式下工作。
天然旋光效应:当线偏振光沿光轴方向通过某些天然介质时,偏振面发生旋转的现象称为天然旋光现象。
旋光作用起因于某些介质对左旋与右旋圆偏振光的折射率大小不同。
磁光效应:在磁场作用下本来不具有旋光效应的晶体发生的一种人为的旋光效应,其偏振面的旋转与光的传播方向无关。
二者区别:1)光束返回通过天然旋光介质时,旋转角度与正向入射时相反,因而往返通过介质的总效果是偏转角为零;2)磁致旋光方向与磁场方向有关,而与光的传播方向无关,因而光往返通过法拉第旋光物质时,偏转角度增加一倍。
凡是把光辐射量转换为电量(电流或电压)的光探测器,都称为光电探测器。
1. 光子效应:单个光子的性质对产生的光电子起直接作用的一类光电效应。
探测器吸收光子后,直接引起原子或分子的内部电子状态的改变,即单个光子的性质对产生的光电子起直接作用,光子能量的大小,直接影响内部电子状态的改变。
2. 光热效应:物体吸收光,引起温度升高,进而影响其电学或其他物理性质的电光效应。
金属或半导体受光照时,若入射光子能量足够大,它就和物质当中的电子相互作用,使电子从材料表面逸出,这种现象就称为光电发射效应,也称外光电效应。
内光电效应:光电导效应当光照射到半导体材料时,材料吸收光子的能量,使得非传导态电子变为传导态电子,引起裁流子浓度增大,从而导致材料电导率增大的现象,它是半导体材料的体效应。
光伏效应光照使不均匀半导体或半导体与金属组合的不同部位之间产生电位差的现象,它是半导体材料的“结”效应。
与光电导效应的区别:实现光伏效应需要有内部电势垒,当照射光激发出电子半穴对时,电势垒的内建电场将把电子空穴对分开,从而在势垒两侧形成电荷堆积,形成光生伏特效应。
光热效应:探测元件吸收光辐射能量后,并不直接引起内部电子状态的改变,而是把吸收的光能变为晶格的热运动能量,引起探测元件温度上升,温度上升的结果又使探测元件的电学性质或其他物理性质发生变化。
光电导探测器本征型室温下工作,适用于可见光和近红外辐射探测;非本征型低温条件下工作,常用于中、远红外辐射探测峰值波长取决于半导体材料的禁带宽度光谱响应范围展宽长波方向:杂质和晶格缺陷所形成的能级与导带间的禁带宽度比价带与导带间的主禁带宽要窄得多,因此波长比峰值波长长的光将把这些杂质能级中的电子激发到导带中去,从而使光敏电阻的光谱响应向有所扩展;短波方向:光敏电阻对短波长光的吸收系数大,使得表面层附近形成很高的载流子浓度,自由载流子在表面层附近复合的速度也快,从而使光敏电阻对波长短于峰值响应波长的光的响应灵敏度降低。
光敏电阻的响应时间与入射光的照度,所加电压、负载电阻、前历时间(照度变化前电阻所经历的时间)等因素有关。
实际应用中,提高使用照明度、降低所加电压、施加适当偏置光照、使光敏电阻不是从完全暗状态开始受光照,可改善光敏电阻的时间响应特性。