金融高频时间序列分析
时间序列分析及其在金融领域中的应用
![时间序列分析及其在金融领域中的应用](https://img.taocdn.com/s3/m/d379a6f9d4bbfd0a79563c1ec5da50e2524dd1a8.png)
时间序列分析及其在金融领域中的应用时间序列分析是一种将时间顺序上的数据进行统计分析的方法。
在金融领域中,时间序列分析可以帮助我们理解经济周期、预测财务数据和金融市场价格走势等。
下面就来介绍时间序列分析及其在金融领域的应用。
一、时间序列分析的基本概念时间序列分析是一种以时间顺序排列的数据,通过对时间变量的观测来研究该变量的趋势、季节性等规律性变化。
常用的时间序列模型有AR模型、MA模型、ARMA模型和ARIMA模型等。
其中AR模型是自回归模型,MA模型是滑动平均模型,ARMA模型是自回归滑动平均模型,ARIMA模型则是自回归差分滑动平均模型。
二、时间序列分析在金融领域中的应用1、理解经济周期时间序列分析可以用来研究经济周期,特别是短期经济周期的变化。
通过时间序列分析,我们可以对宏观经济数据(如GDP、通货膨胀率等)进行周期性分析,从而对经济变化的趋势有所了解,甚至可以提前预测股市走势等。
2、预测财务数据时间序列分析可以应用于股票价格、货币汇率、收益率的预测等。
例如,基于时间序列分析模型可以预测某公司的未来销售额、净利润等财务数据,从而帮助企业做出合理的决策。
3、金融市场价格走势预测时间序列分析可以用于股价、债券价格、货币汇率以及商品价格的预测。
在股市中,投资者可以利用时间序列分析模型来预测股票价格的走势,从而制定战略。
4、风险管理时间序列分析还可以用于风险管理领域。
如股票价格波动率的预测就是风险管理的重点之一。
我们可以预测未来股票价格的波动率,从而在投资过程中制定合理的风险控制政策。
三、时间序列分析的局限性虽然时间序列分析在金融领域中应用广泛,但其预测的准确性并不完美。
时间序列分析可以用于短期预测和周期性分析,但对于极端事件、突发事件等无法充分预测。
同时,时间序列分析也需要考虑时间跨度、数据采集质量、数据噪声等因素,这些因素都可能对预测结果产生影响。
结语时间序列分析虽然不能100%地预测未来,但它可以提供有价值的指导意见。
金融时序数据分析报告(3篇)
![金融时序数据分析报告(3篇)](https://img.taocdn.com/s3/m/2dba065986c24028915f804d2b160b4e767f81f2.png)
第1篇一、引言随着金融市场的快速发展,数据已成为金融行业的重要资产。
时序数据分析作为金融数据分析的核心方法之一,通过对金融时间序列数据的分析,可以帮助我们理解市场趋势、预测未来走势,从而为投资决策提供科学依据。
本报告旨在通过对某金融时间序列数据的分析,揭示市场规律,为投资者提供参考。
二、数据来源与处理1. 数据来源本报告所使用的数据来源于某金融交易所,包括股票、债券、期货等金融产品的历史价格、成交量、市场指数等数据。
数据时间跨度为过去五年,数据频率为每日。
2. 数据处理(1)数据清洗:对数据进行初步清洗,剔除异常值和缺失值。
(2)数据转换:将原始数据转换为适合时序分析的形式,如对数变换、标准化等。
(3)数据分割:将数据分为训练集和测试集,用于模型训练和验证。
三、时序分析方法本报告主要采用以下时序分析方法:1. 时间序列描述性分析通过对时间序列数据进行描述性统计分析,如均值、标准差、自相关系数等,了解数据的整体特征。
2. 时间序列平稳性检验使用ADF(Augmented Dickey-Fuller)检验等方法,判断时间序列是否平稳,为后续建模提供基础。
3. 时间序列建模(1)ARIMA模型:根据时间序列的自相关性,构建ARIMA模型,对数据进行拟合和预测。
(2)SARIMA模型:在ARIMA模型的基础上,考虑季节性因素,构建SARIMA模型。
(3)LSTM模型:利用深度学习技术,构建LSTM模型,对时间序列数据进行预测。
四、结果与分析1. 时间序列描述性分析通过对股票价格、成交量等数据的描述性分析,我们发现:(1)股票价格波动较大,存在明显的周期性波动。
(2)成交量与价格波动存在正相关关系。
(3)市场指数波动相对平稳。
2. 时间序列平稳性检验通过ADF检验,我们发现股票价格、成交量等时间序列均为非平稳时间序列,需要进行差分处理。
3. 时间序列建模(1)ARIMA模型:根据自相关图和偏自相关图,确定ARIMA模型参数,对数据进行拟合和预测。
金融分析中的时间序列分析
![金融分析中的时间序列分析](https://img.taocdn.com/s3/m/79e5cc72e55c3b3567ec102de2bd960590c6d992.png)
金融分析中的时间序列分析随着经济市场的不断发展壮大,金融市场中的各种数据和资讯也越来越丰富。
而在对金融市场进行投资、交易和风险管理等方面,时间序列分析便成了一个不可或缺的重要工具。
时间序列分析,简单来说就是一种以时间为变量的统计分析方法,将过去的趋势和规律作为未来预测的基础,为金融分析带来了更加准确和可靠的结果,而今天我们就来探讨一下:金融分析中的时间序列分析。
一、时间序列分析概述时间序列分析,也被称为趋势分析,是一种通过统计方法对时间序列数据进行研究分析的方法。
所谓时间序列,就是将同一现象在一定时期内的各种变动用具体的数值表示出来。
而在金融市场中,时间序列分析主要应用在股票、商品、外汇等价格趋势的分析中。
时间序列分析主要依据数据的统计特征、趋势性、季节性、周期性和随机性等来进行分析,其中时间序列模型是其中研究最常用的一种模型,它是建立在变量的历史数据上的一种预测模型,能够为金融分析人员提供更加精准的预测结果。
二、时间序列分析的应用1. 股票价格分析时间序列分析在分析股票价格变动方面非常常见,主要是通过对股票市场的历史数据进行逐一分析,确定出股票价格的波动规律,以及未来可能出现的价格趋势;同时,也能通过对经济形势的分析判断出股票市场变动的影响因素,帮助投资者制定更合理的投资策略。
2. 商品价格分析商品市场同样涉及到价格的问题,而通过时间序列分析方法,可以帮助统计员对商品价格进行监测和预测,以便在制定政策或对价格变动进行应对时有所依据。
3. 风险管理分析时间序列分析中也很常见的一项应用,就是对金融市场中的风险进行分析处理。
通过对历史数据的分析比较,我们能够发现金融市场可能产生的风险趋势或潜在的风险因素,并且在确定金融市场风险承受能力和风险评估标准的基础上,有效地控制和处理金融风险。
三、时间序列分析的方法1. 时间序列分解时间序列分解是一种分析方法,其中,时间序列被分解为趋势、季节、循环和随机成分,是分析市场波动规律的最基本的方法之一。
金融高频时间序列的MODWT波动分析
![金融高频时间序列的MODWT波动分析](https://img.taocdn.com/s3/m/fb7f9cbf65ce05087632130b.png)
必 须 是 2 限制 。 于 高 频 数 据 , 的 对 由于 采 样 十 分 紧 凑 , 此 MO WT也 大大 避 免 一 为 下 采 样造 成 了数 据 信 息 的 遗 失 。由 于离 散 平 因 D T因 本 文 介绍 了 M WT的基 本 性 质 , 从 股 指 期 货 主 力 合 约 的 日数 据 人 手 , 绍 了 小波 去 噪 的原 理 。 与此 同 时 , 结 出在 用 小 波 OD 并 介 总
f und t tM O D W T a e e tv l c o ha c n f ci ey de ompos he f t ton nd te s e t ucuai sa r nd .Thee i no he ndng t ti h e lofde om p ii se l r sa t rf i ha ft e lve c i ost on i — n g ou h,t rnd i or ai n a be c e e y t u t ai n .S h n a lti s d a he ft rf r t e o—m e n d t,t e l he te nf m to cn ov r d b he f c u to s o w e w vee su e st le o he z r l i a aa he lve s ul ee td a pr praey ho d be slce p o itl
2 5 *值息技术与课程整合 44 m 本栏目责任编辑: 书 梁
第 7卷 第 1 0期 (0 1年 4月 ) 21
C m u r nweg n eho g o pt o l e d cnly电脑知识 技术 eK d a T o i
=
+
() 2
巾D 是 经 过 MO WT变 换 之 后 得 到 的 第 i 细 : D 层 系数 , 每 个 子 序  ̄ D 都 是 该 尺 度 上 小 波基 的线 性 组 合 而 / . f ]
金融交易中的高频数据分析与建模方法
![金融交易中的高频数据分析与建模方法](https://img.taocdn.com/s3/m/ca093cae80c758f5f61fb7360b4c2e3f56272571.png)
金融交易中的高频数据分析与建模方法随着金融市场的快速发展和技术的不断进步,高频交易已经成为金融行业的重要组成部分。
在高频交易中,每秒钟可能产生数千甚至数百万条交易记录和报价数据。
这些数据对投资者和交易员来说都是非常宝贵的资源,因为它们包含了大量的市场信息和洞察力。
因此,对高频数据进行准确分析和建模,成为金融从业者必备的能力。
高频数据分析是指对高频交易数据进行统计、计量和模型分析的过程。
它可以帮助我们揭示金融市场的微观结构和市场参与者的行为模式。
同时,高频数据分析还能够帮助我们发现市场的异常波动和交易机会,提高投资和交易策略的成功率。
在进行高频数据分析时,有几种常用的方法和工具可以帮助我们提取和理解数据的信息。
首先,时间序列分析是高频数据分析的重要工具之一。
时间序列分析主要关注数据随时间变化的模式和趋势。
通过对高频数据进行时间序列分析,我们可以观察到数据的季节性、周期性和趋势性等特征。
常用的时间序列分析方法包括移动平均、指数平滑、自回归移动平均模型(ARMA)和广义自回归条件异方差模型(GARCH)等。
其次,机器学习方法在高频数据分析中也起着重要作用。
机器学习是一种通过训练模型来自动识别模式和进行预测的方法。
在金融领域,机器学习可以用于构建高频交易策略模型和预测模型。
常用的机器学习算法包括支持向量机(SVM)、随机森林和神经网络等。
此外,量化金融模型也是高频数据分析的重要工具。
量化金融模型通过建立数学模型来分析金融市场和交易策略。
常用的量化金融模型包括均值方差模型、CAPM模型和Black-Scholes模型等。
这些模型可以帮助我们理解和解释高频数据背后的市场机制,从而指导我们的交易策略。
在进行高频数据分析时,我们还需要注意一些常见的问题和挑战。
首先,高频数据通常具有噪声和非线性特征,这使得数据的分析和建模更加困难。
其次,在高频交易中,交易成本和滑点等因素会对数据产生重要影响,因此我们需要对这些因素进行合理的处理。
金融时间序列分析-总结
![金融时间序列分析-总结](https://img.taocdn.com/s3/m/15bbdd850408763231126edb6f1aff00bed57006.png)
2023 WORK SUMMARY
金融时间序列分析-总 结
REPORTING
目录
• 引言 • 金融时间序列基本概念 • 数据获取与预处理 • 统计分析方法 • 模型构建与评估 • 实证分析与案例研究 • 总结与展望
https://
数据来源
公开数据源
包括证券交易所、政府统计机构、 国际经济组织等提供的公开数据。
商业数据源
如专业金融数据服务商提供的收费 数据服务,通常数据更全面、质量 更高。
学术研究数据源
学术研究机构或学者共享的数据集, 常用于特定金融问题的研究。
数据清洗
01
02
03
缺失值处理
根据数据缺失的程度和性 质,采用插值、删除或基 于模型的方法进行处理。
分布形态度量
通过偏度、峰度等指标 描述数据分布的形状。
推断性统计
参数估计
利用样本数据对总体参数进行 估计,如点估计和区间估计。
假设检验
提出原假设和备择假设,通过 构造检验统计量并计算p值,判 断原假设是否成立。
方差分析
研究不同因素对因变量的影响 程度,以及因素之间的交互作 用。
回归分析
探究自变量和因变量之间的线 性或非线性关系,建立回归模
结论与启示
总结股票价格预测的方法和效果,并探讨其在实际应用 中的局限性和改进方向。
案例二:汇率波动分析
01
02
03
04
数据来源与预处理
收集某货币对的汇率历 史数据,并进行清洗和 整理。
实证分析过程
采用GARCH模型对汇率 波动进行建模和分析, 通过极大似然估计等方 法确定模型参数。
结果分析
对模型的拟合效果和波 动率预测进行评估,包 括模型的残差分析、波 动率预测精度等。
金融时间序列分析2篇
![金融时间序列分析2篇](https://img.taocdn.com/s3/m/de787ceab8f3f90f76c66137ee06eff9aef849e6.png)
金融时间序列分析2篇金融时间序列分析(一)时间序列是指一组按时间顺序排列的数据。
在金融领域,时间序列分析常用于分析股票、货币、债券、商品等资产价格的变化规律。
本文将介绍金融时间序列分析的方法和应用。
一、时间序列分析的方法时间序列分析方法包括时间序列模型、时间序列分解、时间序列平稳性检验、时间序列预测等。
其中,时间序列模型是时间序列分析的核心部分,常用的模型包括ARMA、ARIMA、GARCH等。
ARMA模型是一种自回归移动平均模型,包括自回归项和移动平均项两部分。
ARIMA模型是在ARMA模型的基础上增加了差分项,可以处理非平稳时间序列。
GARCH模型是一种波动率模型,可以处理金融资产价格的波动性。
时间序列分解可以将时间序列分解成趋势、季节性和随机性三个部分,可以更好地理解时间序列的特点。
时间序列平稳性检验可以检验时间序列的平稳性,平稳性是很多时间序列模型的前提条件。
时间序列预测可以预测未来的时间序列值,是金融时间序列分析的一个重要应用。
二、时间序列分析的应用时间序列分析在金融领域有广泛应用,例如股票价格预测、外汇汇率波动分析、资产组合优化等。
下面以股票价格预测为例介绍时间序列分析在股票市场的应用。
股票价格是众多金融时间序列中最重要的一个。
时间序列分析对于股票价格预测有重要作用。
预测股票价格涨跌的方向可以帮助投资者制定合理的投资策略。
一种基本的股票价格预测方法是使用ARIMA模型。
ARIMA模型可以处理非平稳时间序列,更好地适用于股票价格预测。
通过建立ARIMA模型,可以对未来的股票价格进行预测。
同时,还可以使用时间序列分解方法,将股票价格分解成趋势、季节性和随机性三个部分,更好地理解和预测未来的股票价格变化趋势。
三、总结时间序列分析是金融领域中重要的一种分析方法。
时间序列模型、时间序列分解、时间序列平稳性检验、时间序列预测等是时间序列分析的基本方法。
时间序列分析在股票价格预测、外汇汇率波动分析、资产组合优化等方面有广泛应用。
高频金融数据的计算与分析方法研究
![高频金融数据的计算与分析方法研究](https://img.taocdn.com/s3/m/29445567b5daa58da0116c175f0e7cd1842518fe.png)
高频金融数据的计算与分析方法研究随着金融市场的快速发展和信息技术的迅猛进步,高频金融数据的计算与分析方法成为了金融研究领域的热点。
高频金融数据是指在较短时间内采集的金融市场数据,如每秒或每分钟的股票价格、交易量等。
这些数据的计算和分析可以帮助投资者和研究人员更好地理解市场行为和价格波动,从而制定更有效的投资策略。
一、高频金融数据的计算方法高频金融数据的计算方法主要包括数据清洗、数据预处理和数据聚合等步骤。
首先,数据清洗是指对原始数据进行筛选和过滤,去除异常值和错误数据。
其次,数据预处理是指对清洗后的数据进行标准化和归一化处理,以便于后续的计算和分析。
最后,数据聚合是指将高频数据按照一定的时间间隔进行聚合,如将每秒的数据聚合为每分钟的数据,以减少数据量和计算复杂度。
在高频金融数据的计算过程中,还需要注意数据的时间戳和顺序。
时间戳是指数据采集的时间点,而顺序是指数据的先后顺序。
在计算和分析过程中,需要确保数据的时间戳是正确的,并且数据的顺序是按照时间先后排列的,以保证计算的准确性和可靠性。
二、高频金融数据的分析方法高频金融数据的分析方法主要包括统计分析、时间序列分析和机器学习等方法。
统计分析是指对高频数据进行统计描述和推断分析,如计算均值、方差、相关系数等。
时间序列分析是指对高频数据进行时间序列建模和预测分析,如ARIMA模型、ARCH模型等。
机器学习是指利用机器学习算法对高频数据进行模式识别和预测分析,如支持向量机、神经网络等。
在高频金融数据的分析过程中,还需要考虑数据的特征和特点。
高频数据具有高维度、高频率和非平稳性的特点,因此在分析过程中需要采用适当的方法和技术。
例如,对于高维度的数据,可以采用主成分分析等降维方法;对于高频率的数据,可以采用滑动窗口和滚动统计等方法;对于非平稳性的数据,可以采用差分和平稳化处理等方法。
三、高频金融数据的应用领域高频金融数据的计算和分析方法在金融领域有着广泛的应用。
金融交易中的高频数据建模与分析方法研究
![金融交易中的高频数据建模与分析方法研究](https://img.taocdn.com/s3/m/ea562413ac02de80d4d8d15abe23482fb4da0231.png)
金融交易中的高频数据建模与分析方法研究随着金融市场的快速发展,高频交易已成为金融交易领域中的重要组成部分。
高频交易通过使用计算机算法实现快速的买卖决策,利用微小的价格波动获取利润。
这种交易方式产生的大量高频数据对金融学家和交易员来说是一项宝贵的资产,因为它们包含了市场的实时动态和价格趋势。
本文将研究金融交易中的高频数据建模与分析方法。
首先,我们将介绍高频数据的特点和应用。
然后,我们将讨论高频数据的建模技术,包括时间序列模型、随机波动模型和机器学习方法。
最后,我们将重点介绍高频数据的分析方法,包括量化交易策略、统计套利和市场微观结构分析。
高频数据的特点和应用高频数据是以非常短的时间间隔记录的金融市场数据。
它们通常以每秒、每分钟或每小时的频率记录价格、交易量和其他相关指标。
与传统的日频或更低频率数据相比,高频数据更具有实时性和精细度。
这种数据的特点使得其在金融交易中的应用变得更加广泛。
一种最常见的应用是高频交易。
高频交易以其快速的交易速度和精确的买卖决策而闻名。
交易员可以使用高频数据来开发和测试交易策略,并据此进行交易决策。
高频交易有助于提高交易效率和市场流动性,但也引发了一些争议和监管关注。
另一种重要的应用是量化交易策略。
量化交易依赖于数学和统计模型来识别市场价格的模式和趋势。
高频数据可以提供更详细和精确的市场信息,从而为量化交易策略提供更强的预测能力。
这些策略可以用于股票、期货、外汇等各种金融产品的交易。
高频数据的建模技术高频数据的建模是分析和预测金融市场的关键步骤。
建模技术可以帮助我们理解市场的动态,发现隐藏的规律和趋势。
以下是几种常见的高频数据建模技术:1. 时间序列模型:时间序列模型是一种用于分析时间相关数据的经典方法。
它可以捕捉到数据中的季节性、趋势和周期性。
常用的时间序列模型包括ARIMA模型、GARCH模型和VAR模型。
这些模型可以用于预测市场价格的未来走势。
2. 随机波动模型:随机波动模型主要用于研究金融市场中的波动性。
如何进行金融市场的时间序列分析
![如何进行金融市场的时间序列分析](https://img.taocdn.com/s3/m/d5ad237682c4bb4cf7ec4afe04a1b0717fd5b318.png)
如何进行金融市场的时间序列分析金融市场的时间序列分析是一种对金融数据进行统计分析和预测的方法。
它通过对金融市场的历史数据进行分析,找出其中的规律和趋势,以便判断未来的走势和风险。
本文将介绍金融市场时间序列分析的基本原理和方法,并提供相关实例。
一、时间序列分析的基本原理时间序列分析是基于时间上连续的一系列数据,需要从以下几个方面进行分析:1. 趋势分析:通过绘制时间序列图,观察数据的长期趋势,包括上升、下降或平稳趋势。
趋势分析能够帮助我们判断资产价格的未来发展趋势。
2. 季节性分析:考察数据是否存在季节性波动,例如某种商品在特定季节有较大的需求。
季节性分析可以帮助我们预测季节性市场的波动性。
3. 周期性分析:探索数据中是否存在周期性波动,例如长期经济周期或业务周期。
周期性分析可以帮助我们预测资产价格的长期涨跌。
4. 随机性分析:分析数据中存在的随机波动,包括噪声和突发事件。
随机性分析可以帮助我们了解市场中的风险和不确定性。
二、时间序列分析的方法时间序列分析有多种方法,下面介绍几种常用的方法:1. 移动平均法:通过计算一段时间内数据的平均值,以消除随机波动,更直观地反映趋势变化。
可以使用简单移动平均、加权移动平均等方法。
2. 指数平滑法:为了更加关注最新数据,给予较早数据较小的权重,采用指数平滑法。
指数平滑法可以用于预测和平滑时间序列数据。
3. 自回归移动平均模型(ARMA):将自回归模型和移动平均模型结合,进行时间序列的拟合和预测。
ARMA模型可以较好地解决不同时间间隔数据波动性不同的问题。
4. ARCH/GARCH模型:适用于分析金融市场中的波动性,特别是股票价格的波动。
ARCH/GARCH模型可以评估历史数据中的波动性,并预测未来的风险。
三、时间序列分析的实例以下是一个实例,以股票市场为例,展示了如何进行时间序列分析:假设我们想对某只股票进行时间序列分析,找出其趋势和周期性。
1. 收集该股票的历史数据,包括每日收盘价。
金融领域中的高频交易数据分析与预测方法
![金融领域中的高频交易数据分析与预测方法](https://img.taocdn.com/s3/m/2dc4497c5627a5e9856a561252d380eb6294239a.png)
金融领域中的高频交易数据分析与预测方法在金融市场中,高频交易数据的分析与预测对于投资者和交易员来说至关重要。
高频交易数据以其高频率的产生和更新速度,以及敏感性和代表性的特点,为金融市场的参与者提供了更准确、实时的信息。
通过分析这些数据,交易者可以了解市场的动态,制定正确的交易策略,并预测未来的趋势。
高频交易数据分析的目标是挖掘数据背后的规律和信号,以便获取有关市场走势、价格变动和交易机会的信息。
以下是一些常用的高频交易数据分析方法:1. 市场微观结构分析:这种方法通过研究市场的微观结构,例如限价单和市价单的成交和撤单情况,来分析市场参与者的行为和偏好。
通过观察市场的流动性和成交量等指标,可以了解市场的供需关系和价格走势。
2. 时间序列分析:时间序列分析旨在通过统计模型和算法,对历史市场数据的模式和趋势进行建模和预测。
常用的时间序列分析方法包括移动平均法、指数平滑法和自回归移动平均法等。
这些方法可以帮助投资者识别市场的周期性和趋势性,并进行合理的预测。
3. 机器学习算法:机器学习是一种通过让计算机从数据中学习和发现模式的方法。
在金融领域中,机器学习算法可以用于预测市场走势、交易机会和风险事件等。
常用的机器学习算法包括决策树、支持向量机和神经网络等。
通过训练算法模型,并利用历史数据进行模型的验证和优化,可以提高分析和预测的准确性。
4. 统计套利策略:统计套利策略是基于统计方法和概率模型进行的交易策略。
在金融市场中存在着一些统计性价格规律,例如均值回归和价差收敛等。
通过利用这些规律,交易者可以进行套利交易,获取稳定的收益。
统计套利策略通常需要大量的历史数据和复杂的计算模型,以便做出准确的决策和预测。
除了高频交易数据分析,预测未来的市场走势也是投资者关注的重点。
以下是一些常用的高频交易数据预测方法:1. 时间序列预测:时间序列预测是指根据历史市场数据的模式和趋势,预测未来的价格走势和交易机会。
时间序列预测方法包括自回归移动平均模型、指数平滑模型和季节性模型等。
统计学在金融市场中的高频数据分析方法
![统计学在金融市场中的高频数据分析方法](https://img.taocdn.com/s3/m/3f1de459fd4ffe4733687e21af45b307e871f9ed.png)
统计学在金融市场中的高频数据分析方法在金融市场中,高频数据分析是一项关键的任务。
通过对高频数据的分析,可以帮助投资者和交易员更好地理解市场的变化和趋势,并作出准确的投资决策。
统计学是一种强大的工具,可以用于分析金融市场中的高频数据。
本文将介绍一些统计学在金融市场中的高频数据分析方法。
一、高频数据介绍高频数据是指在很短的时间内采集的数据,通常以秒为单位。
这些数据包括股票、期货、外汇等金融市场中的价格、成交量等信息。
相比于低频数据,高频数据更加精细和敏感,可以更好地反映市场的瞬时波动。
二、统计学在高频数据分析中的应用1. 时间序列分析时间序列分析是统计学中的一个重要方法,在高频数据分析中也得到了广泛的应用。
通过对时间序列数据进行建模和预测,可以揭示出市场的周期性、趋势性以及季节性等特征,为投资者提供决策依据。
常用的时间序列分析方法包括ARMA模型、ARIMA模型等。
2. 波动性分析波动性是金融市场中的一个重要指标,可以帮助投资者评估资产的风险水平。
在高频数据分析中,可以使用统计学方法对波动性进行测量和分析。
常见的波动性测量方法包括历史波动率、隐含波动率等。
3. 高频数据处理由于高频数据的精细性,往往会出现数据问题,如缺失数据、异常数据等。
统计学提供了一些方法来处理这些问题,例如插值法、滤波法等。
通过对高频数据进行处理,可以提高数据的准确性和可靠性。
4. 事件研究事件研究是一种常用的方法,用于研究特定事件对金融市场的影响。
在高频数据分析中,可以使用事件研究方法来分析特定事件对市场的影响程度和持续时间。
通过事件研究,可以帮助投资者更好地把握市场的变化和机会。
5. 机器学习算法机器学习是一种利用统计学习方法来构建模型和预测的技术。
在高频数据分析中,可以使用机器学习算法来挖掘数据中的模式和规律。
常见的机器学习算法包括支持向量机、随机森林等。
通过机器学习算法的应用,可以提高对高频数据的理解和预测能力。
三、案例分析为了更好地说明统计学在金融市场中的高频数据分析方法,我们以股票市场为例进行案例分析。
金融数据分析方法
![金融数据分析方法](https://img.taocdn.com/s3/m/8756b0aa988fcc22bcd126fff705cc1755275fe5.png)
金融数据分析方法
1. 时间序列分析
金融数据经常是以时间序列的形式呈现,因此时间序列分析是金融数据分析的基本方法之一。
时间序列分析可用于分析股票价格、汇率波动、利率变化和经济指标等。
在进行时间序列分析时,需要考虑诸如趋势、季节性、循环、异方差等因素,以确保分析结果的准确性和可靠性。
2. 回归分析
回归分析是一种经济学和统计学中常用的方法,用于研究变量之间的关系。
在金融数据分析中,回归分析可用于研究一些参数对股票价格或其他金融指标的影响。
例如,可以使用回归分析来确定GDP、通货膨胀率和汇率对股票价格的影响。
3. 变异系数分析
变异系数是标准差与平均值比值的一种度量,它能够衡量数据的离散程度。
在金融数据分析中,变异系数通常用于比较不同股票的波动程度。
如果一个股票的变异系数较低,那么它的价格相对比较稳定;反之,如果一个股票的变异系数较高,那么它的价格会时常波动。
4. 热度图分析
热度图是一种可视化方法,用于显示数据的变化与趋势。
在金融数据分析中,热度图可用于观察股票价格或其他金融指标随时间的变化。
例如,可以使用热度图来显示某个股票近几年来的价格变化,观察趋势和周期。
5. 贝叶斯分析
贝叶斯分析是一种概率统计学方法,用于计算事件的概率。
在金融数据分析中,贝叶斯分析可用于评估不同股票的风险和收益。
例如,在进行贝叶斯分析时,可以考虑诸如公司财务状况、行业前景、市场涨跌等因素,以预测某个股票的回报和风险。
金融行业的数据分析技巧
![金融行业的数据分析技巧](https://img.taocdn.com/s3/m/828d68c8d1d233d4b14e852458fb770bf78a3b0b.png)
金融行业的数据分析技巧在金融行业,数据分析是一项不可或缺的技能。
随着金融市场的复杂性和数据量的增加,有效地分析数据可以帮助金融从业者做出明智的决策,并优化业务流程。
本文将介绍几种在金融行业中常用的数据分析技巧。
一、时间序列分析时间序列分析是金融行业常用的一种数据分析方法。
它通过对一系列按时间顺序排列的数据进行统计建模,来揭示数据内在的规律和趋势。
在金融市场,时间序列分析常用于预测股票价格、汇率波动等。
常见的时间序列分析方法包括平滑法、趋势分析、周期性分析和季节性分析等。
二、回归分析回归分析是金融行业中另一种常用的数据分析技巧。
它通过建立数学模型,将一个或多个自变量与一个因变量之间的关系进行建模和预测。
在金融领域,回归分析可以应用于股票和债券的定价、投资组合的构建和风险评估等。
常用的回归分析方法包括线性回归、多元回归和逻辑回归等。
三、聚类分析聚类分析是一种将数据样本划分为若干个类别的数据分析方法。
在金融领域,聚类分析可以帮助我们发现相似的金融产品、客户或市场分割等。
通过聚类分析,我们可以更好地理解金融市场中的群体行为,并为个别群体提供更有针对性的产品和服务。
常见的聚类分析方法包括K均值聚类和层次聚类等。
四、决策树分析决策树分析是一种通过树形图模拟判断过程的数据分析方法。
在金融领域,决策树分析可用于风险评估、信用评级和投资决策等。
通过构建决策树模型,我们可以根据不同的决策路径来评估金融产品或客户的风险和回报。
常用的决策树算法包括C4.5、ID3和CART等。
五、网络分析网络分析是一种研究连接关系网络的数据分析方法。
在金融领域,网络分析可用于研究金融市场的联系、影响力和风险传播等。
通过构建和分析金融网络,我们可以更好地理解金融市场中的相关性和波动性。
常见的网络分析方法包括社会网络分析和复杂网络分析等。
六、文本分析文本分析是一种通过对文本数据进行统计和计算来获取信息的数据分析方法。
在金融行业,文本分析可以用于舆情监测、新闻情感分析和财务报表分析等。
金融市场的高频数据分析
![金融市场的高频数据分析](https://img.taocdn.com/s3/m/292771830d22590102020740be1e650e52eacf39.png)
金融市场的高频数据分析近年来,随着信息技术的快速发展和金融市场的日益复杂化,高频数据在金融市场中扮演着越来越重要的角色。
高频数据分析是指对市场中以秒级或毫秒级为单位的交易数据进行收集、处理和分析的过程。
通过对高频数据的深入分析,金融从业者可以更好地理解市场行为和价格波动的来源,从而制定更准确的交易策略。
一、高频数据的特点高频数据与传统的日内和日度数据相比,具有以下几个显著特点:1. 高频性:高频数据是以秒级或毫秒级为单位进行记录的,可以实时获取市场中的交易信息,反映市场的瞬时情况。
2. 大量性:每天金融市场产生大量的高频数据,包括交易价格、交易量、委托挂单等信息,数据量庞大。
3. 噪声性:由于市场中存在大量的噪声交易和非理性行为,高频数据中会包含很多无关信息或异常数据,需要通过合理的数据处理方法进行过滤。
4. 异质性:高频数据来自不同的交易所、证券品种和交易策略,数据来源和特征具有一定的异质性,需要在分析和建模时考虑。
二、高频数据的应用1. 交易策略开发:高频数据可以帮助金融从业者寻找市场中的交易机会。
通过对高频数据进行统计和量化分析,可以发现各种市场因子和价格波动的规律,进而构建有效的交易策略。
2. 风险管理:金融市场的波动性常常会带来潜在的风险。
通过对高频数据的分析,可以更好地识别市场中的潜在风险,并采取相应的风险管理策略,降低投资组合的风险暴露。
3. 金融监管与合规:高频数据是金融监管与合规工作中的重要数据源。
监管机构可以通过对高频数据的监测和分析,及时发现潜在的市场操纵、内幕交易等违法行为,维护金融市场的公平和透明。
4. 量化研究:高频数据为量化研究提供了更全面、更精细的数据基础。
研究人员可以通过对高频数据的分析,探寻金融市场的内在规律,进一步改进量化模型和算法。
三、高频数据分析的方法高频数据分析需要运用各种统计学和计量经济学的方法。
以下是一些常用的方法:1. 价格模型:通过对高频数据中的价格序列进行建模,可以揭示价格的动态变化规律,并预测未来的价格走势。
金融市场中的时间序列分析
![金融市场中的时间序列分析](https://img.taocdn.com/s3/m/0acf5abd82d049649b6648d7c1c708a1294a0a46.png)
金融市场中的时间序列分析随着现代经济的发展和供求关系的变化,金融市场日益成为世界经济的核心。
在这个动态的市场中,各种金融工具交易的价格、利率和汇率等变量都在时刻发生着变化,这些变化背后隐藏着丰富的信息和规律。
时间序列分析是研究金融时间序列波动的统计方法,通过对历史数据的分析,可以为金融市场提供有效的预测和决策依据。
一、时间序列分析简介时间序列是指按时间顺序排列的一系列随机变量的观察值。
时间序列分析是对这些观察值的统计分析、模型构建和预测,其基本假设是序列的常见值或趋势改变具有一定的稳定性。
在金融市场中,时间序列分析通常用于对金融变量如股票价格、利率、汇率、价格指数进行分析和预测。
时间序列分析的主要方法包括平稳性检验、白噪声检验、自相关函数和偏自相关函数的绘制、时间序列模型选择和估计等。
常用的时间序列模型包括随机游走模型、自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和广义自回归条件异方差模型(GARCH)等。
二、平稳性检验平稳性是时间序列分析的基本假设,它的意义在于序列的均值、方差和自相关系数等统计量不随时间变化而发生显著变化。
若序列是非平稳的,则需要对其进行差分或变换,使其变为平稳序列。
常见的平稳性检验方法包括ADF检验、KPSS检验、PP检验等。
ADF检验的假设是序列有单位根,即序列不平稳。
检验统计量的值越小,拒绝序列有单位根的假设越强,即序列越平稳。
KPSS检验的假设是序列具有趋势性,即序列不平稳。
检验统计量的值越大,拒绝序列无趋势的假设越强,即序列越不平稳。
PP检验是另一种检测序列平稳性的方法,其假设是序列有单位根。
检验统计量和ADF检验类似,其值越小,拒绝序列有单位根的假设越强。
三、自相关函数和偏自相关函数的绘制自相关函数(ACF)和偏自相关函数(PACF)是判断时间序列是否平稳,以及确定合适的时间序列模型的重要工具。
自相关函数是指对平稳序列按照时间先后顺序计算的各个时刻之间的相关系数。
高频金融数据分析在经济统计学中的应用
![高频金融数据分析在经济统计学中的应用](https://img.taocdn.com/s3/m/f11c2e8459f5f61fb7360b4c2e3f5727a4e9246b.png)
高频金融数据分析在经济统计学中的应用近年来,随着金融市场的快速发展和信息技术的迅猛进步,高频金融数据分析在经济统计学中的应用越来越受到重视。
高频金融数据是指以秒甚至毫秒为单位的金融市场数据,包括股票价格、交易量、利率等。
这些数据的高频率和大量信息使得它们在经济统计学中的应用具有独特的优势和挑战。
高频金融数据分析可以帮助我们更准确地了解金融市场的运行机制和市场参与者的行为。
通过对高频数据的分析,我们可以揭示市场的瞬时波动、交易策略和价格发现过程等重要信息。
例如,通过分析股票价格的高频数据,我们可以发现市场的短期波动往往受到市场参与者的情绪和行为的影响,进而预测市场的走势。
此外,高频数据还可以帮助我们研究市场的流动性、价格发现和市场操纵等问题,为金融监管和风险控制提供决策依据。
然而,高频金融数据分析也面临着一些挑战。
首先,高频数据的数量庞大,处理和分析起来非常复杂。
其次,高频数据的噪声和非线性特征使得建模和预测变得更加困难。
此外,高频数据的特点使得传统的统计方法和模型无法直接应用,需要开发新的理论和方法来适应高频数据的分析需求。
为了应对这些挑战,研究者们提出了许多高频数据分析的方法和模型。
其中,时间序列分析是一种常用的方法。
通过对高频数据的时间序列进行建模,可以揭示数据的周期性和趋势性,进而预测未来的变化。
此外,机器学习和人工智能技术的发展也为高频数据分析提供了新的思路和工具。
通过利用机器学习算法和模型,可以从大量的高频数据中提取有用的信息和模式,帮助我们更好地理解金融市场的运行规律。
除了研究方法和模型的发展,高频金融数据分析还需要与实际应用相结合,才能发挥其最大的价值。
例如,在金融风险管理中,高频数据的分析可以帮助我们更准确地评估风险和损失,并制定相应的风险控制策略。
在金融监管中,高频数据的分析可以帮助监管机构及时发现市场操纵和违规交易行为,并采取相应的监管措施。
在金融投资中,高频数据的分析可以帮助投资者制定更有效的交易策略,提高投资收益。
金融高频时间序列分析共36页文档
![金融高频时间序列分析共36页文档](https://img.taocdn.com/s3/m/20c103bc102de2bd97058841.png)
5、“已实现幂次变差(Realized Bipower Variation,RBV)
(3)虽然日间收益率的无条件分布并非正态分布,具有明显的“高峰 厚尾”性,但是日间收益率除以“已实现”标准差后的条件分布却近似 是正态分布;
(4)以上三条性质都是针对每日的“已实现”波动而言的,然而对
“每已月实的现“”已波实动现的”时波间 动聚 的合 研性 究质 中的 发研 现究 :, 在即 时对 间每 聚周 合, 下每,两“周已,实每现h三”2d周波1及动
周、月、季度或者年度数据进行的,这种金融数据在金融计量学研究 领域通常称为低频数据。 2、高频数据 近年来,随着计算工具和计算方法的发展,极大地降低了数据记录和 存储的成本,使得对更高频率的金融数据进行研究成为可能。 在金融市场中,高频率采集的数据可以分为两类:高频数据(high frequency data)和超高频数据(ultra high frequency data)。 高频数据是指以小时、分钟或秒为采集频率的数据。高频数据即日内 数据,是指在开盘时间和收盘时间之间进行抽样的交易数据,主要是 以小时、分钟、甚至秒为抽样频率的、按时间顺序排列的时间序列。 3、超高频数据 超高频数据则是指交易过程中实时采集的数据。 高频数据和超高频数据两者之间的最大区别是:前者是等时间间隔的, 后者的时间间隔是时变的。
由二次变差的性质,收益率平方和的极限为金融资产对数价 格收益的二次变差;
再由伊藤定理,可以得到二次变差与积分波动(Integrated Volatility, IV)的对应关系。
“已实现”波动就是收益率的平方和,这样就可以得出“已 实现”波动的概率极限为积分波动。
金融高频时间序列分析
![金融高频时间序列分析](https://img.taocdn.com/s3/m/421b4912fab069dc51220158.png)
r(0,2)
(1 (r 1))
r 2r 2
2 ( 1 )
2
( p) 表示伽玛函数
3、“已实现”双幂次变差统计性质的实证研
究
本节使用深证成指和上证综指两个市场的金融高频 数据来构建“已实现”双幂次变差,然后对该估计 量的特性进行实证研究。该高频数据是从2005.4.14 至2006.4.14深证成指和上证综指的1分钟间隔时段 内的收盘价,这期间共有243个交易日,共有 241×243=58563个数据。
数图
数图
当r=s=1时,从图3-1至3-5和图3-6至3-10中可以看到,深证 成指和上证综指在抽样频率分别为1分钟、5分钟、10分钟、 30分钟和60分钟的“已实现”双幂次变差时间序列的150阶 自相关函数,都是随着滞后阶数的增大而缓慢下降。当 r=1/2且s=3/2时,从图3-11至3-15和图3-16至3-20中,以及 当r=7/4且s=1/4时,从图21-25和图26-30中,可以看到深证 成指和上证综指在抽样频率分别为1分钟、5分钟、10分钟、 30分钟和60分钟的“已实现”双幂次变差时间序列的自相关 函数,也都是随着滞后阶数的增大而缓慢下降的。
同时,表3-1与表3-2中深证成指和上证综指分维数d的估计 值也都显著不为零。这说明“已实现”双幂次变差时间序列 为长记忆时间序列,并且具有分数维特性。
表3-3至3-5分别给出了当r=s=1时,当r=1/2且s=3/2 时,以及当r=7/4且s=1/4时,深证成指在1分钟、5 分钟、10分钟、30分钟和60分钟的抽样时间间隔下, “已实现”双幂次变差RBV、标准差、标准差取对 数以及用标准差将收益率标准化后的各个统计量的 偏度、峰度和J-B统计量。
“已实现”波动(Realized Volatility,RV)是Anderson和Bollerslev等人 基于金融高频时间序列提出的一种全新的波动率度量方法,该方法由于 具有无模型、计算方便、并且在一定条件下是波动率的一致估计量等优 点,近年来已被广泛应用于高频金融数据的研究中。“已实现”波动的 概念和方法,近年来也获得不断的改进和发展。“已实现”双幂次变差 (Realized Bipower Variation,RBV)是Barndorff-Nielsen和Neil Shephard提出的另一类似于“已实现”波动的波动率度量方法,该估计 量同样是波动率的一致估计量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、“已实现”双幂次变差的概率极限 、 已实现”
Barndorff-Nielsen和Neil Shephard指出在不存在跳跃和存在有限 次跳跃的条件下,当s=2-r时,都有下式成立 :
M →∞
lim µ µ
−1 r
−1 2−r
RBV t
[r , 2 − r ]
→
∫
ht
h ( t −1)
σ u2 du
4、“已实现”波动的应用 、 已实现” “已实现”波动无模型、计算方便、并且是金融波动 率的一致估计量,“已实现”波动在多变量的情形 下还可以扩展为“已实现”协方差矩阵(Realized Covariance Matrix,RCM),它不仅包括各变量自 身的“已实现”波动率,也包括变量之间的“已实 现”协方差。因此,“已实现”波动近年来被广泛 应用于金融高频数据的应用研究中。 如:VaR的计算;资产定价研究;运用“已实现” 波动理论构建“已实现”Beta并对“已实现”Beta 的持续性和预测进行研究;进行动态投资组合研究 等。
5、“已实现”波动估计量形式的改进及扩展 、 已实现”
赋权 偏差校正
(二)“已实现”双幂次变差(Realized Bipower Variation,RBV)
1、“已实现”双幂次变差的概念 、 已实现” 2、“已实现”双幂次变差的概率极限 、 已实现” 3、“已实现”双幂次变差统计性质的实证研 、 已实现” 究
3、“已实现”波动的性质 、 已实现”
根据Andersen和Bollerslev等(2000,2001,2001,2003)对西方国家 发达金融市场的高频金融时间序列的研究,“已实现”波动通常具有下 列性质: (1)由于日内高频收益率之间存在序列相关和异方差性,所以“已实 现”方差(Realized Variance)与“已实现”标准差(Realized Standard Deviation)的无条件分布都是极端右偏,而且具有极高的峰度。 但是“已实现”标准差的偏度要比“已实现”方差的低; (2)虽然“已实现”标准差的无条件分布都是极端右偏,而且具有极 高的峰度,但是“已实现”标准差取对数后的无条件分布却很近似正态 分布; (3)虽然日间收益率的无条件分布并非正态分布,具有明显的“高峰 厚尾”性,但是日间收益率除以“已实现”标准差后的条件分布却近似 是正态分布; (4)以上三条性质都是针对每日的“已实现”波动而言的,然而对 “已实现”波动的时间聚合性质的研究,即对每周,每两周,每三周及 h 2 d +1 每月的“已实现”波动的研究中发现:在时间聚合下,“已实现”波动 的方差按 的尺度增长,其中表示时间跨度,d是常数; (5)“已实现”波动的自相关系数按双曲线的速率缓慢下降; (6)“已实现”波动取对数后的无条件分布是正态分布,具有显著的 分数维单整的性质。
1、“已实现”双幂次变差的概念 、 已实现”
Barndorff-Nielsen和Neil Shephard 提出“已实现”双幂次变差 (RBV)的定义为:
RBV
[r , s ]
t
h ≡ M
1− ( r + s ) 2
∑
M −1 j =1
r
y j ,t
y j +1 ,t
s
r, s ≥ 0
表3-3 r=s=1时深证成指在各个抽样频率下的统计量特征
r=s=1 RBV
RBV
ln
RBV
yt/
RBV
偏度 1分钟 峰度 J-B统计量 偏度 5分钟 峰度 J-B统计量 偏度 10分钟 峰度 J-B统计量 偏度 30分钟 峰度 J-B统计量 偏度 J-B统计量
5.3672 42.942 17022 5.7225 49.585 22900 3.4994 21.033 3719.7 4.3444 31.562 8865.5 2.8838 1399.9
通过对中国股市的深证成指和上证综指的高 频金融时间序列的研究,从图3-1至3-30和表 3-1至3-8中得到的“已实现”双幂次变差的 统计性质,同Andersen和Bollerslev等对西方 国家发达金融市场的高频金融时间序列的研 究得到的“已实现”波动的性质是基本一致 的。
(三)RV与RBiblioteka V的比较研究 与 的比较研究2.6652 14.504 1596.5 2.3983 13.334 1288.6 1.6067 7.2891 284.36 1.5312 7.9326 333.68 1.3386 116.76
0.99577 4.7518 69.367 0.50058 3.7223 14.868 0.26669 3.1843 3.0983 -0.1571 3.395 2.3514 0.00569 2.5718
“已实现”波动(Realized Volatility,RV)是Anderson和Bollerslev等人 基于金融高频时间序列提出的一种全新的波动率度量方法,该方法由于 具有无模型、计算方便、并且在一定条件下是波动率的一致估计量等优 点,近年来已被广泛应用于高频金融数据的研究中。“已实现”波动的 概念和方法,近年来也获得不断的改进和发展。“已实现”双幂次变差 (Realized Bipower Variation,RBV)是Barndorff-Nielsen和Neil Shephard提出的另一类似于“已实现”波动的波动率度量方法,该估计 量同样是波动率的一致估计量。 针对这两种文献中常被提及和讨论的有代表性的波动率估计方法,本节 在定义形式、估计量的稳健性、有效性 定义形式、 定义形式 估计量的稳健性、有效性等方面对这两个估计量进行了比 较,发现“已实现”双幂次变差的定义形式更广泛,除了具有稳健性, 本节还证明了“已实现”双幂次变差比“已实现”波动更有效。 通过对深证成指和上证综指的实证研究 实证研究,我们可以看出“已实现”双幂 实证研究 次变差的稳健性,同时也证实了“已实现”双幂次变差能更准确的估计 金融股市收益率的波动。
(二)金融数据 1、低频数据 、 二十世纪九十年代以前,人们对金融时间序列的研究都是针对日、 周、月、季度或者年度数据进行的,这种金融数据在金融计量学研究 领域通常称为低频数据。 2、高频数据 、 近年来,随着计算工具和计算方法的发展,极大地降低了数据记录和 存储的成本,使得对更高频率的金融数据进行研究成为可能。 在金融市场中,高频率采集的数据可以分为两类:高频数据(high frequency data)和超高频数据(ultra high frequency data)。 高频数据是指以小时、分钟或秒为采集频率的数据。高频数据即日内 数据,是指在开盘时间和收盘时间之间进行抽样的交易数据,主要是 以小时、分钟、甚至秒为抽样频率的、按时间顺序排列的时间序列。 3、超高频数据 、 超高频数据则是指交易过程中实时采集的数据。 高频数据和超高频数据两者之间的最大区别是:前者是等时间间隔的, 后者的时间间隔是时变的。 一般而言,金融市场上的信息是连续的影响证券市场价格运动过程的。 数据的离散采集必然会造成信息不同程度的缺失。采集数据频率越高, 信息丢失越少;反之,信息丢失越多。
(一)“已实现”波动(Realized Volatility,RV)
1、“已实现”波动的定义 、 已实现” 2、“已实现”波动的理论基础 、 已实现” 3、“已实现”波动的性质 、 已实现” 4、“已实现”波动的应用 、 已实现” 5、“已实现”波动估计量形式的改进及扩展 、 已实现”
1、RV的定义
金融高频时间序列分析
李胜歌
一、金融计量学 二、金融高频时间序列分析 三、基于高频数据的金融波动率
一、金融计量学
(一)金融定量分析 金融计量学,是经济计量学的一个重要分支, 金融计量学 主要是研究如何将经济计量学的基本原理与 方法运用于金融领域,针对金融数据的特殊 性,构造相应模型,以便实证检验金融理论 和假设或者提提供金融预测。
-0.0397 2.4683 3.1482 -0.001 2.4955 2.7909 -0.1021 2.6063 2.162 -0.165 2.3623 5.461 -0.129 3.3542
从表3-3至3-8中可以看出,无论r、s取何值,都可以得出 “已实现”双幂次变差具有如下的统计特性: (1)“已实现”双幂次变差与标准差的无条件分布都是极 端右偏,而且具有极高的峰度,但是标准差的偏度要比“已 实现”双幂次变差的低; (2)虽然“已实现”双幂次变差的标准差的无条件分布都 是极端右偏,而且具有极高的峰度,但是“已实现”标准差 取对数后的无条件分布在抽样频率不是很高时(10分钟以 上),却为正态分布; (3)虽然国内外的实证研究表明日间收益率的无条件分布 并非正态分布,具有明显的“高峰厚尾”性,但是日间收益 率除以“已实现”双幂次变差的标准差后的条件分布却近似 是正态分布(由J-B统计量)。
Andersen和Bollerslev提出 “已实现”波动(RV)的 定义为:
RV
t
≡
∑
M j =1
y 2 ,t j
t=1,2,…,T
2、“已实现”波动的理论基础 、 已实现”
基本条件就是金融市场中不存在风险套利的机会,这样金融 资产的对数收益率就是一个特殊半鞅过程。 由特殊半鞅的性质,又可以将其进一步分解为可料有限变差 过程和局部鞅过程,从经济意义上来讲,可料有限变差过程 和局部鞅过程分别代表均值过程(Mean Process)和新息 过程(Innovation Process)。 由二次变差的性质,收益率平方和的极限为金融资产对数价 格收益的二次变差; 再由伊藤定理,可以得到二次变差与积分波动(Integrated Volatility, IV)的对应关系。 “已实现”波动就是收益率的平方和,这样就可以得出“已 实现”波动的概率极限为积分波动。
图3-2 r=s=1时的深证成指的5分 图3-1 r=s=1时的深证成指的1分 钟 钟 “已实现”双幂次变差的自相关函 “已实现”双幂次变差的自相关函 数图 数图