盾构掘进主要参数计算方式

合集下载

盾构主要参数的计算和确定

盾构主要参数的计算和确定

盾构主要参数的计算和确定1、盾构外径:盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t)盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm;结合五标地质取多少?2、刀盘开挖直径:软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的?3、盾壳长度盾壳长度L=盾构灵敏度ξx盾构外径D小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2;大型盾构D>9M;ξ=0.7—0.8;4、盾构重量泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷?5、盾构推力盾构总推力F e=安全储备系数AX盾构推进总阻力F d安全储备系数A---一般取1.5---2.0。

盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的?刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的?管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定?计算中土压力计算是按郎肯土压公式或库仑土压计算?6、刀盘扭矩刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘背面摩擦力矩T7+刀盘开口槽的剪切力矩T8刀盘切削扭矩T1中的切削土的抗压强度q u如何确定?刀盘轴向推力形成的旋转反力矩T3计算中土压力计算是按郎肯土压公式或库仑土压计算?,刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算?刀盘背面摩擦力矩T7中土仓压力P W如何确定?7、主驱动功率主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定?8、推进系统功率推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定?推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率9、同步注浆能力每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L推进一环的最短时间t=管片长度L/最大推进速度v理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η地层的注浆系数λ因地层而变一般取1.5---1.8。

GB2013清单盾构掘进计量规则

GB2013清单盾构掘进计量规则
计量单位
工程量计算规则
工程内容
40404001
管节垂直顶升
1.断面
m
按设计图示以顶升长度计算
1.钢壳制作
2.强度
2.混凝土
3.材质
3.管节试拼装
4.管节顶升
40404002
安装止水框、连系梁
材质
t
按设计图示尺寸以质量计算
1.止水框制作安装
2.连系梁制作安装
40404003
阴极保护装置
1.型号

按设计图示数量计算。
1.防爆门制作
2.断面
2.安装防爆门
工程量清单项目设置及工程量计算规则,应按表的规定执行。
1.复合管片钢壳制作
2.混凝土强度等级、石料最大粒径
2.复合管片混凝土浇注
3.养生
4.复合管片安装
5.管片场内运输
6.管片场外运输
40403007
管片设置密封条
1.直径

按设计图示数量计算
密封条安装
2.材料
3.规格
40403008
隧道洞口柔性接缝环
1.材料
m
按设计图示以隧道管片外径周长计算
1.拆临时防水环板
4.土方暗挖
5.土方运输
40404006
旁通道结构混凝土
1.断面
m3
按设计图示尺寸以体积计算
1.混凝土
2.混凝土强度等级、石料最大粒径
2.洞门接口防水
40404007
隧道内集水井
1.部位

按设计图示数量计算
1.拆除管片建集水井
2.材料
2.不拆管片建集水井
3.型式
40404008
防爆门

土压盾构项目用水量计算

土压盾构项目用水量计算

土压盾构项目用水量计算摘要:一、土压盾构项目用水量计算的背景和意义二、土压盾构项目用水量的计算方法1.盾构掘进过程中的用水量2.盾构掘进过程中的排水量3.项目用水量的计算公式三、影响土压盾构项目用水量的因素1.地质条件2.盾构掘进参数3.项目所处地区的气候条件四、降低土压盾构项目用水量的措施1.优化盾构掘进参数2.采用节水型盾构设备3.提高现场水资源回收利用率五、总结正文:随着城市地下空间开发的不断深入,土压盾构项目在我国得到了广泛应用。

项目用水量计算是土压盾构项目前期策划的重要环节,不仅关系到项目的经济效益,还关系到工程质量和环境友好性。

本文从土压盾构项目用水量计算的背景和意义入手,详细阐述了计算方法、影响因素及降低用水量的措施。

首先,土压盾构项目用水量计算的目的是为了预测项目在施工过程中的水资源需求,为项目水资源供应和节水管理提供依据。

其计算方法主要包括盾构掘进过程中的用水量和排水量。

其中,盾构掘进过程中的用水量主要包括盾构机冷却系统用水、泡沫剂制备用水、管片及物料清洗用水等;排水量主要包括盾构掘进过程中的泥浆排放和盾构机冷却系统排水。

项目用水量的计算公式为:项目用水量= 盾构掘进过程中的用水量- 盾构掘进过程中的排水量。

其次,影响土压盾构项目用水量的因素主要包括地质条件、盾构掘进参数和项目所处地区的气候条件。

地质条件直接影响盾构掘进过程中的泥浆产生量,从而影响项目用水量;盾构掘进参数的优化可以降低用水量,提高施工效率;项目所处地区的气候条件对盾构掘进过程中的蒸发损失和降水入渗量有一定影响。

针对影响土压盾构项目用水量的因素,本文提出了降低项目用水量的措施。

首先,优化盾构掘进参数,如降低掘进速度、减小盾构机刀盘扭矩等,以降低用水量。

其次,采用节水型盾构设备,如采用高效能的盾构机冷却系统,减少循环用水量。

最后,提高现场水资源回收利用率,如建立泥浆处理系统,实现泥浆的循环利用。

总之,土压盾构项目用水量计算是项目前期策划的重要环节,通过预测项目用水需求,可以为项目水资源供应和节水管理提供依据。

盾构出土量计算公式(一)

盾构出土量计算公式(一)

盾构出土量计算公式(一)盾构出土量计算公式盾构出土量概述盾构出土量是指在地下隧道工程中,使用盾构机挖掘隧道时移除的土壤和岩石的总量。

计算盾构出土量是评估施工进度和工程量的重要指标。

计算公式盾构出土量的计算取决于隧道的尺寸和盾构机的挖掘效率。

以下是几种常见的盾构出土量计算公式:1. 面积法盾构出土量可以使用以下公式计算:出土量 = 断面积 × 掘进进度其中,断面积是指每个掘进断面的面积,掘进进度是指完成掘进的百分比。

例如,如果断面积为100平方米,掘进进度为80%,则出土量为100平方米× 80% = 80平方米。

2. 体积法盾构出土量可以使用以下公式计算:出土量 = 隧道长度 × 横截面积 × 掘进进度其中,隧道长度是指盾构机挖掘的总长度,横截面积是指每个掘进断面的面积,掘进进度是指完成掘进的百分比。

例如,如果隧道长度为500米,横截面积为100平方米,掘进进度为80%,则出土量为500米× 100平方米× 80% = 40,000立方米。

3. 圈数法盾构出土量可以使用以下公式计算:出土量 = 圈数 × 圈长 × 横截面积其中,圈数是指盾构机挖掘的总圈数,每个圈的长度为圈长,横截面积是指每个掘进断面的面积。

例如,如果圈数为100,圈长为10米,横截面积为100平方米,则出土量为100 × 10米× 100平方米= 100,000立方米。

示例说明假设某隧道工程的断面积为120平方米,掘进进度为70%,隧道长度为800米,横截面积为150平方米,盾构机挖掘了100个圈,每个圈的长度为12米。

根据不同的计算公式,可以得到以下盾构出土量的计算结果:1.面积法:出土量 = 120平方米× 70% = 84平方米2.体积法:出土量 = 800米× 150平方米× 70% = 84,000立方米3.圈数法:出土量= 100 × 12米× 150平方米 = 180,000立方米根据上述示例,可以看出不同的计算方法得出的盾构出土量结果是不同的。

盾构主要参数的计算和确定

盾构主要参数的计算和确定

盾构主要参数的计算和确定盾构主要参数的计算和确定1、盾构外径:盾构外径D=管片外径D S+2(盾尾间隙δ+盾尾壳体厚度t)盾尾间隙δ--为保证管片安装和修复蛇行,以及其他因素的最小富余量,一般取25—40mm;结合五标地质取多少?2、刀盘开挖直径:软土地层,一般大于前盾0—10mm,砂卵石地层或硬岩地层,一般大于前顿外径30mm,五标刀盘开挖直径如何确定的?3、盾壳长度盾壳长度L=盾构灵敏度ξx盾构外径D小型盾构D≤3.5M,ξ=1.2—1.5;中型3.5M<D≤9M,ξ=0.8—1.2;大型盾构D>9M;ξ=0.7—0.8;4、盾构重量泥水盾构重量=(45---65)D2,由于本线路存在线下溶土洞的可能,再掘进中能否通过此核算,盾构主机是否沉陷?5、盾构推力盾构总推力F e=安全储备系数AX盾构推进总阻力F d安全储备系数A---一般取1.5---2.0。

盾构推进总阻力F d=盾壳与周边地层间阻力F1+刀盘面板推进阻力F2+管片与盾尾间摩擦力F3+切口环贯入地层阻力F4+转向阻力F5+牵引后配套拖车阻力F6盾壳与周边地层间阻力F1计算中,静止土压力系数或土的粘聚力取盾体范围内的何点的?刀盘面板推进阻力F2,对于泥水盾构或土压盾构土仓压力如何确定的?管片与盾尾间摩擦力F3中,盾尾刷与管片的摩擦系数取偏大好吗?盾尾刷内的油脂压力如何定?计算中土压力计算是按郎肯土压公式或库仑土压计算?6、刀盘扭矩刀盘设计扭矩T=刀盘切削扭矩T1+刀盘自重形成的轴承旋转反力矩T2+刀盘轴向推力形成的旋转反力矩T3+主轴承密封装置摩擦力矩T4+刀盘前面摩擦扭矩T5+刀盘圆周摩擦反力矩T6+刀盘背面摩擦力矩T7+刀盘开口槽的剪切力矩T8刀盘切削扭矩T1中的切削土的抗压强度q u如何确定?刀盘轴向推力形成的旋转反力矩T3计算中土压力计算是按郎肯土压公式或库仑土压计算?,刀盘圆周摩擦反力矩T6计算中,土压力计算是按郎肯土压公式或库仑土压计算?刀盘背面摩擦力矩T7中土仓压力P W如何确定?7、主驱动功率主驱动工率储备系数一般为1.2---1.5,主驱动系统的效率η如何确定?8、推进系统功率推进系统功率W f=功率储备系数A W X最大推力FX最大推进速度VX推进系统功率ηW功率储备系数A W一般取1.2---1.5, 最大推力F、最大推进速度V如何定?推进系统功率ηW=推进泵的机械效率X推进泵的容积率X连轴器的效率9、同步注浆能力每环管片理论注浆量Q=0.25X(刀盘开挖直径D2—管片外径D S2)X管片长度L推进一环的最短时间t=管片长度L/最大推进速度v理论注浆能力q=每环管片理论注浆量Q/推进一环的最短时间t额定注浆能力q p=地层的注浆系数λX理论注浆能力q/注浆泵效率η地层的注浆系数λ因地层而变一般取1.5---1.8。

盾构主要参数的计算和确定

盾构主要参数的计算和确定

盾构主要参数的计算和确定盾构是一种地下隧道开挖机械,主要用于建设地下管道、地铁、隧道等。

盾构机的主要参数包括推进力、推进速度、刀盘直径、刀盘转速、排土能力等。

这些参数的计算和确定对于盾构机的运行和施工效果具有重要的影响。

首先,推进力是盾构机推动刀盘前进的力量。

推进力的确定需要考虑土壤的性质、刀盘直径、刀盘转速等因素。

一般来说,推进力的计算可以基于土壤力学参数和盾构机的特性进行估算。

土壤力学参数可以通过地质勘探和试验获得,而盾构机的特性包括刀盘直径、刀盘转速等,可以通过盾构机的设计参数和相关文献获得。

其次,推进速度是盾构机每单位时间的前进距离,影响了盾构机的工程进度和效率。

推进速度的计算可以通过推进力和阻力之间的平衡关系来实现。

阻力包括土压力、摩擦力、泥浆粘性力等因素。

推进速度的确定需要综合考虑土壤的力学性质、刀盘直径、刀盘转速等因素进行分析和计算。

刀盘直径是盾构机刀盘的直径,直接影响到盾构机的施工能力和效果。

刀盘直径的确定需要综合考虑地下隧道的设计要求、土壤的力学性质、盾构机的推进力等因素进行计算和确定。

一般来说,刀盘直径越大,盾构机的施工能力越强,但也会增加施工的阻力和难度。

刀盘转速是指刀盘转动的速度,直接影响到盾构机的掘进能力和切削效果。

刀盘转速的确定需要综合考虑土壤的硬度、刀盘直径、地下水位等因素。

一般来说,土壤硬度越大,刀盘转速越慢;刀盘直径越大,刀盘转速越大;地下水位越高,刀盘转速越慢。

排土能力是指盾构机排除掉土壤和岩石的能力,也是盾构机施工的重要参数之一、排土能力的计算可以通过刀盘的转速、刀盘的形状、泥浆的流速等因素进行分析和计算。

目前,常用的方法是通过实际施工数据和工程经验进行估算和确定。

综上所述,盾构主要参数的计算和确定需要综合考虑地质条件、土壤力学性质、盾构机的设计参数等因素。

在实际工程中,通常会进行一系列的试验和计算来确定最适合的参数,以提高盾构机的施工效率和质量。

盾构掘进及主要参数计算

盾构掘进及主要参数计算

作用于管片顶部的荷载,采用松弛土压力,以考 虑地基的拱效应。
考虑地面超载作用,相关公式如下:
v
B1 ( c / B1 ) (1 ek0 tanH / B1 ) k0 tan
p e k0 tan H / B1 0
/4/2
B1 R0 cos(
2
)
H1
H
p0
12:33
广州盾建
—28—
土压力(kPa)
12:33
广州盾建
—22—
监测断面的地质条件
本次隧道围岩压力监测拟结合工秳地质条件和地 面建筑物情况开展研究。
1、 监测断面的地质条件
监测断面从上到下主要 为:人工填土局<1>, 粉土<4> 、可塑状粉 质粘土〈5-1〉,硬塑粉 质粘土〈5-2〉;隧道洞 身为全风化带〈6〉,洞 底为强风化带〈7〉。
研究结果表明:
目前设计中常用的惯用设计法土压力计算模型是 合理的,泰沙基(Terzaghi)松弛土压力不实测 土压力基本接近,实测稳定土压力不计算土压力 分布觃律是吻合的。
12:33
广州盾建
—31—
管片内力不发形的现场监测试验研究
12:33
广州盾建
—32—
(2) 掘迚推力 F
盾构的掘迚总推力是由各种推迚阻力的总和来确 定。推迚阻力主要由以下几项构成:
计算值 计算值与稳定后 (kPa) 实测值相对误差(%)
520 拱顶316° 98.3
528 拱腰249° 98.1
525 拱底228° 143.5
521 拱底180° 123.1
522 拱腰103° 70.8
511
拱腰92°
93.4
23.6

盾构掘进主要参数计算方式

盾构掘进主要参数计算方式

目录1、纵坡..................................................2、土压平衡盾构施工土压力的设置方法..................深埋隧道土压计算................................浅埋隧道的土压计算..............................主动土压力与被动土压力........................主动土压力与被动土压力计算:..................地下水压力计算..................................案例题..........................................施工实例1....................................施工实例2....................................3、盾构推力计算.........................................4、盾构的扭矩计算 ...................................... 1、纵坡隧道纵坡:隧道底板两点间数值距离除以水平距离如图所示:隧道纵坡=(200-100)/500=2‰注:规范要求长达隧道最小纵坡>=%,最大纵坡=<%2、土压平衡盾构施工土压力的设置方法根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);b、根据判断的隧道类型初步计算出地层的竖向压力;c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;d、根据隧道所处的地层以及施工状态,确定地层水压力;e、根据不同的施工环境、施工条件及施工经验,考虑~的压力值作为调整值来修正施工土压力;f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为:σ初步设定=σ水平侧向力+σ水压力+σ调整式中,σ初步设定-初步确定的盾构土仓土压力;σ水平侧向力-水平侧向力;σ水压力-地层水压力;σ调整--修正施工土压力。

盾构掘进及主要参数计算

盾构掘进及主要参数计算

12:33
广州盾建
—3—
盾构掘迚过秳应及时处理的异常情况:
12:33
广州盾建
—4—
12:33
广州盾建
—5—
3.1 盾构掘迚模式
盾构的“模式”是根据特定的斲工环境,为确保 开挖面稳定所采用的最有效的“出碴”斱式。
“模式”是盾构土仓出渣的一种操作斱式。
土压平衡盾构的 “模式”可分为敞开式、半敞开 式、闭胸式三种。
泥水盾构模式可分为泥水平衡模式(直接控制模式) 和气压复合模式(间接控制模式或D模式)两种。
目前已经出现了双模式盾构,既具有泥水平衡模
式又具有土压平衡模式。
12:33
广州盾建
—6—
土压平衡盾构的 3种平衡模式
12:33
敞开式模式
土压平衡模式
加气模式
土压平衡盾构的 “模 式”可分为敞开式、半 敞开式、闭胸式三种。
砂土的 λ值为0.35~0.45;粘性土的 λ值为0.5~ 0.7,也可利用半经验公式: λ =1-sin(φ)
其中 φ为土的有效内摩擦角,一般为12°~25°
当隧道上斱有多局土时,应采用加权平均值计算 上部土压力( λ 叏哪一局值?):
00:18
广州盾建
14
上部土压力 计算示意图
±0.00
h
盾构机
D
隧道外径6.0
00:18
广州盾建
盾构外径φ 6.25
—15—
③ 松弛土压力的计算
当隧道埋深较大,因土体在隧道上斱形成拱效应 ,上部土压力丌会完全作用于开挖面。
可按太沙基(Terzaghi)理论计算盾构所叐的垂 直载荷。即松动圈高度ha:
ha
BC/ tg
1

盾构超挖量的计算公式

盾构超挖量的计算公式

盾构超挖量计算公式及其影响因素分析盾构法施工在城市地铁、隧道等地下工程中得到了广泛应用。

在盾构掘进过程中,由于盾构机刀盘切削范围与盾构壳体扫掠范围之间的差异,会产生一定的超挖量。

超挖量的大小不仅影响工程成本,还与隧道稳定性和安全性密切相关。

因此,准确计算盾构超挖量对于指导盾构施工、优化设计方案具有重要意义。

一、盾构超挖量计算公式盾构超挖量主要由盾构机刀盘切削范围与盾构壳体扫掠范围之间的差异产生。

一种常见的盾构超挖量计算公式为:超挖量= 盾构机刀盘切削范围的半径(r1)-盾构机壳体的扫掠范围的半径(r2)在实际应用中,为了更精确地计算盾构超挖量,还可以采用以下公式:超挖量= 盾构沿曲线推进时的开挖量(V_Q)-盾构沿直线推进时的开挖量(V_z)对于盾构曲线掘进引起的土体损失,可以采用几何学有关理论进行分析。

将每环管片分为n 小段进行推进,其中一环的推进长度为l,则每小段的土层损失为:V_i = L_s ×tan(l_i / R) ×D_s ×l_i式中:V_i为每小段超挖土体的体积;L_s为盾构长度;D_s为盾构机直径;l_i为第i小段的长度;R为隧道平曲线或纵曲线半径。

二、影响盾构超挖量的因素1. 土壤结构和力学性能:土壤的力学性质和结构会影响盾构机的掘进速度和切削效果,从而影响超挖量。

例如,软黏土会降低盾构机的掘进速度,增加切削阻力,导致超挖量增加;而岩石则会提高盾构机的掘进速度,减小切削阻力,降低超挖量。

2. 盾构机设计参数:盾构机的设计参数如功率、切削头形状和数量等也会影响掘进速度和切削效果。

功率越大、切削头越锋利,掘进速度越快,超挖量相对减小。

3. 施工条件:盾构机的掘进速度受到现场施工条件的限制,如顶土高度、地下水位等。

这些条件会影响土壤的稳定性和流动性,从而影响盾构机的掘进效果和超挖量。

4. 盾构机操作水平:盾构机操作人员的技能水平和经验对超挖量也有一定影响。

盾构关键参数详细计算

盾构关键参数详细计算

第七节 关键参数的计算1.地质力学参数选取MCZ3-HG-063A 7-7-1,作为该标段盾32.5m ,盾构机壳体计算38.75m ,地下稳定水位2.5m 。

地质要素表 表7-7-1隧道基本上在<4-1>、<5Z-2>和<6Z-2>地层中穿过,为相对的隔水地层。

按上述条件对选用盾构的推力、扭矩校核计算如下:2.盾构机的总推力校核计算:土压平衡式盾构机的掘进总推力F ,由盾构与地层之间的摩擦阻力F 1、刀盘正面推进阻力F 2、盾尾内部与管片之间的摩擦阻力F 3组成,即按公式F=( F 1+F 2+F 3).K c式中:K c ——安全系数, 2.1 盾构地层之间的摩擦阻力F1计算可按公式 F1= *D*L*CC —凝聚力,单位kN/m 2 ,查表7-7-1,取C= 30.6kN/m2L—盾壳长度,9.150mD—盾体外径,D=6.25m得: F1=π*D*L*⋅C=3.14159⨯6.25⨯9.15⨯30.6= 5498 kN2.2 水土压力计算D——盾构壳体计算外径,取6.25m;L——盾构壳体长度,9.15m;pe1——盾构顶部的垂直土压。

按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。

qfe1——盾构机拱顶受的水平土压;qfe1=λ×pe1pe2——盾构底部的垂直土压。

按全覆土柱计算,为校核计算安全,采用岩土的天然密度ρ值计算。

qfe2——盾构底部的水平土压。

qfe2=λ×pe2qfw1——盾构顶部的水压qfw2——盾构底部的水压λ——侧压系数,取0.37;计算qfe1 qfe2qfw1qfw2pe1=12×1.95×9.8+13×1.88×9.8+(32.5-12-13)×1.91×9.8 =609.2kN/m2pe2=609.2 +6.25×1.91×9.8=726.2 kN/m2qfe1=0.37×609.2=225.4 kN/m2qfe2=0.37×726.2=268.7 kN/m2qfW1=(32.5-2.5) ×9.8=294 kN/m2qfW2=294+6.25×9.8=355.3 kN/m22.3 盾构机前方的推进阻力F 2作用于盾构外周和正面的水压和土压见图7-7-2所示。

上软下硬段盾构掘进参数总结

上软下硬段盾构掘进参数总结

上软下硬段盾构掘进参数总结此处选择下行线在上软下硬段掘进中二种地层形式进行分析,一种为掌子面在砂砾石与泥质粉砂岩中的比例介于2:1~1:1之间的地层中,另一种为掌子面在砂砾石与泥质粉砂岩中的比例为小于1:1地层中。

1盾构推力总推力是评价土压平衡盾构工作性能的重要指标,在掘进过程中一般是动态变化的,不同地层条件下会表现出不同的变化规律。

图3-1 盾构推力变化情况盾构推力统计情况通过对前200环主要地层的盾构总推力统计分析可以看出:随着砾砂层比例的减少和泥质粉砂岩比例的增加,总推力呈现很明显的上升的趋势,且从50环开始,总推力都在16000KN附近波动,且波动较小;从150环开始,总推力都在18000KN附近波动,且波动较小。

2刀盘扭矩土压平衡盾构的刀盘扭矩是保证盾构正常推进的关键参数之一。

图3-2 刀盘扭矩统计盾构刀盘扭矩在掘进过程中也是动态变化的,通过对前200环的统计分析结果可以看出:与总推力变化规律相似,随着砾砂层比例的减少和泥质粉砂岩比例的增加,刀盘扭矩也呈现很明显的上升的趋势,从50环至120环盾构所处地层变化不大,此时的刀盘扭矩在3000 KN﹒m附近浮动且较为稳定。

从121环至200环的刀盘扭矩在3000 KN﹒m附近浮动但变化值比较大。

比较两种地层中刀盘扭矩数据的标准差可知,前50环的离散性较大。

3土仓压力土仓压力,是土压平衡盾构原理应用的重要参数体现,其大小直接影响到掌子面前方土压是否能够平衡,土体发生何种破坏。

它是控制地层损失、减小地层变形的主要手段。

(1)理论土压力计算选取下行线47环管片附近的地层作为计算的对象。

该段掘进区域内的地层主要有细砂、圆粒、强风化泥质粉砂岩和中风化泥质粉砂岩。

地下水位表面距隧道顶部距离约为6.2m左右。

首先根据中子区间的线路纵断面图以及地质勘查报告可确定该里程处的土层分布以及其地层参数,见表1。

表1 地层计算参数表地层厚度H(m)隧道直径D(m)侧压力系数K内摩擦角(°)重度(N/m³)杂填土 1.9 6.28 19400 粉质粘土 5.7 6.28 20 19400 细砂8 6.28 0.33 36 9300 圆砾 2.7 6.28 0.36 40 10000 强风化泥质粉砂岩1 6.28 12000 中分化泥质粉砂岩0.5 6.28 12500图3-3 下行线47环附近地层剖面图上覆土重理论计算简图见图4-4,计算公式如下:z h (1) x K h(2) 其中z σ为竖向应力;x σ为水平应力;K 为土体侧压力系数,/(1)K ;ν为岩土泊松比;γ为土体重度;H 为上覆土层厚度。

盾构掘进土压力计算

盾构掘进土压力计算

土压力计算方法二公式说明一、 计算公式根据土压平衡盾构的工作原理,土仓压力需要与开挖面的正面水土压力平衡以维持开挖面土体的稳定,减少对土层的扰动。

基于力学原理,正面水土压力的理论值为:H q H K P P P w w w c γγ++=+=)('0 (式1)式中c P 为土压力,w P 为水压力。

)('q H K P w c +=γ (式2)式中w K 为静止土压力系数,一般通过试验确定,无试验资料时,可按参考值选取;砂土取0.35~0.45;粘性土取0.5~0.7,也可利用半经验公式'sin 1ϕ-=w K 计算,式中,'ϕ为土体的有效内摩擦角。

'γ为土的有效重度,单位3/m KNH 为计算点土层厚度。

q 为连续均布荷载。

H P w w γ= (式3)式中w γ为水的重度,H 为计算点土层厚度。

二、 星会区间湖底掘进计算模型考虑2.1. 计算模型盾构机掘进穿越金鸡湖底施工,从地质纵断面图看盾构机主要通过④2粉砂层及⑤粉质粘土层,开挖面的正面水土压力考虑分为三部分,一为金鸡湖水;二为①1淤泥层,三为其他土层(包括①2素填土、③1粘土、③2粉质粘土、④1粉土、④2粉砂、⑤粉质粘土)。

2.2. 竖向分层计算原则静止土压力分层计算模式为:第一层按照均质土方法计算,计算第二层土土压力时,将第一层土换算成与第二层的性质指标相同的当量土层厚度'1h ,即211'1γγh h =,然后按换算后第二层土的厚度计算第二层范围的土压力,依此类推。

在本计算实例中,第一层金鸡湖水视为连续均布荷载)(Pa *10*3^101h q =;式中1h 为水深。

第二层为①1淤泥层,该层厚度为2h ,根据地质勘察报告,该层湿密度为3/38.1cm g =ρ,则重度为342/1038.1m KN ⨯=γ。

第三层为其他土层,该层厚度为3h ,计算该层范围土压时土层厚度32'393.138.1h h h +⨯=,根据地质勘察报告,该层平均湿密度为3/93.1cm g =ρ,则重度为343/1093.1m KN ⨯=γ。

盾构出土量计算公式

盾构出土量计算公式

盾构出土量计算公式盾构是一种先进的隧道掘进技术,它在城市地下工程建设中大显身手。

在盾构施工过程中,由于隧道掘进,土壤被剥离、破碎和经过处理后从尾部排出;同时,也会有水泥浆液注入来稳固地层,使得隧道具备稳固性。

掌握盾构出土量计算公式对于工程设计与施工至关重要。

本文将以生动、全面、有指导意义的方式来介绍盾构出土量计算公式。

盾构出土量计算公式的主要因素包括隧道断面积、推进长度和土壤松密度。

其中,隧道断面积是指隧道竖向截面的面积,可通过测量隧道的宽度和高度来获得。

推进长度是指盾构机从始端到终端的推进距离,常用米为单位。

土壤松密度是指土壤颗粒之间的紧密程度,常用千克/立方米为单位。

盾构出土量计算公式可以表示为:出土量 = 隧道断面积× 推进长度× 土壤松密度。

在实际应用中,盾构出土量计算公式需要根据具体工程情况进行调整和修正。

考虑到不同地质条件和盾构机的设计参数,可以采用修正系数来修正计算结果。

修正系数主要包括掘进阻力系数、混凝土净体积系数等。

修正系数可以通过实测数据与理论计算结果的对比来确定。

盾构出土量计算公式的应用主要有两个方面。

一方面,它可以作为工程设计的依据,用来确定盾构机的工作能力和施工进度。

根据计算结果,可以合理安排盾构机的推进速度和开挖参数,确保施工的高效进行。

另一方面,它也可以作为工程监测的指标,用来评估施工进展和工程质量。

通过实时监测出土量,可以判断施工过程中是否存在异常情况,并及时采取相应的措施进行调整。

在实际工程中,为了准确计算盾构出土量,需要搜集、分析大量的实测数据,并进行合理的推算和统计。

同时,还需考虑到工程环境、地质条件和盾构机的技术参数等因素对计算结果的影响。

只有在综合考虑这些因素的基础上,才能获得准确可靠的盾构出土量计算结果,为工程施工提供科学依据。

盾构选型及参数计算方法

盾构选型及参数计算方法

盾构选型及参数计算⽅法盾构选型及参数计算⽅法1.1、序⾔盾构是⼀种专门⽤于隧道⼯程的⼤型⾼科技综合施⼯设备,它具有⼀个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排⼟、拼装和推进等机械装置,进⾏⼟层开挖、碴⼟排运、衬砌拼装和盾构推进等系列操作,使隧道结构施⼯⼀次完成。

它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软⼟、淤泥到硬岩都可应⽤,在相同条件下,其掘进速度为常规钻爆法的4~10倍。

较长地下⼯程的⼯期对经济效益和⽣态环境等⽅⾯有着重⼤影响,⽽且隧道⼯程掘进⼯作⾯⼜常常受到很多限制,⾯对进度、安全、环保、效益等这些问题,使⽤盾构机⽆疑是最好的选择。

些外,对修建穿越江、湖、海底和沼泽地域隧道,采⽤盾构法施⼯,也具有⼗分明显的技术和经济优势。

采⽤盾构法施⼯,盾构的选型及配置是隧道施⼯中关键环节之⼀,盾构选型应根据⼯程地质⽔⽂情况、⼯期、经济性、环境保护、安全等综合考虑。

盾构的选型及配置是⼀种综合性技术,涉及地质、⼯程、机械、电⽓及控制等⽅⾯。

1.2盾构机选型主要原则1.2.1盾构的选型依据盾构选型主要应考虑以下⼏个因素:1)⼯程地质、⽔⽂条件及施⼯场地⼤⼩。

2)业主招标⽂件中的要求。

3)管⽚设计尺⼨与分块⾓度。

4)盾构的先进性、适应性与经济性。

5)盾构机⼚家的信誉与业绩。

6)盾构机能否按期到达现场。

1.2.2 盾构的型式1)敞开式型盾构敞开式型盾构是指盾构内施⼯⼈员可以直接和开挖⾯⼟层接触,对开挖⾯⼯况进⾏观察,直接排除开挖⾯发⽣的故障。

这种盾构适⽤于能⾃⽴和较稳定的⼟层施⼯,对不稳定的⼟层⼀般要辅以⽓压或降⽔,使⼟层保持稳定,以防⽌开挖⾯坍塌。

有⼈⼯开挖盾构、半机械开挖盾构、机械开挖盾构。

2)部分敞开式型盾构部分敞开式型盾构是在盾构切⼝环在正⾯安装挤压胸板或⽹格切削装置,⽀护开挖⾯⼟层,即形成挤压盾构或⽹格盾构,施⼯⼈员可以直接观察开挖⾯⼟层⼯况,开挖⼟体通过⽹格孔或挤压胸板闸门进⼊盾构。

土压盾构相关参数计算

土压盾构相关参数计算

盾构关键参数的计算1.1 说明盾构工作过程的力学参数计算是一个非常复杂的问题,由于地质因素、土层改良方法、掘进参数等一系列因素的影响,在盾构参数计算方法上存在很多不确定因素。

至今应用的盾构参数计算方法在很大程度上只是处于研究、探索阶段,甚至很大程度上是一些经验性的计算方法。

以下的计算在参考盾构生产厂家提供的有关计算资料及其它相关文献资料的基础上,根据南京地铁三号线地质勘察报告,结合我单位南京地铁二号线盾构施工经验,按照盾构厂商提供的设计方案来进行关键参数的校核计算。

1.2 推力计算1.2.1 盾构外荷载的确定由于盾构工程沿线的隧道埋深差别很大,在埋深最深处的隧道顶部的覆土厚度约为33m ,而在较浅处的隧道顶部距地面约为9.3m 。

根据常用算法,盾构的外部荷载将按照最大埋深处的松动土压和两倍盾构直径的全土柱高产生的土压计算,并取两者中的最大值作为盾构计算的外部荷载。

在新庄站—市政府站区间最大埋深位置在K19+342处,此处隧道处于全断面岩层中,上部覆土为②-1b2-3、②-1c2-3、②-2b4、③-1h1-2、③-2b2、③-3e1、③-3a1-2地层,埋深约33m ,所以对盾构计算取此断面埋深为最大埋深值。

软土计算中地质参数均按照此断面的③-3a1-2号地层选取如下:岩土容重:3/9.18m KN =γ 岩土的内摩擦角:φ=17.60土的粘结力: c=47KN/m2覆盖层厚度: mH 33max =地面荷载:2020/P KN m =水平侧压力系数:45.0=λ盾构外径:m D 4.6= 盾构主机长度: m L 38.7= 盾构主机重量: W=350t 经验土压力系数:01K =松动土压(泰沙基公式)计算:()()()()1010/0/0111/B H tg K B H tg K s e P e tg K B c B P φφφγ--⨯+-⨯⨯-⨯=其中B1=R ×ctg[(45°+φ/2)/2] =3.2×ctg[(45°+17.6°/2)/2] =6.3m代入上式得 P5=︒⨯.617)3.6/319.18(3.6tg -×[1-e -1×tg17.6°×(33/6.3)]+20×e -1×tg17.6°×(33/6.3)=228.7(KN/m 2)计算两倍掘进机直径的全土柱土压: Pq=γ×2×D=18.9×2×6.4=242(KN/m2)q sP P >qP ∴取作为计算的数据。

盾构法施工方法加固方案及强度计算

盾构法施工方法加固方案及强度计算

(b)刀盘正面的侧向土压力
(4)盾构在地层中沿设计轴线推进,在推进的同时不 断出土和安装衬砌管片; (5)及时的向衬砌背后的空隙注浆,防止地层移动和 固定衬砌环的位置; (6)盾构进入终端工作井并被拆除,如施工需要,也 可穿越工作井再向前推进。
碴土储舱和料斗 龙门吊车
泥浆处理设备
车站
竖井
皮带运输机
盾构机
电瓶车 斗车 泥浆注入车 管片运输车螺旋输送机
盾构法施工方法、加固方案及强度计算
一、概述
盾构施工法是“使用盾构机在地下掘进,在护盾 的保护下,在机内安全的进行开挖和衬砌作业,从 而构筑成隧道的施工方法”。 其施工主要步骤为: (1)在盾构法隧道的起始端和终端各建一个工作井; (2)盾构在起始端工作井内安装就位; (3)依靠盾构千斤顶推力将盾构从起始工作井的墙 壁开孔处推出。
2 0
Cu Dd
D
Cu
D
2
(
2
)
M 3 ——滑移圆弧线CD段的抗滑力矩
M 3
0
Cut Dd
D
CutD 2
式中 Cu ——加固前土体地粘结力; Cut ——加固后土体地粘结力; H ——上覆土体的高度;
sin 1 t
D
抗滑移的安全系数K2
K2
M M
1.5
2.盾构的掘进 (1)盾构千斤顶总推力与刀盘扭矩计算 ①土压平衡式盾构 a.盾构千斤顶总推力 推进土压平衡式盾构所需克服的阻力有:
泥水加压式盾构按泥浆系统压力控制方式可分为 直接控制型(日本型)和间接控制型(德国型)两种 基本类型。 ①直接控制型(日本型)泥水加压式盾构的泥浆压 力控制由一套自动控制泥浆平衡的装置来实现。
清水槽
P1 泥浆调整槽

盾构机推力计算

盾构机推力计算

盾构机的推力和扭矩计算盾构机的推力和扭矩计算包括软土和硬岩两种情况进行。

在软土中掘进时盾构机的推力和扭矩的计算地层参数按〈6〉岩石全风化带选取,由于岩土体中基本无水,所以水压力的计算按水土合算考虑。

选取可能出现的最不利受力情况埋深断面进行计算。

根据线路的纵剖面图,〈6〉层埋深不大,在确定盾构机拱顶处的均布围岩竖向压力P e 时,可直接取全部上覆土体自重作为上覆土地层压力。

盾构机所受压力:Pe =γh+ P 0 P 01= P e + G/DL P 1=P e ×λ P 2=(P+γ.D) λh γ为土容重,γG 为盾构机重,G=340 tD 为盾构机外径,D= m ; L 为盾构机长度,L= m ; P 0为地面上置荷载,P 0=2 t/m 2; P 01为盾构机底部的均布压力;P 1为盾构机拱顶处的侧向水土压力;P 2为盾构机底部的侧向水土压力;P e =×+2= t/m 2 P 01=+340/(×)=m 2 P 1=×=m 2P 2 =+××=m 2盾构推力计算盾构的推力主要由以下五部分组成:54321F F F F F F ++++=式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力F5为后方台车的阻力πμ.)(4121011DL P P P P F e +++=3.0=μμ数,计算时取:土与钢之间的摩擦系式中:t F 23.11443.032.825.63.1889.1437.3383.26411=⨯⨯⨯+++⨯=π)( )(d P D F 224π=为水平土压力式中:d P ,)(2Dh P d +=λγ m D h 93.15228.68.122=+=+2/52.1493.1594.147.0m t P d =⨯⨯=t F 48.44552.1428.64/22=⨯=)(π )(C D F 234/π=式中:C 为土的粘结力,C=m 2t F 06.1385.425.6423=⨯⨯=)(πc c W F μ=4式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为m3,管片宽度按计时,每环管片的重量为),两环管片的重量为考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盾构掘进主要参数计算方式Final approval draft on November 22, 2020目录1、纵坡隧道纵坡:隧道底板两点间数值距离除以如图所示:隧道纵坡=(200-100)/500=2‰注:规范要求长达隧道最小纵坡>=%,最大纵坡=<%2、土压平衡盾构施工土压力的设置方法根据上述对地层土压力、水压力的计算原理分析,笔者总结出在土压平衡盾构的施工过程中,土仓内的土压力设置方法为:a、根据隧道所处的位置以及隧道的埋深情况,对隧道进行分类,判断出隧道是属于深埋隧道还是浅埋隧道(一般来说埋深在2倍洞径以下时,算作是浅埋段,2倍以上算深埋);b、根据判断的隧道类型初步计算出地层的竖向压力;c、根据隧道所处的地层以及隧道周边地地表环境状况的复杂程度,计算水平侧向力;d、根据隧道所处的地层以及施工状态,确定地层水压力;e、根据不同的施工环境、施工条件及施工经验,考虑~的压力值作为调整值来修正施工土压力;f、根据确定的水平侧向力、地层的水压力以及施工土压力调整值得出初步的盾构施工土仓压力设定值为:σ初步设定=σ水平侧向力+σ水压力+σ调整式中,σ初步设定-初步确定的盾构土仓土压力;σ水平侧向力-水平侧向力;σ水压力-地层水压力;σ调整--修正施工土压力。

g、根据经验值和半经验公式进一步对初步设定的土压进行验证比较,无误时应用施工之中;h、根据地表的沉降监测结果,对施工土压力进行及时调整,得出比较合理的施工土压力值。

深埋隧道土压计算深埋隧道σ水平侧向力= q ××ωq —水平侧向力系数见表1取i=,当B>5m ,取i=;S —围岩级别,如Ⅲ级围岩,则S=3浅埋隧道的土压计算 主动土压力与被动土压力盾构隧道施工过程中,刀盘扰动改变了原状天然土体的静止弹性平衡状态,从而使刀盘附近的土体产生主动土压力或被动土压力。

盾构推进时,如果土仓内土压力设置偏低,工作面前方的土体向盾构刀盘方向产生微小的移动或滑动,土体出现向下滑动趋势,为了抵抗土体的向下滑动趋势,土体的抗剪力逐渐增大。

当土体的侧向应力减小到一定程度,土体的抗剪强度充分发挥时,土体的侧向土压力减小到最小值,土体处于极限平衡状态,即主动极限平衡状态,与此相应的土压力称为主动土压力Ea ,如图1所示。

盾构推进时,如果土仓内土压力设置偏高,刀盘对土体的侧向应力逐渐增大,刀盘前部的土体出现向上滑动趋势,为了抵抗土体的向上滑动趋势,土体的抗剪力逐渐增大,土体处于另一极限平衡状态,即被动极限平衡状态,与此相应的土压力称为被动土压力Ep ,如图2所示。

主动土压力与被动土压力计算:根据盾构的特点及盾构施工原理,结合我国铁路隧道设计、施工的具体经验,采用朗金理论计算主动土压力与被动土压力。

盾构推力偏小时,土体处于向下滑动的极限平衡状态。

此时,土体内的竖直应力σz 相当于大主应力σ1,水平应力σa相当于小主应力σ3。

水平应力σa为维持刀盘前方的土体不向下滑移所需的最小土压力,即土体的主动土压力:σa =σztan2(45°-φ/2)-2ctan(45°-φ/2)式中,σz-深度z处的地层自重应力;c-土的粘着力;z-地层深度;φ-地层内部摩擦角。

盾构的推力偏大时,土体处于向上滑动的极限平衡状态。

此时,刀盘前方的土压力σp 相当于大主应力σ1,而竖向应力σz相当于小主应力σa:σp =σ1=σztan2(45o+φ/2)+2ctan(45o+φ/2)式中,σz-深度z处的地层自重应力;c-土的粘着力;z-地层深度;φ-地层内部摩擦角。

地下水压力计算地下水位高于隧道顶部时,由于地层孔隙、裂隙的存在,形成侧向地下水压。

地下水压力的大小与水力梯度、地层渗透系数、管片背后的砂浆凝结时间、渗透系数及渗透时间有关。

由于地下水流经土体时受到土体的阻力产生水头损失,因此作用在刀盘上的水压力一般小于该地层处的理论水头压力。

掘进过程中,随着刀盘的不断向前推进,土仓内的压力处于原始土压力值附近,考虑水在土中流动时的阻力,掘进时地层中的水压力可以根据地层的渗透系数酌情考虑。

盾构因故停机时,由于地层中压力水头差的存在,地下水必然会不断向土仓内流动,直至将地层中压力水头差消除为止。

此时土仓的水压力为:σw刀盘前=q ×γh式中,q-根据土层渗透系数确定的经验数值,砂土q=~,粘性土q=~,风化岩层q=0~;γ-水的容重;h-地下水位距刀盘顶部的高度。

施工中,如果管片顶部的注浆不太密实,地下水可能会沿隧道衬砌外部的空隙形成过水通道。

当盾构长时间停机时,必将形成一定的压力水头。

此时的地下水压:σw盾尾后=q砂浆×γhW式中,q砂浆-根据砂浆的渗透系数和注浆的饱满程度确定的经验数值,一般取q =~;γ-水的容重;hW-补强注浆处与刀盘顶部的高差。

计算水压力时,盾尾后部的水压力与刀盘前方的水压力按取大值考虑。

(根据笔者的经验,在掘进过程中,一般按刀盘前方的地层水压力进行计算,在盾构停机过程中,按盾尾后部的水压力进行计算。

)案例题施工实例11工程概况广州地铁二号线越~三区间隧道盾构工程位于广州市越秀区和白云区,全长,区间隧道开挖直径6300mm,采用装配式钢筋砼管片衬砌,衬砌环外径6000mm,内径5400mm,管片宽度1500mm,管片厚度300mm;管片与地层间的空隙采用同步注浆(水泥砂浆)回填。

隧道上覆土厚度最大约28m,最小约9m。

区间隧道穿越地层大部分是中风化岩〈8〉、强风化岩〈7〉和微风化岩〈9〉,其次为全风化岩〈6〉和残积土层〈5-2〉,各种地层参数见表2。

地层地下水主要为第四系空隙水与基岩裂隙水,地下水位为地表以下1~2m。

表2 主要地层物理力学参数表2盾构穿越建筑物密集群地段自YDK17+200至YDK17+050,盾构进入建筑物密集群下施工。

在此区段隧道穿过的地层主要为全风化(6)和残积土层(5-2)地层,隧道埋深20~22m。

盾构在此段地层施工时,为确保地表建筑物安全,根据地层状况,确定根据占隧道施工影响范围数量较多的不利地层考虑土压力。

隧道埋深以20m考虑,围岩以残积土层(5-2)地层考虑,水平侧向力系数q取1/3~1/2,初步确定采用深埋隧道土压力计算土压。

地层的水平侧向力为:σ水平侧向力= q××ω=(1/3~1/2)××(1+())kg/cm2=~由于全风化泥质粉砂岩以及残积土层的透水性差,在考虑地层水压力时q 取,σw刀盘前=q ×γh=×1×20= kg/cm2= Mpa考虑~的压力值作为调整值来修正施工土压力,即σ调整=~。

σ初步设定=σ水平侧向力+σ水压力+σ调整=~ Mpa。

采用此土压力值,盾构穿越该区段的地表沉降监测结果如图3所示:从监测结果可以看出,地表最大沉降,远远小于合同规定的-30mm,同时少数点位在掘进过程有隆起现象,个别点隆起。

这说明在地质条件相对较好的地层之中,采用深埋隧道土压力计算土压土压力选择偏大,趋于保守。

3盾构穿越地下人行通道根据现场施工调查,盾构在YDK16+230位置穿越一座地下人行通道,此人行通道为广州火车站、广州汽车总站和广州市流花汽车站之间的连接通道。

此位置的地层主要为强风化(7)和残积土层(5-2)、(5-1)地层,隧道埋深8m,人行通道距隧道。

为保证盾构通过此段地层时的施工安全,计算施工土压力时,确定隧道埋深以8m考虑,围岩以残积土层(5-2)考虑,采用浅埋隧道的土压力计算方法计算土压。

地层的水平侧向力为:σ水平侧向力=σztan2(45°-φ/2)-2ctan(45°-φ/2)=×8×tan2(45°°/2)-2×(45°°/2)= kg/cm2= Mpa在残积土层中考虑地层水压力时q 取,σw刀盘前=q ×γh=×1×8= kg/cm2= Mpa考虑~的压力值作为调整值来修正施工土压力,即σ调整=~。

σ初步设定=σ水平侧向力+σ水压力+σ调整=~ Mpa。

采用此土压力值,盾构在该段地层施工时的地表沉降监测结果如图4所示:施工完成后最终实测地表说明,施工过程采用浅埋隧道的土压力计算方法进行土压计算是合理的。

施工实例2盾构机穿越广州火车站站场越~三区间右线隧道YCK16+~YCK16+长165m 区段穿越广州火车站站场的十四股轨道;左线ZCK16+768~ZCK16+长区段穿越广州火车站站场的十四股轨道。

隧道在此位置穿越的主要地层为中风化(8)地层和强风化(7)地层,隧道埋深15~20m 。

在施工过程中,为了达到施工招标文件“盾构掘进通过火车站时,轨面沉降值不得超过10mm ,两股钢轨水平高差不得超过4mm ”及 “在任何情况下,最大隆起量不得超过+10mm ”的地表沉降规定,确定根据地层状况和隧道周边施工环境,隧道埋深以20m 考虑,围岩以强风化(7)地层考虑,采用深埋隧道的土压力计算土压。

地层的水平侧向力为: σ水平侧向力=q ××ω=(1/6~1/3)××(1+())kg/cm 2=~ Mpa考虑到地表环境复杂,在计算土压力时σ水平侧向力= Mpa 。

在强风化泥质粉砂岩中,计算地层水压力时q 取, σw 刀盘前=q ×γh=×1×20= kg/cm 2= Mpa考虑~的压力值作为调整值来修正施工土压力,即σ调整=~。

σ初步设定=σ水平侧向力+σ水压力+σ调整=~考虑左右线施工的相互影响,左线土压比右线高~。

盾构在穿越火车站站场时,沉降监测结果如图5、图6所示:盾构在施工完该段区间隧道后,最终实测地面最大沉降,小于10mm 的控制标准,与理论计算的地表最大沉降值基本接近;两条钢轨面高差为1㎜,小于4mm 的施工要求,则说明在掘进过程中土压力的选择是科学合理的。

3、盾构推力计算盾构的推力主要由以下五部分组成:式中:F 1为盾构外壳与土体之间的摩擦力 ;F 2为刀盘上的水平推力引起的推力F 3为切土所需要的推力;F 4为盾尾与管片之间的摩阻力 F5为后方台车的阻力为水平土压力式中:d P ,)(2Dh P d +=λγ 式中:C 为土的粘结力,C=m 2式中:W C 、μC 为两环管片的重量(计算时假定有两环管片的重量作用在盾尾内,当管片容重为m3,管片宽度按计时,每环管片的重量为),两环管片的重量为考虑。

μC =4、盾构的扭矩计算盾构配备的扭矩主要由以下九部分组成。

在进行刀盘扭矩计算时: 式中:M 1为刀具的切削扭矩;M 2为刀盘自重产生的旋转力矩M 3为刀盘的推力荷载产生的旋转扭矩; M 4为密封装置产生的摩擦力矩 M 5为刀盘前表面上的摩擦力矩 ; M 6为刀盘圆周面上的摩擦力矩 M 7为刀盘背面的摩擦力矩 ; M 8为刀盘开口槽的剪切力矩 M 9为刀盘土腔室内的搅动力矩 a .刀具的切削扭矩M 1 式中:C г:土的抗剪应力,C г=C+P d ×tg φ=+×tg20°=m 2h max :刀盘每转的最大切削深度,h max =8cm/转 R 0:最外圈刀具的半径,R 0=b.刀盘自重产生的旋转力矩M2M 2=GRμg式中:G:刀盘自重,计算时取刀盘的自重为G=55t R:轴承的接触半径,计算时取为R=μg :滚动摩擦系数,计算时取为μg=c.刀盘的推力荷载产生的旋转扭矩M3M 3=WpRgμzWp=απRc2Pd式中:Wp:推力荷载;α:刀盘封闭系数,α=R g :轴承推力滚子接触半径,Rg= ;Rc:刀盘半径,Rc=μz :滚动摩擦系数,μz= ;Pd:水平土压力,Pd=m2d.密封装置产生的摩擦力矩M4M 4=2πμmF(n1Rm12+n2Rm22)式中:μm :密封与钢之间的摩擦系数,μm=;F:密封的推力,F=mn 1、n2:密封数,n1=3 n2=3;Rm1、Rm2:密封的安装半径,Rm1= Rm2=;e.刀盘前表面上的摩擦力矩M5式中:α:刀盘开口率,α=;μP:土层与刀盘之间的摩擦系数,μP=R:刀盘半径,R=f.刀盘圆周面上的摩擦力矩M6M6=2πR2BPZμP式中:R:刀盘半径,R=;B:刀盘宽度,B=PZ:刀盘圆周土压力PZ=(Pe+P01+P1+P2)/4=(+++)/4=m2g.刀盘背面的摩擦力矩M7M7=2/3[(1-α)πR3μP×]M7=2/3(×π××××)=·mh.刀盘开口槽的剪切力矩M8式中:Cτ:土的抗剪应力,因碴土饱和含水,故抗剪强度降低,可近似地取C==1 t/m2,φ=5°;Cτ=C+Pd×tgφ=1+×tg5= t/m2i.刀盘土腔室内的搅动力矩M9M 9=2π(R12-R22)LCτ式中:d1:刀盘支撑梁外径;d2:刀盘支撑梁内径L:支撑梁长度刀盘扭矩M为M1~M9之和。

相关文档
最新文档