中考数学专题复习平行四边形的综合题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、平行四边形真题与模拟题分类汇编(难题易错题)

1.(1)、动手操作:

如图①:将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么的度数为 .

(2)、观察发现:

小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.

(3)、实践与运用:

将矩形纸片ABCD按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC 边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F 重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大

小.

【答案】(1)125°;(2)同意;(3)60°

【解析】

试题分析:(1)根据直角三角形的两个锐角互余求得∠AEB=70°,根据折叠重合的角相等,得∠BEF=∠DEF=55°,根据平行线的性质得到∠EFC=125°,再根据折叠的性质得到

∠EFC′=∠EFC=125°;

(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角的余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;

(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.

试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,

∴∠AEB=70°,

∴∠BED=110°,

根据折叠重合的角相等,得∠BEF=∠DEF=55°.

∵AD∥BC,

∴∠EFC=125°,

再根据折叠的性质得到∠EFC′=∠EFC=125°.;

(2)、同意,如图,设AD与EF交于点G

由折叠知,AD平分∠BAC,所以∠BAD=∠CAD.

由折叠知,∠AGE=∠DGE=90°,

所以∠AGE=∠AGF=90°,

所以∠AEF=∠AFE.

所以AE=AF,

即△AEF为等腰三角形.

(3)、由题意得出:∠NMF=∠AMN=∠MNF,

∴MF=NF,

由折叠可知,MF=PF,

∴NF=PF,

而由题意得出:MP=MN,

又∵MF=MF,

∴△MNF≌△MPF,

∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,

即3∠MNF=180°,

∴∠MNF=60°.

考点:1.折叠的性质;2.等边三角形的性质;3.全等三角形的判定和性质;4.等腰三角形的判定

2.已知矩形纸片OBCD的边OB在x轴上,OD在y轴上,点C在第一象限,且==

,.现将纸片折叠,折痕为EF(点E,F是折痕与矩形的边的交点),点P OB OD

86

为点D的对应点,再将纸片还原。

(I)若点P落在矩形OBCD的边OB上,

①如图①,当点E与点O重合时,求点F的坐标;

OP=,求点F的②如图②,当点E在OB上,点F在DC上时,EF与DP交于点G,若7

坐标:

(Ⅱ)若点P落在矩形OBCD的内部,且点E,F分别在边OD,边DC上,当OP取最小值时,求点P的坐标(直接写出结果即可)。

【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫

⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭

【解析】

【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐标;

②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;

(Ⅱ)当O,P ,F 点共线时OP 的长度最短.

【详解】

解:(I )①∵折痕为EF,点P 为点D 的对应点

DOF POF ∴∆≅∆

45DOF POF ∴∠=∠=

∵四边形OBCD 是矩形,

90ODF ︒∴∠=

45DFO DOF ︒∴∠=∠=

6DF DO ∴==

点F 的坐标为(6,6)

②∵折痕为EF ,点P 为点D 的对应点.

,DG PG EF PD ∴=⊥

∵四边形OBCD 是矩形,

//DC OB ∴,

FDG EPG ∴∠=∠;

DGF PGE ∠=∠

DGF PGE ∴∆≅∆

DF PE ∴=

//DF PE

∴四边形DEPF 是平行四边形.

EF PD ⊥,

DEPF ∴是菱形.

设菱形的边长为x ,则DE EP x ==

7OP =,

7OE x ∴=-,

在Rt ODE ∆中,由勾股定理得222OD QB DE +=

2226(7)x x ∴+-= 解得8514x = 8514

DF ∴= ∴点F 的坐标为85,614⎛⎫

⎪⎝⎭ (Ⅱ)86,55P ⎛⎫ ⎪⎝⎭

【点睛】 此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.

3.阅读下列材料:

我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:

(1)下列哪个四边形一定是和谐四边形 .

A .平行四边形

B .矩形

C .菱形

D .等腰梯形

(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.

【答案】(1) C ;(2)∠ABC 的度数为60°或90°或150°.

【解析】

试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.

(2)根据和谐四边形定义,分AD=CD ,AD=AC ,AC=DC 讨论即可.

(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.

相关文档
最新文档