水平位移几种监测方法
基坑水平位移监测
深基坑水平位移监测测量深基坑水平位移可采用视准线法、小角度法、投点法、前方交会法、自由设站法、极坐标法等。
本节简要叙述常用的小角度法、极坐标法及前方交汇法。
监测控制值:项目预警值报警控制值水平位移>3mm/d 或24mm 30mm项目变化量>3mm/d开挖前开挖后报警后及突发状况监测频率(1-2)次/d 1 次/3d 1次/d 加大监测频率监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视各测点,观测墩使用混凝土浇筑地下1.4M地面1.2M,顶面长宽20CM*20CM, 顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。
监测基准点观测按三级平面控制要求施测,且每个月与高等级控制网联测一次。
为防止观测墩被破坏,顶部应加钢保护盖。
埋设示意图如下:图B.0.1 水平位移观测墩〔单位:mm)岩层点观测墩;(b) 土层点现测墩350地面主筋9! 2箍筋07点。
在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。
在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50C M地面10CM,中心用钢筋加固。
如有需要应加保护装置,并设置醒目标志。
实物图如下:仪器架设:到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境温度带来的误差。
检查设备是否完整,配件是否齐全,电源电力是否充足等。
仪器架设时应注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。
全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。
取出仪器一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。
对中整平:在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。
挡土墙变形监测方法
挡土墙变形监测方法挡土墙是一种用于支撑土体或山坡,防止其坍塌或滑坡的结构。
为了确保挡土墙的稳定性和安全性,对其进行变形监测是非常重要的。
变形监测可以及时发现挡土墙的异常变形,为采取相应的加固或修复措施提供依据,从而避免可能的安全事故。
下面将详细介绍一些常见的挡土墙变形监测方法。
一、水平位移监测1、全站仪测量法全站仪是一种高精度的测量仪器,可以精确测量出测点的水平坐标。
在挡土墙的顶部和底部设置监测点,定期使用全站仪测量这些点的坐标。
通过比较不同时期的坐标值,可以计算出水平位移的大小和方向。
2、视准线法在挡土墙的两端设置基准点,在其中一端的基准点上设置经纬仪或全站仪,通过望远镜瞄准另一端的基准点,形成一条视准线。
在挡土墙上设置若干个监测点,定期测量监测点到视准线的垂直距离。
如果距离发生变化,就说明挡土墙发生了水平位移。
3、激光准直法利用激光的良好准直性,在挡土墙的一端设置激光发射器,在另一端设置接收装置。
当挡土墙发生水平位移时,激光束在接收装置上的光斑位置会发生变化,通过测量光斑的位移量可以计算出水平位移。
二、垂直位移监测1、水准测量法水准测量是一种常用的测量高差的方法。
在挡土墙周围设置水准基点,在挡土墙上设置监测点。
使用水准仪测量监测点与水准基点之间的高差,通过比较不同时期的高差数据,可以计算出垂直位移的量值。
2、静力水准测量法静力水准测量系统是一种基于连通器原理的高精度垂直位移测量系统。
在挡土墙上布置一系列的静力水准仪,通过测量液体压力的变化来计算各监测点的相对垂直位移。
三、倾斜监测1、倾斜仪测量法倾斜仪可以直接测量挡土墙的倾斜角度。
常见的倾斜仪有水准式倾斜仪、电子倾斜仪等。
将倾斜仪安装在挡土墙上,定期读取倾斜仪的测量数据,从而了解挡土墙的倾斜情况。
2、差异沉降法通过测量挡土墙上不同位置的垂直位移,如果不同位置的垂直位移存在差异,就可以推断出挡土墙发生了倾斜。
四、裂缝监测1、人工观测法定期对挡土墙的表面进行巡视,用肉眼观察是否有裂缝出现。
水平位移几种监测方法
水平位移几种监测方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March水平位移几种监测方法的分析和比较【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。
【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。
但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。
水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。
另外还有极坐标法以及一些困难条件下的水平位移观测方法。
视准线法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。
可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
另外此方法还受到大气折光等因素的影响。
优点:视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。
不足:对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。
当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。
测小角法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。
水平位移监测方法
水平位移监测方法1.全站仪监测法全站仪是一种精密的光学测量仪器,具有高精度和远距离测量能力。
它可以通过测量目标物体上的三个参考点来计算目标物体在水平方向上的位移。
全站仪监测法适用于测量较大的建筑物或工程结构的水平位移。
该方法具有精度高、测量范围大、操作简单等优点,但需要专业人员进行操作和数据处理。
2.遥感监测法遥感技术利用卫星、航空器或无人机等遥感平台获取目标物体的图像或数据,通过对比不同时间点的图像或数据来测量水平位移变化。
遥感监测法适用于大范围、连续的水平位移监测,可以实现对较大区域的位移变化进行快速检测和分析。
该方法具有覆盖面广、操作灵活等优点,但受到天气、光照等因素的限制。
3.GPS监测法全球定位系统(GPS)是一种通过卫星信号定位的导航系统,具有高精度和实时性的特点。
GPS监测法通过将多个GPS接收器安装在目标物体上,测量接收器之间的距离变化来计算目标物体的水平位移。
GPS监测法适用于需要实时监测和高精度定位的水平位移监测。
该方法具有精度高、实时性好等优点,但需要开放区域接收卫星信号。
4.激光测距仪监测法激光测距仪是一种利用激光束测量目标物体距离的仪器。
激光测距仪监测法通过将多个激光测距仪放置在目标物体的不同位置,测量目标物体上的多个点之间的距离变化来计算目标物体的水平位移。
激光测距仪监测法适用于对局部区域进行高精度位移监测。
该方法具有精度高、测量范围大等优点,但需要设备配合和专业人员进行操作。
5.弹性测量法弹性测量法利用测力计、应变计等传感器测量目标物体受力后产生的变形量,通过解析力学原理来计算目标物体的位移变化。
弹性测量法适用于对局部区域进行小范围位移监测。
该方法具有测量精度高、适应性强等优点,但需要事先安装传感器并进行定期校准。
以上介绍的水平位移监测方法各有其适用范围和特点,具体选择时可根据监测对象的大小、形状、精度要求等因素进行综合考虑。
在实际应用中,可以采用多种方法结合进行水平位移监测,以提高测量精度和可靠性。
水平位移监测方法
水平位移监测方法
水平位移监测方法是一种用于测量和监测土体、岩体或结构物在水平方向上的位移变化的方法。
常见的水平位移监测方法包括:
1. 全站仪测量:全站仪是一种高精度的仪器,可以通过测量目标点的三维坐标来计算出其水平位移。
该方法适用于较小区域内的监测,如建筑物或桥梁的位移监测。
2. GPS测量:全球定位系统(GPS)可以通过接收卫星信号来确定目标点的空间位置,其中包括水平位移。
该方法适用于较大范围的水平位移监测,如地壳运动监测或地震研究。
3. 激光扫描测量:激光扫描仪可以通过扫描目标物体来获取其三维形状和位置信息,从而计算出水平位移。
该方法适用于需要高精度和快速测量的场合,如地铁隧道的位移监测。
4. 高精度测距仪测量:利用高精度测距仪可以测量目标点之间的水平距离变化,从而推算出位移变化。
该方法适用于需要长期稳定监测的场合,如地质灾害监测或土体稳定性评估。
这些方法可以单独使用或结合使用,根据监测需要和具体情况选择合适的方法来进行水平位移监测。
变形测量—水平位移观测(工程测量)
水平位移观测
➢基准线法 基准线法的原理是在与水平位移垂直的方向上建立一个固定不变的铅垂面, 测定各观测点相对该铅垂面的距离变化,从而求得水平位移量。
水平位移观测
➢基准线法 例如在深基坑监测中,主要是对锁口梁的水平位移(一般偏向基坑内侧) 进行监测。如图所示,在锁口梁轴线两端基坑的外侧分别设立两个稳固的 工作基点A和B,两工作基点的连线即为基准线方向。锁口梁上的观测点应 埋设在基准线的铅垂面上,偏离的距离不大于2 cm。
➢基准线法 随着激光技术的发展,出现了由激光光束建立基准面的基准线法,根据其 测量偏离值的方法不同,该法有激光经纬仪垂直法和波带板激光准直法两 种。 由于建筑物的位移一般来说都很小,因此,对位移值的观测精度要求很高, 因而在各种测定偏离值的方法中都要采取一些高精度的措施。
水平位移观测
➢小角法
用小角法测量水平位移的方法如图所示。将经纬仪安置于工作基点A,用测
工程测量课件
水平位移观测
水平位移观测
建筑物水平位移观测包括:位于特殊性土地区的建筑物地基基础水平位移 观测、受高层建筑施工影响的建筑物及工程设施水平位移观测,以及挡土 墙、大面积堆载等工程中所需的地基土深层侧向位移观测等,应测定在规 定平面位置上随时间变化的位移量和位移速度。 根据场地条件,可采用基准线法、小角法、导线法和前方交会法等测量水 平位移。
回法测出∠BAP,设第一次观测角值为β1,后一次为β2,根据两次角度的变 化量△β = β2-β1,即可算出P的水平位移量δ。
即:
D
式中: ρ —— 206 265″; D —— A至P点距离。
水平位移观测
➢导线法和前方交会法测水平位移 首先在场地上建立水平位移监测控制网,然后用精密导线或前方交会的方 法测出各观测点的坐标,将每次测出的坐标值与前一次测出的坐标值进行 比较,即可得到水平位移在x轴和y轴方向的位移量(Δx,Δy),则水平 测点标志可埋设直径16~18 mm的钢筋头,顶部锉平后,做出“十” 字标志,一般每8~10 m设置一点。 观测时,将经纬仪安置于一端工作基点A上。瞄准另一端工作基点B(称后 视点),此视线方向即为基准线方向,通过测量观测点P偏离视线的距离 变化,即可得到水平位移值。
水平位移观测方法
水平位移观测方法
水平位移观测方法包括:
1. 大地测量法:通过直接测量地面点的位置变化来监测水平位移。
大地测量法通常使用全站仪、测距仪和GPS等工具。
2. InSAR(合成孔径雷达干涉测量法):该方法使用合成孔径雷达技术测量地面形变,通过比较两次卫星测量的数据来推导地面位移。
InSAR技术能够解决区域范围内的位移问题。
3. GPS:全球定位系统可以进行实时观测,通过监测GPS测站的位置变化来推测水平位移。
4. 扫描测量法:使用多光束激光扫描测量系统或者摄影测量方法,对地面进行高密度的三维重建,再将两次重建的数据进行比对分析,得出地面的水平位移。
5. 基于卫星的影像测量法:使用卫星影像,并经过图像处理分析,可以推测出地表的表面变化和水平位移。
这些方法依据监测区域的范围和测量精度的需求,可以在单一或多种方法之间进行选择。
水平位移观测法、垂直位移观测法的种类,特点和适用条件
水平位移观测法、垂直位移观测法的种类,特点和适用条件水平位移监测:对水工建筑物的顺水流方向或顺轴线方向的水平位移变化进行监测常用观测方法分两大类。
一类是基准线法,基准线法是通过一条固定的基准线来测定监测点的位移,常见的有视准线法、引张线法、激光准直法、垂线法。
另一类是大地测量方法,大地测量方法主要是以外部变形监测控制网点为基准,以大地测量方法测定被监测点的大地坐标,进而计算被监测点的水平位移,常见的有交会法、精密导线法、三角测量法、GPS观测法等。
一、视准线法:通过视准线或经纬仪建立一个平行或通过坝轴线的铅直平面作为基准面,定期观测坝上测点与基准面之间偏离值的大小即为该点的水平位移。
适用于直线形混凝土闸坝顶部和土石坝坝面的水平位移观测。
当采用这一方法时,主要的是要求它们的端点稳定,所以必须要作适当的布置,只能是定期地测定端点的位移值,而将观测值加以改正。
视准线观测方法特点是速度快,精度较高,原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用。
不足是对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照困难。
当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
二、引张线法:利用张紧在两工作基点之间的不锈钢丝作为基准线,测量沿线测点和钢丝之间的相对位移,以确定该点的水平位移。
适用于大型直线形混凝土的廊道内测点的水平位移观测。
主要用于测定混凝土建筑物垂直于轴线方向的(顺水流方向)水平位移。
三、激光准直法:利用激光束代替视线进行照准的准直方法,使用的仪器有激光准直仪,波带板激光准直系统和真空管道激光准直系统等。
适用于大型直线形混凝土坝观测。
对于布设在直线型的土石坝或混凝土坝顶上观测点的水平位移,主要是采用视准线法和激光准直方法观测。
因为它们速度快,精度较高,计算工作也较简单。
当采用这一方法时,主要的是要求它们的端点稳定,所以必须要作适当的布置,采用适当的方法来检核这一要求是否满足。
边坡水平位移监测方案
边坡水平位移监测方案边坡是地质灾害的常见形式之一,其稳定性得到有效的掌控,对于保障人民的生命和财产安全具有重要意义。
而边坡水平位移监测是一种常用的手段,旨在及时了解边坡的变形情况,为灾害防治和应急处理提供科学依据。
本文将介绍一种适用于边坡水平位移监测的方案。
一、摄像监测技术摄像监测技术是一种常用的边坡水平位移监测手段。
这种技术以安装在边坡上的摄像设备为基础,通过定时拍摄边坡的照片,再利用图像处理技术,对照片进行特征提取和分析,以获取边坡的水平位移数据。
摄像监测技术的优势在于操作简便,成本相对较低。
安装摄像设备后,只需进行日常维护和定期下载图像数据即可,无需频繁到现场进行人工监测。
同时,摄像监测技术还能够提供可视化的监测结果,方便工程师和决策者进行分析和判断。
然而,摄像监测技术也存在一些局限性。
例如,对于大规模边坡的监测,单个摄像设备的监测范围可能有限;同时,在恶劣的天气条件下,摄像设备的拍摄效果可能会受到影响。
二、GNSS监测技术GNSS(全球导航卫星系统)监测技术是一种利用全球卫星定位系统来监测边坡水平位移的方法。
这种技术通过在边坡上安装GNSS接收器,利用卫星信号测量接收器的位置,从而得到边坡的水平位移数据。
GNSS监测技术的优势在于高精度、实时性好。
由于GNSS接收器可以接收多颗卫星的信号,从而提供较高精度和全球范围的监测数据。
同时,GNSS监测技术还能够实现远程监测,无需人工干预。
然而,GNSS监测技术的成本相对较高,需要购买专业的设备,并进行相关的安装和维护工作。
三、激光测距监测技术激光测距监测技术是一种快速、准确的边坡水平位移监测手段。
这种技术通过在边坡上设置激光测距仪,利用激光束测量边坡上不同点的距离差异,从而推断出边坡的水平位移情况。
激光测距监测技术的优势在于高精度、实时性好。
由于激光测距仪具有很高的测距精度,可以做到毫米级的位移监测。
同时,激光测距监测技术还能够进行连续不断的监测,实现对边坡变形的及时监控。
水平位移几种监测方法
水平位移几种监测方法 The manuscript was revised on the evening of 2021水平位移几种监测方法的分析和比较【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。
【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。
但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。
水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。
另外还有极坐标法以及一些困难条件下的水平位移观测方法。
视准线法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。
原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。
观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。
竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。
根据前后两次的测量距离,得出这段时间内水平位移量。
精度分析:由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。
可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
另外此方法还受到大气折光等因素的影响。
优点:视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。
桥梁墩台水平位移和倾斜观测方法的研究
桥梁墩台水平位移和倾斜观测方法的研究随着现代交通建设的发展,桥梁墩台作为桥梁的重要支撑结构承受着桥面荷载的作用,其安全性和稳定性尤为重要。
而桥梁墩台水平位移和倾斜的观测则是评估其安全性和稳定性的重要手段之一。
一、水平位移观测方法(一)精密测深仪法精密测深仪法是通过在桥梁墩台上安装测量管,通过测量管内尺度条和浮标的相对位置差值,得出墩台的水平位移值。
该方法操作简单,准确度高,适用于各种类型的墩台观测。
但其存在的缺陷是容易受到水位的波动、气温变化等因素的干扰,需要经常进行校验。
(二)斜杆法斜杆法是通过在墩台上安装斜杆,并将斜杆与基础之间编上标定尺寸的码盘,通过浮标移动的距离来计算移动量。
该方法适用于墩台为简支结构的情况。
与精密测深仪法相比,斜杆法在准确度上稍逊一筹,但该方法的优点在于使用简单、价格低廉,适用于现场使用。
二、倾斜观测方法(一)紧密组网法紧密组网法是将多个位移传感器通过布线连接成网格,将所组成的网格与被测结构相连接,并进行在线监测,以达到对倾斜的观测和监测。
该方法具有精度高、可靠性强、适应性好等优点,适用于大型桥梁的倾斜观测。
(二)人字形反射镜法人字形反射镜法是借助于反射镜的反射原理来观测倾斜位移的方法。
该方法通过安装在墩台上的人字形反射镜与测量端相对应,借助于反射镜的反射特性可得出倾斜位移值。
但该方法受到观测角度和反射镜安装精度等因素的影响较大,其应用范围较窄。
总的来说,针对不同类型的桥梁墩台,应选择适合的观测方法,并根据实际情况设定合理的观测方案。
同时,针对各种因素的影响,进行准确的数据处理和分析,来判断墩台的安全性及稳定性,为公路交通运输保障提供坚实的保障。
高速公路桥梁水平位移监测方法
高速公路桥梁水平位移监测方法随着城市化进程的加快,高速公路桥梁的建设不断增加。
而桥梁工程的安全性与稳定性是保障行车安全的重要因素之一。
因此,对桥梁的水平位移进行监测成为一项关键任务。
本文将介绍几种常用的高速公路桥梁水平位移监测方法。
1. 光纤传感监测技术光纤传感监测技术是一种基于光纤传感器对桥梁进行位移监测的方法。
通过在桥梁上铺设光纤,并连接光纤传感器,可以实时监测桥梁在水平方向上的位移情况。
该技术可以提供高精度的位移监测数据,具有响应速度快、抗干扰能力强的优点。
2. GNSS技术GNSS技术是一种基于全球导航卫星系统的定位技术,包括GPS、GLONASS等。
通过在桥梁上安装GNSS接收器,可以实时获取桥梁所在位置的坐标信息。
通过比较不同时刻的坐标信息,可以计算出桥梁的水平位移。
GNSS技术具有无需接触桥梁、覆盖范围广等优点,但对天气条件和信号遮挡有一定要求。
3. 弯曲传感器技术弯曲传感器技术是一种基于桥梁结构弯曲变形与位移的相关性进行位移监测的方法。
通过在桥梁上安装弯曲传感器,可以实时监测桥梁在水平方向上的位移变化。
这种方法具有简单易行、成本相对较低的特点,但需要根据桥梁结构选择合适的传感器。
4. 振动传感器技术振动传感器技术是一种基于桥梁振动参数与位移的关系进行位移监测的方法。
通过在桥梁上安装振动传感器,可以获取桥梁的振动数据,并通过分析振动参数计算出位移信息。
这种方法适用于大跨度桥梁的位移监测,具有非接触式、实时性好的优点。
综上所述,高速公路桥梁水平位移监测方法有多种选择,包括光纤传感监测技术、GNSS技术、弯曲传感器技术和振动传感器技术等。
各种方法都具备不同的特点和适用范围,可以根据实际情况选择最合适的位移监测方法。
通过对桥梁水平位移的准确监测,可以及时发现潜在的安全隐患,保障行车安全。
水平位移几种监测方法
水平位移几种监测方法水平位移监测是指对地震或工程活动引起的地表或结构物体的水平位移进行实时或定期观测和记录。
水平位移监测可以帮助我们了解地下断层活动、地震活动和工程结构物的稳定性及变形,为相关领域的研究提供重要数据。
在水平位移监测中,有几种常见的监测方法。
1.全站仪法全站仪法是一种测量地表水平位移的常用方法。
全站仪利用水平仪和方向仪测量目标点与基准点之间的水平角和垂直角,进一步计算出目标点相对于基准点的水平位移。
这种方法适用于较小的区域监测,例如建筑物或桥梁的结构变形监测。
2.GNSS(全球卫星定位系统)测量法GNSS是一种利用卫星信号进行测量的定位系统。
它可以通过接收多颗卫星的信号,测算出接收器与卫星之间的距离,从而计算出接收器的坐标位置。
GNSS测量法可以实时测量目标点的位置,从而实现对地表水平位移的监测。
这种方法适用于大范围的区域监测,例如城市或地震断层带的变形监测。
3.雷达干涉测量法雷达干涉测量法是一种利用合成孔径雷达(SAR)技术测量目标点水平位移的方法。
合成孔径雷达利用将多幅雷达图像进行组合处理,可以测量地表的微小变形。
通过测量不同时间的雷达图像,可以获得目标点相对于基准点的水平位移信息。
这种方法适用于大范围区域的监测,例如城市或地震断层带的监测。
4.激光扫描法激光扫描法通过使用激光扫描仪记录地表或结构物的地形或形貌,通过比较不同时间的扫描结果,可以获得目标点的水平位移信息。
这种方法适用于局部区域的监测,例如建筑物或桥梁的变形监测。
5.精密水准测量法精密水准测量法是一种传统的地面测量方法。
通过使用水准仪在不同时间测量目标点和基准点之间的高程差,可以获得水平位移的信息。
这种方法适用于小范围的监测,例如建筑物或桥梁的变形监测。
6.InSAR(干涉合成孔径雷达)技术InSAR技术是一种利用合成孔径雷达对地表进行干涉测量的方法。
它利用卫星通过观测地球表面的雷达信号,可以测量出地表的形变并计算出地表的水平位移。
水平位移监测
极坐标法
(2)差分改正。其基本思想是:由于测量自动化使得 测量时间缩短,大气等环境条件相对稳定,利用基准网的 稳定性信息,在无需测量气象元素下实现大气折射、大气 折光的实时差分改正。据测试在近距离(200米以内)上 可达到亚mm级的精度。
该系统的特点是:差分方案达到亚毫米级;减少了气 象仪器;全天24小时无人值守;可获取3维坐标信息;反 射棱镜价格低廉,有利于增加变形点数。
GPS法
在每个监测点上布设GPS天线和接收机,在数百米到 1~2km的短基线上GPS测量可以获得亚毫米级的定位精度。 在清江隔河岩大坝的变形观测中,1~2h观测的水平精度 优于±1mm,垂直精度优于±1.5mm,6h观测的水平精度优 于±0.5mm,垂直精度优于±1mm,而GPS瞬时观测的水平 位移精度为±3mm~±5mm,垂直位移精度为±8mm。 特点是能实现自动连续观测,实时性强,精度高。缺 点是:观测点位固定,每增加一个观测点就必须添加一台 GPS接收机,需要稳定的数据传输系统,成本较高,单机 多天线技术是一个发展方向。
基准线法
3).激光准直法:该法利用激光的单色性 好和方向性强的特点,建立起一条物理 的视准线作为测量基准,根据测量原理 的不同可分为直接准直和衍射法准直, 后者精度高于前者。
精密导线法
对于非直线型的建筑物,如重力拱坝、曲线型 桥梁以及一些高层建筑物的位移观测,可以布设 精密导线,测量导线点在不同观测周期坐标值的 变化。
摄影测量法
摄影测量方法的精度主要取决于: 1)像点坐标的量测精度,它取决于摄影机和量测仪的质量 以及摄影材料的质量; 2)摄影测量几何图形的强度,它取决于摄影站和变形体间 的关系及其变形体上控制点的数量和分布有关; 3)数据处理采用严密的光束法平差,即将内外方位元素、 控制点坐标以及摄影测量中的系统误差如底片变形、 镜头畸变等作为观测值或估计参数一起进行平差,也 可进一步提高变形体上被测目标点的精度。 4)目前像片坐标精度可达2~4μ m,目标点精度可达摄影 距离的1/100000。
水平位移观测法垂直位移观测法的种类_特点和适用条件
水平位移观测法垂直位移观测法的种类_特点和适用条件1.水平位移观测法(1)位移传感器法:通过安装位移传感器,测量监测点的水平位移变化。
常用的位移传感器有基线测量仪、液位计、压力传感器等。
特点:通过直接测量位移,精度高、可靠性较好。
适用条件:适用于需要长期监测和高精度位移数据的场合,如滑坡、地面沉降等。
(2)锚索法:通过测量锚索的变形来推测监测点水平位移的变化。
锚索分为固定端和自由端两端,通过测量固定端和自由端的位移差来计算监测点的位移。
特点:操作简单,适用于较小的水平位移监测。
适用条件:适用于坚固的地质体,如岩石边坡、挡土墙等。
(3)周期测量法:通过测量监测点周围特征物体的周期性变化(如树木生长、建筑物倾斜、地下水位等)来反推位移的变化。
特点:非接触式测量方法,无需设立监测设备,适用于大范围水平位移监测。
适用条件:适用于有适当的特征物体用于周期测量的场合,如自然灾害的预警、较大规模的地表移动等。
2.垂直位移观测法(1)地面沉降观测法:通过安装地面沉降点,测量地表的垂直位移变化。
常用的观测方法有水准测量、GPS测量等。
特点:精度高,能够全面了解地表的垂直位移变化,适用于长期监测。
适用条件:适用于需要检测地表垂直位移的场合,如地基沉降、地下工程变形等。
(2)地下水位变化法:通过监测地下水位的变化来推测地下水位对地表的影响,从而间接测量垂直位移。
特点:操作相对简单,并且能够长期监测地下水位变化情况。
适用条件:适用于对地下水位变化敏感的地质灾害监测,如地面沉降、地下水突增等。
(3)倾斜测量法:通过倾斜传感器、倾角测量仪等测量仪器,测量倾斜角度的变化来间接推测垂直位移的变化。
特点:操作简单,适用于监测较小的垂直位移。
适用条件:适用于需要实时或动态监测的场合,如斜坡的变形、建筑物倾斜等。
总结起来,水平位移观测法和垂直位移观测法主要通过不同的传感器和测量方法来获取位移数据。
在选择观测方法时,需要根据监测需求、地质条件和预算等方面考虑,选择最合适的观测方法进行位移观测。
水平位移监测的基本原理和方法
水平位移监测的基本原理和方法
水平位移监测的基本原理是利用各种方法测量确定观测点的位置变化。
通过定期测量建筑物各个观测点在同一坐标系中的坐标值,可以确定其位置的变化情况。
基本方法有:
1. 视准线法:以经过光学测量仪器的视准线建立一个平行或通过坝轴线的固定铅直平面作为基准面,定期观测确定的点位与基准面之间的偏离值的大小,即该点的水平位移。
这种方法适用于混凝土建筑物顶部横向水平位移和土石建筑物横向水平位移的观测。
2. 引张线法:利用张紧在两工作基点之间的不锈钢丝作为基准线,测量沿线测点和钢丝之间的相对位移,以确定该点的水平位移。
这种方法适用于直线形的混凝土坝,一般设置在水平纵向廊道内。
此外,还有偏心法、前方交会法、GPS监测法等。
在实际应用中,应根据具体的监测对象、精度要求、场地条件等因素选择合适的方法。
同时,为了确保监测的准确性和可靠性,还需要注意观测点的布设、观测周期的确定、观测数据的处理和分析等方面的问题。
边坡水平位移监测方案
边坡水平位移监测方案边坡水平位移的监测是现代土地工程中的一项重要工作,其目的是为了及时发现边坡的水平位移情况,并采取相应的措施来保护边坡的稳定性。
本文将介绍一种边坡水平位移监测的方案,以提供可行的技术指导。
一、方案背景边坡是指地表坡度较陡的地形,由于地质因素、气候因素等原因,边坡的稳定性可能会受到一定的威胁。
因此,对边坡进行水平位移监测成为必要的措施,以及时掌握边坡变形情况,以便采取相应的修复或加固措施。
二、监测方案1. 选择监测方法边坡水平位移的监测方法有很多种,常见的包括全站仪法、GNSS 法、摄影测量法等。
根据具体情况,我们选择适合的监测方法。
全站仪法适用于较小规模的边坡,可以在较短的时间内完成监测;GNSS法适用于较大规模的边坡,能够实时监测位移情况;摄影测量法则适用于对整个边坡进行长时间连续监测。
2. 确定监测时间边坡水平位移监测的时间应根据具体情况而定。
一般情况下,我们建议进行长期连续监测,以便获取更准确的数据。
可以根据边坡的情况,选择合适的监测周期,例如每月、每季度或每年进行一次监测。
3. 布置监测点为了准确监测边坡的水平位移,我们需要在边坡上布置一定数量的监测点。
监测点的布置应遵循以下原则:覆盖整个边坡,密度适中,考虑到地质、地形等因素。
可以根据实际情况,确定监测点的数量和位置。
4. 数据处理与分析边坡水平位移监测的最终目的是得到可靠的数据,以便进行后续的工程决策。
因此,在完成监测后,需要对所得到的数据进行处理与分析。
可以利用专业软件进行数据处理,得到边坡水平位移的变化趋势、速率等参数,并进行相应的数据分析,以评估边坡的稳定性。
三、监测结果的应用监测结果的应用主要包括以下几个方面:1. 风险预警通过对边坡水平位移进行监测,可以提前发现边坡变形的趋势,对潜在的风险进行预警。
及时采取防护措施,避免事故的发生。
2. 工程决策监测结果可以为后续的工程决策提供依据。
根据边坡水平位移的情况,可以确定是否需要进行加固、修复等工程措施,以保护边坡的稳定性。
深基坑水平位移监测方法及数据处理
深基坑水平位移监测方法及数据处理摘要:在深基坑开挖的施工过程中,采用何种方法进行水平位移监测,既能够保证精度,又可节省成本,是基坑施工监测的关键问题之一。
目前我们知道的常用的基坑水平位移监测方法有四种:并将轴线法、单站改正法、测小角法、前方交会法。
通过比较我们得知小角法相对于其他三种方法来说简单、方便、精度较高。
本文就主要探讨了小角法的运用及数据处理,并结合工程实例加以论述。
关键词:深基坑水平位移监测方法数据处理一、概述深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。
对于平面位移监测而言,由于引测工作量大,且必须顾及测区精度的均匀性,通常是在施工场地周围布设基准控制网。
在基准控制网中,一部分是远离场地的稳定基准点,另一部分控制点是施工场地周围相对稳定便于监测的工作基点。
工作基点是施工场地上临时的控制点,一般的轴线放样和平面位移监测点都以工作基点为起点。
随着深基坑的开挖,必须对工作基点定期进行检测,即对基准网进行部分或全部重复测量,并与初始测量结果进行比较,平差后对工作基点进行修正。
然而,由于施工场地狭小时不便于施测,实际中往往不做该项检测。
结果导致检测反应出的变形监测点的位移量不是绝对位移量,影响工程的质量。
二、测小角法原理1、测小角法原理分析小角法是工程测量中的一种放样方法,其目的是确定一条在两端无法安置仪器的线段上任意一点的位置。
原理如图所示:如需观测某特定方向上的水平位移PP′,在距离监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。
在一定远处(施工影响范围之外)选定一个控制点B,作为零方向。
在B点安置觇牌,用测回法观测水平角BAP∠,测定一段时间内观测点与基准点连线与零方向之间的角度变化值,根据公式计算得出水平位移量。
大坝水平位移测量方法综述
大坝水平位移测量方法综述【原创实用版3篇】《大坝水平位移测量方法综述》篇1大坝水平位移测量是指通过测量方法来确定大坝在水平方向上的位移情况。
这种测量对于评估大坝的安全性和稳定性非常重要,因为水平位移可能会导致大坝的失稳和破坏。
以下是一些常用的大坝水平位移测量方法:1. 测量仪器法:使用测量仪器,如全站仪、测距仪等,对大坝表面进行测量,计算出大坝的水平位移。
这种方法需要使用高精度的测量仪器,并且需要对仪器进行定期校准和维护。
2. 卫星遥感技术法:利用卫星遥感技术,通过测量大坝周围地形的变化来计算大坝的水平位移。
这种方法具有较高的精度和可靠性,但需要使用昂贵的设备和技术。
3. 地面测量法:通过在地面上设置测量点,使用测量仪器对大坝进行测量,计算出大坝的水平位移。
这种方法的优点是设备简单、操作方便,但需要考虑到地面测量的误差和影响因素。
4. 超声波测量法:利用超声波技术,通过测量大坝内部结构的变化来计算大坝的水平位移。
这种方法具有较高的精度和可靠性,但需要对超声波信号进行处理和分析。
5. 光学测量法:通过使用光学仪器,如摄影机、激光测距仪等,对大坝进行测量,计算出大坝的水平位移。
这种方法具有较高的精度和可靠性,但需要使用昂贵的设备和技术。
以上是一些常用的大坝水平位移测量方法,具体方法的选择取决于大坝的类型、规模、结构形式、所在地区的地质和气候条件等因素。
《大坝水平位移测量方法综述》篇2大坝水平位移测量是指通过测量方法来确定大坝在水平方向上的位移情况。
这种测量对于评估大坝的安全性和稳定性非常重要,因为水平位移可能会导致大坝的失稳和破坏。
以下是一些常用的大坝水平位移测量方法:1. 测量仪器法:利用测量仪器(如全站仪、测距仪等) 对大坝进行测量,通过测量不同时间点的数据来计算大坝的水平位移。
2. 卫星定位法:利用卫星定位技术(如GPS) 对大坝进行测量,通过测量不同时间点的数据来计算大坝的水平位移。
3. 激光扫描法:利用激光扫描技术对大坝进行测量,通过测量不同时间点的数据来计算大坝的水平位移。
水利工程水平位移测量方案
水利工程水平位移测量方案一、前言在水利工程中,地质灾害和工程机械的运行会导致土体产生变形和位移,严重威胁着水利工程的安全。
因此,对水利工程的位移进行有效的监测是非常重要的。
水利工程水平位移测量是指测量某一点在平面上的位置相对于其初始位置的改变。
水利工程水平位移测量应具有持续性、连续性、高精度和全方位监测等特点。
本文将对水利工程水平位移测量的方案进行分析和总结,并提出对应的测量方法和措施。
二、测量方法及仪器1. 传统测量方法传统的水利工程水平位移测量方法主要包括经验法、全站仪法、测斜仪法和GNSS法。
(1) 经验法经验法是指通过辅助设备,对构筑物进行外观观察,以及通过经验和感觉进行判断,来评估位移的发展趋势。
这种方法虽然简单,但是准确性较低,容易受主观因素的影响。
(2) 全站仪法全站仪法是一种比较常见的测量方法,通过在观测点安装反射棱镜,然后利用全站仪进行观测、记录数据,计算位移量。
但是全站仪法需要人员操作,无法实现实时监测。
(3) 测斜仪法测斜仪法是通过在测量点安装测斜仪,监测构筑物的位移,它可以实时监测位移量,但是准确性受设备性能的限制。
(4) GNSS法GNSS法是指通过全球导航卫星系统进行位移测量,它具有高精度、实时性强等特点,适用于水利工程位移监测。
2. 先进测量仪器除了传统的测量方法外,还可以采用激光扫描仪、光电测量仪等先进的测量仪器进行水平位移测量。
这些仪器可以实现远距离、无人值守的监测,具有高精度、全方位监测等优势。
三、水利工程水平位移测量方案1. 确定监测方案首先需要根据实际情况,确定监测方案,包括监测点的选取、监测周期、监测时间等。
对于水利工程水平位移监测,应选取关键点进行持续性监测,保证对水利工程的安全进行有效保障。
2. 安装监测仪器根据确定的监测方案,安装相应的监测仪器。
对于传统方法,包括全站仪、测斜仪等仪器的安装;对于先进仪器,需要安装激光扫描仪、光电测量仪等。
3. 数据采集和监测根据安装好的监测仪器,进行数据采集和实时监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水平位移几种监测方法的分析和比较【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。
【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。
但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。
水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。
另外还有极坐标法以及一些困难条件下的水平位移观测方法。
视准线法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。
原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。
观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。
竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。
根据前后两次的测量距离,得出这段时间内水平位移量。
精度分析:由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。
可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
另外此方法还受到大气折光等因素的影响。
优点:视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。
不足:对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。
当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。
精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。
测小角法:当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。
沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。
在B点安置觇牌,用测回法观测水平角BAP,测定一段时间内观测点与基准点连线与零方向间角度变化值,根据δ=△β*D/ρ(式中D为观测点P至工作基点A的距离,ρ=206265)计算水平位移。
精度分析:由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差:水平位移观测中误差的公式,表明:①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽略不计,采用钢尺等一般方法量取即可满足要求;②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪器或适当增加测回数来提高观测度;③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前提下,可以使用精度较低的仪器,以降低观测成本。
优点:此方法简单易行,便于实地操作,精度较高。
不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。
前方交会(测边前方交会,测角前方交会):如果变形观测点散布在变形体上或者在变形体附近无合适的基准点可供选择时,人们常用前方交会法来进行观测,这时,基准点选择在面对变形体的远处。
测角前方交会:原理:如图所示:用经纬仪在已知点A,B上测出α和β角,计算待定点P的坐标。
精度分析:其前方交会点P的点位中误差的公式为:式中mβ为测角中误差,ρ〞=206265,S为A,B间距离。
对该式的进一步分析表明:当γ=90°时,点位中误差不随α,β的变化而变化;当γ>90°时,对称交会时的点位中误差最小,精度最高;当γ<90°时,对称交会时点位中误差最大,对精度不利。
测边交会:原理:如图所示,P表示位移点,A1,A2表示工作基点。
设A1坐标为(X1,Y1),A2坐标为(X2,Y2),P坐标为(X P,Y P)。
观测S1,S2边,求交会点P的坐标。
用测距仪在A1点测得A1到P点的平距为S1,在A2点测得A1到P点的平距为S2。
基线平距S3在首次观测后即可以将其固定。
由上图可得:XP=X1+AD*cosω-h*sinωYP=Y1+AD*sinω+h*cosω式中,AD=(s12+s32-s22)/2s3,h=√(s12-AD2)设P点的位移为△XP ,△YP,相应的水平距离变化为△S1,△S2,△XP≈△YP≈精度分析:设边长S1,S2的测距中误差为m s1,m s2,则测边交会的点位精度可用下式表示:设交会边长S1,S2的观测误差为m s1,m s2,则m△s1=√2m s1, m△s2=√2m s2,可得位移中误差公式如下:m△Yp=m△Yp=位移点P的位移误差m△p =±√(m△Yp+ m△Yp)=优点:前方交会法相对于其他水平位移观测的方法如视准线法、小角度法等具有以下优点:①基点布置有较大灵活性。
前方交会法的工作基点一般位于面向测点并可以适当远离变形体,而视准线法等方法的工作基点必须设置在位于变形体附近并且必须基本与测点在同一轴线上,所以前方交会法工作基点的选择更具灵活性。
特别是当变形体附近难以找到合适的工作基点时,前方交会法更能显出其优点。
②前方交会法能同时观测2个方向的位移。
③观测耗时少。
当测点较多,并分布在多条直线上时,前方交会法的耗时较视准线等方法少。
不足:前方交会法由于受测角误差、测边误差、交会角及图形结构、基线长度、外界条件的变化等因素影响,精度较低。
另外,其观测工作量较大,计算过程较复杂,故不单独使用,而是常作为备用手段或配合其他方法使用。
特别的,对于边长交会法,由于测距仪的测距精度包含固定误差和比例误差,当距离增加时其误差也会增大。
在选择工作基点时,除要满足通视和工作基点的稳定性外,还必须考虑工作基点与测点间的视距不要过长。
极坐标法极坐标法属于边角交会,使边角交会的最常见的方法。
原理:如图所示:在已知点A安置仪器,后视点为另一已知点B,通过测得AB—AP的角度以及A点至P点的距离,计算得出P点坐标。
设A点坐标为A(XA ,YA),A—B的方位角为αA-B,则P点坐标P(XP ,YP)的计算公式为:XP=XA+S*cos(αA-B+β)YP=XA+S*sin(αA-B+β)由微分公式可得:△Xp= cos(αA-B +β)*△S- sin(αA-B+β)*S*△β/ρ△Yp= sin(αA-B +β)*△S+ cos(αA-B+β)*S*△β/ρ精度分析:设测边中误差为ms ,测角中误差为mβα则待定点的点位中误差为:两个方向的水平位移中误差为:M △Xp =√2*√(ms2*cos2(αA-B+β)+sin2(αA-B+β)*S2*mβ2/ρ2)M △Yp =√2*√(ms2*sin2(αA-B+β)+cos2(αA-B+β)*S2*mβ2/ρ2)其中,ms 为测距中误差,mβ为测角中误差,αA-B为A-B便的方位角,ρ=206265。
优点:使用方便,尤其是利用全站仪进行测量可以直接测得坐标,简单快速。
不足:精度较低,适用于精度不是很高的水平位移监测工作。
反演小角法:原理:如上图所示,C′为工作基点(工作基点位移后C变为C′),A,B为选定的点,A、B、C基本上在一条直线上。
在进行初始测量时,测定水平距离AC,CB,在施工监测时,如需监测工作基点是否发生水平位移时,只需测出∠AC′B即可。
若∠AC′B不等于上次测得的∠ACB,则说明工作基点发生了位移,根据公式:可以计算出其偏移量。
在实际工作中,为了减少误差,通常使AC与BC的距离近似相等。
精度分析:由于距离测量的误差对水平位移测量精度的影响相对于测角误差带来的误差影响十分微小,故偏移量中误差的公式可以近似的表示为:m e ≈±√2**mβ/ρ在这里可以看出,可以近似的认为偏移量的精度与测角的精度成正比。
因此,为了提高偏移量测量的精度,就要使用精度更好的仪器或者增测回数。
优点:当施工条件限制时,特别是由于场地狭小限制基准控制网建立时,可以利用反演的小角法在可动的工作基点上观测自身的位移。
特别是在一些不能建立稳定的基准点的场地,可以利用其中的一个观测点作为不稳定基准,再用上述方法测得该点的位移之后,再利用该点对其他的观测点进行观测,最后加上该点的位移变化就可以得出其他点的偏移状况。
不足:架设一次仪器仅能测得一个点的位移情况,即使以该点作为不稳定基准观察其他点的位移情况,在精度上会有所损失。
结论:综上所述,对于上面的每一种方法,都有自己的特点,我们在选用水平位移测量方法的时候,既要考虑到精度,可行性,也要考虑到经济等方面的问题。
在满足精度要求的前提下,尽量使用简单实用经济的方法。
对于不同的现场,有不同的特点,不一定采用一种方法,可以采用两种或者两种以上方法结合来进行水平位移的监测。
希望本文对当前使用较多的方法进行的分析比较和总结会对今后的水平位移监测工作起到一定的作用。