溅射沉积技术的发展及其现状
磁控溅射镀膜

磁控溅射镀膜磁控溅射镀膜是一种应用于材料表面改性的先进技术。
它利用准分子束磁控溅射设备,通过电弧、离子束或电子束的能量作用于目标材料,使其产生高温、高压等物理、化学效应,从而实现材料表面镀膜的目的。
本文将从磁控溅射镀膜的基本原理、应用领域、优势和不足以及发展前景等方面进行详细介绍,旨在全面了解磁控溅射镀膜技术的特点及其在现代工业中的应用。
1. 磁控溅射镀膜的基本原理磁控溅射镀膜技术是将所需镀层物质以固体靶材的形式放在装备中的靶极,利用外加的电场、磁场或离子束等等,使得靶材产生某种运动状态,随后可以将靶面上的物质溅射出来,沉积在基材表面,形成薄膜。
其中磁场的作用是将靶材中被离子轰击的金属离子引导回到靶材中心,以增加溅射效率。
2. 磁控溅射镀膜的应用领域磁控溅射镀膜技术广泛应用于许多工业领域,如电子、光学、太阳能电池、柔性电子器件、集成电路、玻璃制造等。
在电子领域,磁控溅射镀膜技术可用于制备薄膜晶体管,提高电子器件的性能和稳定性。
在光学领域,磁控溅射镀膜技术可制备高反射率、低反射率和色分离膜等光学薄膜。
在太阳能电池领域,磁控溅射镀膜技术可用于制备光学膜和透明导电膜。
在柔性电子器件领域,磁控溅射镀膜技术可用于制备导电薄膜和保护膜。
3. 磁控溅射镀膜的优势和不足磁控溅射镀膜技术具有许多优势。
首先,其产生的薄膜具有高质量、高致密性和良好的附着力。
其次,磁控溅射镀膜过程中无需加热基材,可避免基材变形和热损伤。
此外,磁控溅射镀膜技术具有膜层成分可调、薄膜复杂结构可控等特点。
然而,磁控溅射镀膜技术也存在不足之处。
一方面,磁控溅射镀膜设备体积较大、成本较高,且对真空度要求较高。
另一方面,由于目前磁控溅射镀膜技术仍处于发展阶段,其在大尺寸薄膜制备和高速镀膜方面还存在一定限制。
4. 磁控溅射镀膜的未来发展随着科学技术的不断进步,磁控溅射镀膜技术将进一步得到发展和完善。
一方面,磁控溅射镀膜技术将在薄膜成分调控和复杂结构薄膜制备方面取得更大突破,以满足不同行业对薄膜材料的需求。
磁控溅射镀膜技术的研究及发展趋势

120赵向杰磁控溅射镀膜技术的研究及发展趋势磁控溅射镀膜技术的研究及发展趋势**基金项目:2018年西安航空职业技术学院校级综合科研项目(18XHZH-015)o 作者简介:赵向杰,硕士研究生,讲师,教学研究方向;机械工程。
赵向杰(西安航空职业技术学院,陕西西安710089)摘要:综述了磁控溅射镀膜技术在非平衡磁场溅射、脉冲磁控溅射等方面的发展,利用新型的磁控溅射镀膜技术可以实现薄膜的高速沉积、高纯薄膜制备以及提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。
并阐述磁控溅射镀膜技术在电子、光学、表面功能薄膜等许多方面的应用。
关键词:磁控溅射镀膜,薄膜制备,应用中图分类号:TB79Development and Research of Magnetron Sputtering Coating TechnologyZHAO Xiang-jie(Xi?an Aeronautical Polytechnic Institute,Xi*an710089shaanxi,China)Abstract:In this paper,the magnetron sputtering technology in the non-equilibrium magnetic field sputtering,pulsed magnetron sputtering and other aspects were.introdnced It is shown that the new type of magnetron sputtering technology can realize the high-speed deposition of the film,the preparation of the high purity film,improve the quality of the reactive sputtering deposition film,and further replace the traditional surface treatment technology such as electroplating.Finally,the application of magnetron sputtering technology in many aspects such as electronics,optics,surface functional film and so on were expounded.Key words:magnetron sputtering coating,film fabrication,气相沉积是指气态(含等离子态)的镀料物质在基体上沉积,形成薄膜的过程。
《磁控溅射制备薄膜研究发展》

磁控溅射制备薄膜材料的研究及其发展摘要这篇文章简单的介绍了磁控溅射原理还有制备薄膜的应用举例,简述沉积工艺参数对薄膜附着能力的影响!通过回顾历史发展中各个关键的发现以及技术的更新改进,并根据现有的研究总结对未来展望一下。
关键词:磁控溅射应用沉积工艺历史总结展望前言溅射技术是物理气相沉积(pvd)的一种,作为薄膜材料制备的重要方法之一。
此项技术是利用了带电荷的粒子在电场中加速后具备一定动能,将离子引向想要溅射的物质材料做成的阴极靶电极,使靶材原子溅射出来让其沿着一定的方向运动到衬底并最后沉积于衬底之上形成成膜的方法。
而磁控溅射是指把磁控原理与一般溅射技术结合起来利用控制磁场的特殊分布进而控制电场中的电子运动,这样就改进了溅射的工艺。
如今,磁控溅射技术已经是沉积耐磨、装饰、耐腐蚀、光学等等其他各种各样功能薄膜的重要制作方法!格洛夫(Grove)在1852年研究发现阴极溅射的现象,溅射技术的发展由此开始。
在上世纪30年代开始采用磁控溅射沉积技术制取薄膜,不过采蒸镀的方式制取薄膜在上世纪70年代中期以前,要比采用磁控溅射方法运用的更多。
主要是溅射技术在那时初步发展,它的溅射的沉积率比较低,而且溅射的压强高。
溅射同时发展的蒸镀技术其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术生产销售处于不利位置。
美国贝尔实验室和西屋电气公司于1963年采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。
在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射有了实质的应用,磁控溅射也更好的发展起来了。
3.原理磁控溅射的工作原理:电子在电场加速E的作用下,使之飞向基片时与氩原子接触碰撞,并使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar离子在电场作用下加速飞向阴极靶,并具备高能量去撞击靶表面,导致靶材发生溅射。
在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B (磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。
磁控溅射技术进展及应用

摘要:近年来磁控溅射技术的应用日趋广泛,在工业生产和科学研究领域发挥巨大作用。
随着对具有各种新型功能的薄膜需求的增加,相应的磁控溅射技术也获得进一步的发展。
本文将介绍磁控溅射技术的发展,以及闭合磁场非平衡溅射、高速率溅射及自溅射、中频及脉冲溅射等各种新技术及特点,阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。
关键词:磁控管溅射率非平衡磁控溅射闭合场非平衡磁控溅射自溅射引言磁控溅射技术作为一种十分有效的薄膜沉积方法,被普遍和成功地应用于许多方面1~8,特别是在微电子、光学薄膜和材料表面处理领域中,用于薄膜沉积和表面覆盖层制备。
1852年Grove首次描述溅射这种物理现象,20世纪40年代溅射技术作为一种沉积镀膜方法开始得到应用和发展。
60年代后随着半导体工业的迅速崛起,这种技术在集成电路生产工艺中,用于沉积集成电路中晶体管的金属电极层,才真正得以普及和广泛的应用。
磁控溅射技术出现和发展,以及80年代用于制作CD的反射层之后,磁控溅射技术应用的领域得到极大地扩展,逐步成为制造许多产品的一种常用手段,并在最近十几年,发展出一系列新的溅射技术。
一、磁控溅射镀膜原理及其特点1.1、磁控溅射沉积镀膜机理磁控溅射系统是在基本的二极溅射系统发展而来,解决二极溅射镀膜速度比蒸镀慢很多、等离子体的离化率低和基片的热效应明显的问题。
磁控溅射系统在阴极靶材的背后放置100~1000Gauss强力磁铁,真空室充入011~10Pa压力的惰性气体(Ar),作为气体放电的载体。
在高压作用下Ar原子电离成为Ar+离子和电子,产生等离子辉光放电,电子在加速飞向基片的过程中,受到垂直于电场的磁场影响,使电子产生偏转,被束缚在靠近靶表面的等离子体区域内,电子以摆线的方式沿着靶表面前进,在运动过程中不断与Ar原子发生碰撞,电离出大量的Ar+离子,与没有磁控管的结构的溅射相比,离化率迅速增加10~100倍,因此该区域内等离子体密度很高。
磁控溅射镀膜技术的研究进展

磁控溅射镀膜技术的研究进展磁控溅射镀膜技术是一种常见的表面处理技术,它可以在各种基材表面制备出具有特殊性能的薄膜层。
随着技术的不断发展,在材料的选择、制备工艺、表面状态分析等方面都有所进步,使得磁控溅射镀膜技术在科学研究和实际应用中发挥着重要作用。
一、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术基于靶材发射金属离子的原理,通过高能离子轰击固体靶材表面,使得金属离子从靶材表面脱离并沉积在基材表面上,从而形成具有一定厚度和化学组成的功能性膜层。
这种技术的独特之处在于可以通过控制靶材的化学成分和溅射工艺参数来调控薄膜层的结构和性能。
其中,靶材的化学成分直接影响薄膜层的组成,而溅射工艺参数如气压、功率、溅射气体种类和气体流量等则直接影响溅射速率和膜层的质量。
二、材料选择与制备工艺磁控溅射镀膜技术广泛用于各种材料的制备,包括金属、合金、氧化物、硅类材料以及半导体材料等。
对于不同的材料,其制备工艺也有所不同。
金属材料通常采用单一金属靶材或合金靶材进行制备,而合金靶材的组成比例可以通过调整靶材的制备工艺来实现。
氧化物材料则需要先将靶材还原成金属或合金形态,然后利用气氛调节技术调节气氛中氧气含量来制备氧化物膜层。
在制备工艺方面,需要进行适当的气氛调节和工艺优化。
例如,在制备合金材料时,需要考虑合金靶材的制备过程中的变形问题,找到合适的制备参数来保证靶材的均匀溅射和膜层的均匀沉积。
三、表面状态分析磁控溅射镀膜技术制备出的膜层常常需要通过表面状态分析来控制其性能,最常用的分析方法是X射线衍射和扫描电镜技术。
X射线衍射技术可以用于分析膜层的结晶性、晶格参数和晶胞结构等信息,从而定量描述膜层的结构和性能。
而扫描电镜技术则可以提供更丰富和直观的表面形貌信息,包括表面粗糙度、形貌变化和结构特征等。
此外,还有一些其他的表面分析技术如原子力显微镜、能量散射光谱和X射线光电子能谱等,可以用于全面分析膜层的属性和性能。
四、应用前景磁控溅射镀膜技术在各种领域都得到了广泛应用,在新能源、医疗、航空航天等高科技产业中有着重要的地位。
磁控溅射镀膜技术在光学薄膜中的应用

磁控溅射镀膜技术在光学薄膜中的应用作为一种常见的表面涂层技术,磁控溅射镀膜技术被广泛应用于光学薄膜领域。
其与传统的蒸发和离子镀技术相比,有更好的沉积速率、沉积质量以及对高熔点物质的表面涂层能力。
本文将探讨磁控溅射镀膜技术在光学薄膜中的应用。
一、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术是一种将金属或非金属材料转化为气态,然后在物体表面沉积形成薄膜的表面涂层技术。
其基本原理为将高能量的粒子轰击到材料上,使其转化为气态,然后被磁场加速并引导直接沉积到目标物体表面上。
这种技术具有简单易行、高精度、大批量生产等优点。
二、磁控溅射镀膜技术的应用领域磁控溅射技术在银及贵金属、氧化物、氟化物、氮化物等材料的表面涂层方面应用最为广泛。
其在太阳能电池板、镜片、LED 芯片等领域均有重要应用。
在光学领域主要被用来制造反射和透射膜层。
反射膜层用于制作镜面和反光器材,由于磁控溅射技术能够生产高质量、高折射率、高反射率膜层,因此已成为反射膜制造行业的主流技术,广泛应用于金属镜、全反射镜、折射镜、衰减镜等器材的制造。
透射膜层则用于制作光学元件,如滤波器、调制器、液晶显示器等。
目前,磁控溅射技术已成为制造高品质光学器材的首选技术,主要由于其能够控制膜层厚度、形状、光学性能和生产周期等因素。
三、磁控溅射镀膜技术的未来发展方向/随着现代信息技术和光电子技术的不断发展,磁控溅射技术的应用领域也将不断扩展。
基于化学成分的工艺控制和镀膜参数的改进,膜层厚度、形状、质量和其它光学性能交替控制将得以实现。
同时,尽管目前磁控溅射镀膜技术已可满足绝大部分光学薄膜制造需求,但其在规模化生产、膜层厚度均匀度、介电性能等方面仍需改进。
未来,磁控溅射技术在深度应用上仍有巨大的发展空间。
试谈磁控溅射镀膜技术的研究及发展趋势

试谈磁控溅射镀膜技术的研究及发展趋势作者:孙毅来源:《科学与财富》2020年第35期摘要:本文概述磁控溅射镀膜及其工作原理,着重探討当前现有的镀膜工艺,包括平衡及非平衡磁控、脉冲磁控、反应磁控等,进一步分析此类技术未来的发展趋势。
关键词:磁控溅射镀膜;非平衡磁控;脉冲磁控引言:磁控溅射镀膜工艺的出现,已经获得优异的成绩,并被广大相关专业人士关注,在镀膜行业中展现出非凡的发展速度。
其出现之初,仅能在表面平整的工件上达到较好的处理效果。
一、磁控溅射镀膜此项技术是基于特定的物理反应,实行与气相沉积相似的一项工艺。
镀膜需在真空环境下,将电量两极导入磁场,在电场及磁场的双重作用下,完成溅射。
该种溅射方式弥补常规溅射技术的部分不足,并合理开拓其他运用领域。
在阴极靶材之上构建电磁场,在此范围内,若因溅射出现加速成高能电子的情况,不会直接撞击阳极,会受到磁场的“指引”,进行摆动,借助摆动的力会冲击气体分子,由此将带有的能量传送至气体分子,进而出现电力,冲击的一方便又回到原本的低能状态。
之后会跟随磁力线的移动,达到距离阴极较近的辅助阳极处,而被吸入。
此过程能有效降低高能电子产生的冲击力,对基材起到保护的作用,并展现出低温溅射的特征。
同时,高能电子的持续摆动,需经过较长的距离才进入阳极,但受到电子量级的影响,电离度偏高,所以放电的概率相对提升,离子的电流密度有所增大,由此溅射的速度快,反而展现出高速溅射的特征。
二、常见的磁控溅射镀膜工艺(一)平衡磁控此项工艺属于一项相对常规的溅射工艺,其利用永磁体及电磁圈,引导电子活动。
电磁场能把控电子的活动轨迹,让其和气体分子相互接触并产生反应,由此确保溅射的质量及最终的沉淀速度。
由于二次电子与靶材相距不远,再加上等离子的密度偏高,且密度会随着与靶材的距离拉长逐渐降低,镀膜的质量也随之下降,因此,该项工艺对加工构件的大小有限制。
实际应用平衡溅射时,飞出的电子一般是低能状态,难以满足加工的实际标准,而提升温度能优化镀膜的质量,但需考量加工构件本身可以承受的温度。
喷射沉积技术

沉积坯通过沉积基底传导散热; 利用沉积坯表面的气体对流散热、辐射散热。
2.雾化颗粒状态对沉积坯质量的影响
绝大部分雾化颗粒在与沉积基体碰撞前已凝固
成固相颗粒,在这种情况下,沉积坯为组织疏
松的粉末堆聚体。
绝大部分雾化颗粒在与沉积基体碰撞前仍保持
为液态,沉积坯形成铸造化组织。
凝固和成形工艺,称之为喷射沉积(Spray Deposition)或喷射成形(Spray Forming)工艺,
很好地解决了上述矛盾。
该工艺的诞生对铸造、粉末冶金等技术产生了 深远的影响,成为当今最引人注目的材料制备方 法之一。
1.Osprey技术的发明
喷射沉积的概念和原理 最早是由英国Swansea大学 的A. R. E. Singer教授于 1968年提出,1970年首次公 开报导的。当时他把熔融金 属雾化沉积在一个旋转的基 体上,形成沉积坯料,并直 接轧制成带材。
积层表面的前一批溅射沉积物尚未完全凝固,这样在沉
积层表面形成液体薄层,其厚度非常小,为此后的雾化
沉积提供了一个坚固的表面,溅射过程将继续下去。
液体薄层的厚度应足够小,以防止产生横向流动,抑制
宏观范围内的成分偏析。
借助于雾化沉积时的机械作用,还可将部分凝固的沉积
层内部的细小枝晶打碎,获得无原始边界的等轴细晶组
英国Osprey公司已经能够生产直径100~ 250mm的盘坯和150mm×1000mm的棒坯等。
德国的Mannesman Demag公司能够生产尺寸 约1000mm×2000mm×10mm的钢板。
德国的PEAK公司则能够生产直径为150~ 400mm,长度为700~1200mm,质量为35~ 400kg的Al-Si合金坯。
第10章 喷射沉积技术

AR,英国的Swansea和Birmingham大学,德
国的不莱梅学院,韩国的RISI,我国台湾的成
功大学等。
二、喷射沉积技术的基本原理
过热的合金液体在高 压惰性气体或机械力离 心雾化,形成微细的液 滴。液滴在飞行过程中 冷却、凝固,形成固液 两相颗粒喷射流,并直 接喷射到较冷的基底上, 产生撞击、粘结、凝固, 从而形成沉积物。
(3)液滴和外加反应剂粒子的固液反应
MO+X→XO+M 液滴与外加反应剂之间的液固反应体系的选择 可利用氧化物的Δ G°-T图,用氧化物比较稳定的金 属去还原与之比较相对不稳定的氧化物。如用CuO、 Fe2O3、SiO2等作为反应剂与Al反应生成Al2O3,并 与基体金属Al在Osprey工艺中发生共沉积。 在沉积过程中,由于金属液体被过热,金属液 体被高压气体充分雾化成细小液粒后,与反应剂发 生化学反应。
生产宽带材存在困难。可以采用多喷嘴解决,
但存在边界结合问题。
4.喷射锻造
喷射锻造也是 Osprey金属有限公司 早期发展起来的一种 喷射沉积工艺 。雾 化金属液滴喷射流直 接喷射进入模子中, 形成锻造毛坯。 模子通常是铜制 水冷的,也可用高温 陶瓷。
优点:
预成形坯内无连通孔隙,可在空气中锻造。
(3)目前国际上的技术水平
英国Osprey公司已经能够生产直径100~ 250mm的盘坯和150mm×1000mm的棒坯等。 德国的Mannesman Demag公司能够生产尺寸 约1000mm×2000mm×10mm的钢板。
德国的PEAK公司则能够生产直径为150~ 400mm,长度为700~1200mm,质量为35~ 400kg的Al-Si合金坯。
磁控溅射镀膜技术的发展及应用

积而后成膜 。 溅 射 镀 膜 就 是 利 用 低 气 压 辉 2 磁控溅射镀膜技术 的发展 光 放 电 产 生 的 氩 气 正 离 子 在 电 场 作 用 下
近 年来磁控 溅射技 术 发展非常 迅速 ,
高速轰 击阴极靶材 , 把 靶 材 中 的 原 子 或 分 代 表 性 方 法 有 非 平 衡 磁 控 溅射 、 反 应 磁 控 备 的 [ 5 I 。 子 等 粒 子 溅 射 出 而 沉 积 到 基 片 或 者 工 件 溅 射 及 高 速 溅 射 等 等 。
气等 , 在 阴 极 和 阳 极 之 间加 几 千 伏 的 高
压, 阴 阳 极 之 间会 产 生 低 压 辉 光 放 电 。 放
质量 , ( 6 ) 溅射, 氩 气 电 离 后形 成 的正 离 子 在 发 展 , 越 来 越 多 地 用 到各 种 化 合 物 薄 膜 材 正 交 的 磁 场 和 电场 的 作 用 下 , 高 速 轰 击 靶 料 。 可 以 直 接 使 用 化 合物 材 料 制 作 的靶 材 材, 使 溅 射 出的 靶 材 粒 子 到 达 基 片表 面 沉 通 过 溅 射 来 制 备 化 合 物 薄 膜 , 也 可 在 溅射 积成 膜 ; ( 7 ) 退火 , 薄 膜 与 基 片的热 膨 胀 系数 金 属 或 合 金 靶 材 时 , 通 入 一 定 的 反 应 气 相互 扩 散 可 以 有 效 提 高 粘 着 力 。 后者 被 称 为 反 应 磁 控 溅 射 。 一 般 来 说 纯 金 属 作 为 靶 材 和 气 体 反 应 较 容 易得 到 高 质 量的 化 合 物 薄 膜 , 因 而大 多 数 化 合 物 薄 膜 是 用 纯 金 属 为 靶 材 的 反 应 溅 磁 控 射 来 制
溅 射 镀 膜 过 程 主 要 是 将 欲 沉 积 成 薄 膜 在 1 5 0 ℃ ~2 0 0 ℃之 间 ; ( 4 ) 氩气 分压 , 一 般 选 为 此 研 究 人 员 开 发 出 了 多 靶 非 平 衡 磁 控 的材 料 制 成 靶 材 , 固 定 在 溅 射 沉 积 系 统 的 择 在 0 . 0 1 ~l P a 范围内, 以满 足 辉 光放 电的 溅 射 镀 膜 系统 , 弥 补 了单 靶 非 平 衡 磁 控 溅
5喷射沉积技术简介

喷射室
坯
托架
移动杆
模冲
喷射锻造的专利装置
喷射涂层
喷射涂层示意图
同时喷射喷丸
同时喷射喷丸是 Singer教授1985年提出 的英国专利,它不同于 上述喷射成形工艺,该 工艺金属沉积与致密化 是同时进行的,并且在 喷雾室一次联合操作即 可容易地实现沉积与致 密化密切结合。它可生 产达到理论密度的沉积 物,防止内部氧化的可 能性,从而体现快速凝 固的优点。
(2) 产品性能优异
由于在喷射沉积过程中,金属液流通过水冷基体传导传 热和高速气流的对流、辐射传热,因而与铸造工艺相比具有 较高的冷却速度(10-102K/s),并且能够获得晶粒细小,无宏 观偏析的微晶组织。 (3) 制备复合材料的新方法 喷射沉积是一种制备金属基复合材料的崭新方法,它可 将广范围的颗粒引进到任何基体金属中,并且分布均匀、结 合良好。另外采用此法能够很好地制备层状复合材料,各种 金属交替沉积,形成的层状结构在冷热轧时不必担心脱层, 并且可以在致密金属基体上沉积其他金属和合金。喷射沉积 目前广泛应用于制备金属基颗粒增强材料、摩擦材料、双金 属等层状材料中。
雾化沉积过程的热传导主要是依靠雾化液滴和惰性气体的对流和辐 射进行热交换以及沉积坯通过基底传导和表面气体的对流、辐射进行热 交换来实现的。 根据所选择的工艺参数的不同,经雾化喷射后的颗粒与基底碰撞时, 可以有以下几种状态: (1) 绝大部分颗粒在与基底碰撞前已凝固,在这种情况下,只能获 得疏松的粉末堆聚体。 (2) 绝大部分颗粒在与基底碰撞前仍保持液相,在这种情况下,金 属在沉积后的凝固行为类似铸造。 (3) 金属颗粒在与基底碰撞时,部分颗粒呈现液态(约占30-50%), 部分颗粒呈现固态和半固态,碰撞后有可能在基底上形成液体薄层,再 与下层颗粒流结合成致密的沉积层。 (4) 金属颗粒在与基底碰撞时,大部分颗粒呈现液态(约占50-70%), 由于基底冷却速度快,过冷熔体在基体上迅速冷却而获得具有快速凝固 组织特征的沉积层。这种沉积方式的基体在下一层颗粒碰撞前一般不形 成液体薄层,消除孔隙和溅射边界主要是靠上层较多量的液相。
磁控溅射技术的原理与发展

磁控溅射技术的原理与发展磁控溅射技术因为其自身所具有的显著优点,已经被越来越广泛的运用于各个领域,其中以工业镀膜方面的应用最为广泛,相应的其生产技术也得到了很大的改进。
文章着重讲述磁控技溅射技术的原理,特点以及磁控溅射技术的发展趋势。
标签:镀膜技术;磁控溅射;平衡磁控溅射;非平衡磁控溅射自1852年,格洛夫发现阴极溅射现象,对于溅射技术的运用便逐步发展起来,从上世纪80年代至今,磁控溅射技术在表面工程领域占据举足轻重的地位。
磁控溅射技术可制备超硬膜、耐腐蚀摩擦薄膜、超导薄膜、磁性薄膜、光学薄膜,以及各种具有特殊功能的薄膜,是一种十分有效的薄膜沉积方法。
1 溅射镀膜的原理溅射技术是指用有一定能量的粒子轰击固体表面,使该固体表面的原子或者分子离开其表面,溅射出去的技术,该固体被称为靶材,飞溅而出的原子或分子落于另一固体表面形成镀膜,被镀膜的固体称之为基片。
电子在外加电场作用下,加速向外飞出,与Ar原子发生碰撞,使Ar原子电离成Ar离子和二次电子,并将其大部分能量传递给Ar离子,Ar离子获得能量后以高速轰击靶材,使其上原子或分子脱离靶材表面飞溅出去,这些获得能量的原子或分子落于基片表面并沉淀下来形成镀膜。
但由于发生了多次的能量传递,导致电子无法轰击电离靶材,而是直接落于基片之上。
磁控溅射是在外加电场的两极之间引入一个磁场,电子受电场力加速作用的同时受到洛伦兹磁力的束缚作用,从而使其运动轨迹由原来的直线变成摆线,从而增加了高速电子与氩气分子相碰撞的几率,能大大提高氩气分子的电离程度,因此便可降低了工作气压,而Ar离子在高压电场加速作用下,轰击靶材表面,使靶材表面更多的原子或分子脱离原晶格而溅出靶材飞向基片,高速撞击沉淀于基片上形成薄膜,由于二次电子残余的能量较低,落于基片后引起的温度变化并不明显,于是磁控溅射镀膜技术拥有“高速低温”的特点。
2 磁控溅射镀膜技术与传统的镀膜技术相比的优点可制备成靶材的材料很多,选材面较广,几乎所有金属,合金和陶瓷材料都可以被用来制作靶材;在一定条件下通过多个靶材共同溅射方式,可在基片表面镀上一层比例精确的合金膜;通过精确地控制磁场与电场的大小可以获得高质量且较为均匀的膜厚;由于是通过离子溅射从而使得靶材物质由固态直接转变为高速离子态,而且溅射靶的安装是不受限制的,使之十分适合大容积多靶装置的设计;此外,在溅射的放电气氛中加入氧、氮或其它活性气体,可以是靶材与这些气体发生反应形成化合物膜层沉淀在基片的表面;同时,磁控溅射技术形成镀膜具有速度快,膜层致密均匀精度高附着性好等特点,从而此项技术十分适合大批量的工业化生产,并具有极高的生产率与生产效率。
金属磁控溅射技术研究报告

金属磁控溅射技术研究报告金属磁控溅射技术研究报告摘要:金属磁控溅射技术是一种被广泛应用于薄膜制备、表面改性和涂层材料生产的物理气相沉积技术。
本报告旨在探讨金属磁控溅射技术的原理、应用领域及其在材料科学领域中的重要作用。
本研究报告通过实验和分析,总结了金属磁控溅射技术的优缺点,并提出了未来的发展方向。
1. 引言金属磁控溅射技术是一种通过磁控电子束激发金属靶材发射离子和中性原子的技术。
该技术广泛应用于薄膜制备、表面改性和涂层材料生产。
与其他物理气相沉积技术相比,金属磁控溅射技术具有高沉积速率、低温度沉积、高附着力和均匀的成膜能力等优势。
因此,该技术在材料科学领域中得到了广泛研究和应用。
2. 原理和工艺参数金属磁控溅射技术基于电子束的能量传递和磁场控制。
靶材在电子束的照射下,释放出离子和中性原子,经过离子源、磁场装置和沉积室,最终在衬底上形成薄膜。
工艺参数包括靶材成分、离子源、气体种类和压力、电子束功率和速度等,这些参数的选择对沉积薄膜性能有重要影响。
3. 应用领域金属磁控溅射技术被广泛应用于薄膜制备、表面改性和涂层材料生产。
在薄膜制备方面,金属磁控溅射技术可以用于制备导电薄膜、光学薄膜和磁性薄膜等。
在表面改性方面,该技术可以用于增强材料的硬度、耐腐蚀性和磨损性能。
在涂层材料生产方面,金属磁控溅射技术可以用于生产防腐涂层、摩擦材料和生物医学用材料等。
4. 优缺点分析金属磁控溅射技术具有高沉积速率、低温度沉积、高附着力和均匀的成膜能力等优点。
然而,该技术也存在一些缺点,例如对靶材的资源消耗较大、沉积过程中的离子束散射和沉积杂质的增加等。
对于这些问题,我们可以通过改进设备和工艺来降低其影响。
5. 未来发展方向为了进一步应对金属磁控溅射技术的挑战,未来的研究可以从以下几个方面展开。
首先,可以改进靶材的设计和制备,以提高资源利用率。
其次,可以优化工艺参数的选择,以减少离子束的散射和沉积杂质的增加。
最后,可以结合其他物理气相沉积技术,探索新的复合材料和结构材料的制备方法。
物理气相沉积溅射

物理气相沉积溅射物理气相沉积溅射是一种常用的薄膜制备技术,它广泛应用于微电子、光电子、纳米材料等领域。
本文将从溅射原理、装置结构和应用等方面介绍物理气相沉积溅射技术。
一、溅射原理物理气相沉积溅射是利用高能粒子(通常是离子或中性粒子)轰击固体靶材,使靶材表面发生溅射,形成薄膜的一种工艺。
在溅射过程中,靶材被轰击后,部分表面原子被剥离,并以高能形式沉积在基底表面,最终形成薄膜。
二、装置结构物理气相沉积溅射装置主要包括真空室、靶材、基底、气体供给系统和功率源等组成部分。
真空室用于提供低压环境,以确保薄膜制备过程中的纯净度。
靶材是溅射过程中的重要组成部分,其材料的选择与所需薄膜的性质密切相关。
基底是形成薄膜的载体,其表面质量和平整度对薄膜质量有着重要影响。
气体供给系统用于控制溅射过程中的气氛成分和压力,以调节薄膜的成分和性质。
功率源则为溅射过程提供能量。
三、应用领域物理气相沉积溅射技术在微电子领域有着广泛的应用。
例如,利用物理气相沉积溅射技术可以制备金属薄膜用于制造集成电路中的导线、电极等元件。
此外,物理气相沉积溅射还可用于制备光电子器件中的透明导电薄膜、光栅等元件。
另外,该技术在纳米材料研究中也具有重要作用,可以制备纳米颗粒、纳米线等纳米结构材料。
四、优势和挑战物理气相沉积溅射技术具有多种优势。
首先,它可以制备多种材料的薄膜,包括金属、半导体、氧化物等。
其次,溅射过程中的粒子能量较高,可得到致密的薄膜结构。
此外,溅射技术具有较高的沉积速率和较好的均匀性。
然而,物理气相沉积溅射也面临一些挑战,如靶材损耗、薄膜成分控制和工艺参数优化等。
五、发展趋势物理气相沉积溅射技术在不断发展中,有一些新的趋势值得关注。
首先,随着纳米科技的发展,溅射技术在纳米材料制备方面具有广阔的应用前景。
其次,通过引入新的溅射模式和辅助能源,可以进一步提高薄膜制备的效率和质量。
此外,利用多靶材溅射和反应性溅射等方法,可以实现多组分薄膜的制备,拓宽了溅射技术的应用范围。
磁控溅射镀膜技术的发展

磁控溅射镀膜技术的发展一、本文概述随着科技的飞速发展,镀膜技术在多个领域,如电子、光学、航空航天等,都扮演着至关重要的角色。
其中,磁控溅射镀膜技术凭借其独特的优势,如镀膜质量高、适用范围广、工艺稳定等,逐渐成为镀膜领域的研究热点。
本文将对磁控溅射镀膜技术的发展历程进行详细的梳理,分析其技术原理、应用领域及发展趋势,旨在为读者提供一个全面而深入的了解,并为该技术的进一步研究和应用提供参考。
文章首先回顾了磁控溅射镀膜技术的起源和发展历程,介绍了其从最初的实验室研究到如今的广泛应用所经历的演变。
接着,文章将深入探讨磁控溅射镀膜技术的基本原理,包括磁控溅射的基本原理、镀膜过程中的关键因素以及镀膜质量的控制等。
文章还将详细介绍磁控溅射镀膜技术在各个领域的应用情况,如电子器件、光学元件、太阳能电池等,以及在这些领域中所取得的成果和面临的挑战。
文章将展望磁控溅射镀膜技术的未来发展趋势,分析其在新材料、新工艺等方面的潜在应用,并探讨如何进一步提高镀膜质量、降低成本、拓宽应用领域等问题。
通过本文的阐述,读者可以对磁控溅射镀膜技术的发展有一个清晰的认识,并为其未来的研究和应用提供有益的启示。
二、磁控溅射镀膜技术的基本原理磁控溅射镀膜技术是一种物理气相沉积(PVD)方法,其基本原理是利用高能离子轰击靶材表面,使靶材表面的原子或分子被溅射出来,并在基材表面沉积形成薄膜。
在这个过程中,磁场起着至关重要的作用。
在真空溅射室中,靶材被放置在阴极,而基材(待镀物体)则被放置在阳极。
溅射室内充入惰性气体(如氩气),并通过电场使气体电离产生正离子和电子。
正离子在电场的作用下加速飞向靶材表面,与靶材原子发生碰撞,将靶材原子从表面溅射出来。
溅射出的靶材原子在飞行过程中与气体原子发生碰撞,失去部分能量后到达基材表面。
在靶材附近设置磁场,磁场的方向与电场方向垂直。
当溅射出的靶材原子经过磁场时,它们会受到洛伦兹力的作用,在磁场中做圆周运动。
薄膜制备技术-溅射法

溅射法的原理
当高能粒子(如惰性气体离子)轰击固体靶材表面时,会使得靶材表面的原子或分 子获得足够的能量,克服与基材之间的引力,从靶材表面溅射出来。
溅射出来的原子或分子在真空中飞行,并沉积在基材表面,形成薄膜。
薄膜制备技术-溅射法
目 录
• 溅射法简介 • 溅射法制备薄膜的工艺流程 • 溅射法制备薄膜的特点与优势 • 溅射法制备薄膜的挑战与解决方案 • 溅射法制备薄膜的发展趋势与展望
01
溅射法简介
溅射法的定义
溅射法是一种物理气相沉积技术,利 用高能粒子轰击固体靶材,使靶材表 面的原子或分子被溅射出来,并在基 材表面沉积形成薄膜。
技术创新与突破
为了进一步提高溅射法制备薄膜的性能和效率,未来将不断涌现技 术创新和突破,推动该领域的技术进步。
智能化与自动化
随着工业4.0和智能制造的兴起,溅射法制备薄膜技术将朝着智能 化与自动化方向发展,实现高效、精准和可靠的薄膜制备。
THANKS FOR WATCHING
感谢您的观看
溅射法可以用于制备各种金属、半导体、绝缘体 等材料,具有较广的适用范围。
工艺简单
溅射法制备薄膜工艺相对简单,操作方便,适合 于大规模生产。
环境友好
溅射法在制备过程中不需要使用有害气体或液体, 对环境友好。
溅射法制备薄膜的应用领域
电子器件
01
溅射法制备的金属薄膜、半导体薄膜等广泛应用于集成电路、
电子元件等领域。
溅射法中,基材的温度较低,一般在室温至数百摄氏度之间,因此特别适合于在塑 料、玻璃等不耐高温的基材上制备薄膜。
国外磁控溅射技术发展现状

国外磁控溅射技术发展现状
磁控溅射是一种物理气相沉积(PVD)技术,主要应用在薄膜制备领域。
其发展现状如下:20世纪70年代,磁控溅射技术被开发问世,由于是一种高速、低温、低损伤镀膜技术,其应用领域快速扩大。
磁控溅射包括直流磁控溅射、射频磁控溅射两种方法,其主要特点包括:成膜速率高,膜制备速度快;衬底温度要求低,可对不耐高温衬底进行镀膜;膜附着能力强,可大面积镀膜;保持源材料成分,薄膜均匀性好、致密性高;设备简单,易于控制;对环境无污染等。
磁控溅射可用来制备具有吸收、透射、反射、折射、偏光等功能的薄膜,用于光电子器件领域;可利用金属氧化物、半导体、绝缘体等材料制备薄膜,用于微电子器件、超导体领域;可制备超硬膜、自润滑膜、功能膜等产品,用作表面涂层,应用在机械加工领域。
在全球范围内,磁控溅射镀膜设备相关生产商主要有日本JX日矿日石金属、日本东曹、日本日立金属、日本三井金属、比利时优美科Umicore等。
日本磁控溅射镀膜设备生产实力强,在全球市场中处于主导地位。
磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文)班级:1035101班学号:1101900508姓名:孙静一、前言镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。
自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。
镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。
目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。
浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。
由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。
化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。
这种方法由于受到所镀物质的限制,且在大板上也难真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。
此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。
只能生产单层金属镀膜玻璃,颜色也难以控制。
磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。
在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。
在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨文茂等:溅射沉积技术的发展及其现状
205
固有的缺陷,因此得以广泛应用;非平衡磁控溅射技 术扩大了等离子体区域,有效增加靶基距,在保证沉 积速率的同时,使适当能量的离子对基体和生长薄 膜轰击,改善薄膜结构和性能,进一步强化了溅射沉 积技术 制 备 薄 膜 的 优 势。 脉 冲 电 源 在 溅 射 中 的 应 用,尤其是反应溅射,可有效消除直流反应溅射介电 材料和绝缘材料存在的异常弧光放电导致的过程不 稳定性和薄膜缺陷等问题,使反应溅射真正成为溅 射沉积技术的重要分支之一。
==
204
==L OF VACUUM SCIENCE AND TECHNOLOGY(CHINA)
第 25 卷 第 3 期 2005 年 5、6 月
溅射沉积技术的发展及其现状
=====
杨文茂1,2 刘艳文1 徐禄祥1 冷永祥1 黄 楠*1
( ) 1. 西南交通大学材料学院生物材料及表面工程研究所 成都 610031; 2. 中国工程物理研究院机械制造工艺研究所 绵阳 621900
Keywords Sputtering deposition,Magnetron sputtering,Unbalanced magnetron sputtering,Pulsed sputtering
摘要 论述了溅射沉积薄膜技术的发展历程及其目前的研究应用状况。二极溅射应用于薄膜制备,揭开了溅射沉积技
Review of Film Growth by Sputtering Technology
Yang Wenmao1,2,Liu Yanwen1,Xu Luxiang1,Leng Yongxiang1 and Huang Nan*1
(1. The School of Materials Science & Engineering,Southwest Jiaotong University,Chengdu,610031,China; 2. Institute of Machinery Manufacturing Technology,CAEP,Mianyang,621900,China)
Abstract History and the latest propress in film deposition by magnetron sputtering was tentatively reviewed. Discussion was focused on design and evaluation of the magnetic field distribution,various types of power supply,multi-target positioning,film growth conditions and industrial applications of the technology.
非平衡磁控溅射的出现,更有效地解决了平衡 磁控溅射存在的靶基距近、离子轰击基体强度低等 问题。
2 非平衡磁控溅射
非平 衡 磁 控 溅 射 最 早 由 B. Window 和 N. Savides[8 ~ 10]提出。通过改变磁控靶中磁铁的配置方 式,改变靶表面区域磁场的分布,使得对靶前二次电 子和等 离 子 体 的 控 制 发 生 变 化。 对 平 面 环 形 磁 控 靶,当外环磁极被增强时,部分磁力线仍保持自身的 封闭性,保证了靶前高等离子体密度,实现高溅射速 率;另一部分磁力线脱离磁场自身的封闭性,开放性 地指向靶前更远的地方,如图 2(a)所示,因此等离 子体中的电子不再局限于靶前,而是沿着磁力线逃 逸到更远的距离之外,在移动过程中,电子不断撞击 气体原子,使其发生离化,形成等离子体,从而扩展
溅射沉积技术自上世纪三四十年代首次利用溅 射现象实验制取薄膜,并于六七十年代实现工业应 用以来[1],以其独特的沉积原理和方式,在短短数十 年内便得以迅速发展,新工艺技术日益完善,并以此 制备的新型材料层出不穷。
溅射沉积是在真空环境下,利用荷能离子轰击 材料表面,使被轰击出的粒子沉积在基体表面的技 术。溅射沉积技术的发展历程中有几个具有重要意
文献[14,15]采用非平衡磁控溅射,并辅加高的 基体偏压,利用离子轰击制备了低表面粗糙度、光泽 的低熔点金属 Zn 薄膜,指出 Zn 薄膜的表面粗糙度并 不受薄膜厚度的影响,而是与离子轰击有关:离子轰 击有利于 Z(n 001)晶面的择优生长,并使更多的 Ar 渗 入薄膜中,Zn(001)晶面择优生长和 Ar 渗入,导致薄 膜微 观 结 构 的 变 化 更 易 生 成 平 滑 的 表 面。J. Yoo 等[16]采用非平衡磁控溅射制备了电化学性能和力学 性能良好的 304 SS 不锈钢薄膜,在分析各工艺参数对 薄膜性能影响的基础上,给出了最优工艺参数。
然而,在平衡磁控溅射中,由于磁场作用,等离 子体区被强烈地束缚在靶面附近大约 60 mm 的区 域内[2],若基体置于该区域之外,仅有溅射出的靶材 粒子沉积在基体表面,但靶材粒子能量较低,直接沉 积在基体上,膜基结合强度较差,且低能量的沉积原 子在基体表面迁移率低,易生成多孔粗糙的柱状结 构薄膜。为了使基体和生长薄膜能被离子轰击,基 体应置于等离子体区域内,但如此近的距离并不适 于大尺寸复杂零件。针对该问题,人们采用辅加基 体偏压的方式,即给基体施加一定的负偏压,引导等 离子 体 中 的 部 分 离 子 加 速 轰 击 基 体。Jochen . M.
图 2 不同非平衡方式的磁力线分布及其对等离子体区 域的影响(. a)外环磁极增强,内磁极减弱;(b)外环 磁极减弱,内磁极增强
Fig.2 Magnetic force lines’distribution and influence on plasma region of unbalanced mode(. a)outer ring of magnets is strengthened to central pole or(b)is reversed(a)
术的序幕,磁控溅射促使溅射沉积技术进入实质的工业化应用,并通过控制磁控靶磁场的分布方式和增加磁控靶数量,进一
步发展为非平衡磁控溅射、多靶闭合式非平衡磁控溅射等,拓宽了应用范围。射频、脉冲电源尤其是脉冲电源在溅射技术中
的使用极大地延伸了溅射沉积技术的应用范围。
关键词 溅射沉积 磁控溅射 非平衡磁控溅射 脉冲溅射
义的技术 创 新 应 用,分 别 是 二 极 溅 射,平 衡 磁 控 溅 射,非平衡磁控溅射和脉冲电源在溅射中的应用等。
二极溅射是所有溅射沉积技术的基础,二极溅 射应用于薄膜沉积,确立了溅射沉积技术的基本原 理和方式。二极溅射结构简单、便于控制、工艺重复 性好,主要应用于沉积原理的研究,由于该方法要求 工作气压高( > 1 Pa)、基体温升高和沉积速率低等 缺点限制了它在生产中的应用。为了克服二极溅射 的缺点,出现了增加辅助电极的三极溅射和四极溅 射,在降低工作气压后仍能保持足够高的等离子体 密度,提高沉积速率。但这两种技术并不能抑制二 次电子对基体轰击所造成基体温升过高的问题。
中图分类号:TB43
文献标识码:A
文章编号:1672-712(6 2005)03-0204-07
真空薄膜技术的迅猛发展起因于现代科技发展 的需求。薄膜技术可有效而经济地改变零件表面功 能,防止因磨损、腐蚀或氧化引起的失效,延长其使 用寿命。此外,相对传统材料制备技术,薄膜技术能 制备多种新型材料,满足特殊使用条件和功能对新 材料的需求。
1 平衡磁控溅射
平衡磁控溅射通常被称作常规磁控溅射。利用 磁场对二次电子实施有效控制,从而变二极溅射的 缺点为自身的优点。平衡磁控溅射的工作原理如图 1 所示,二次电子在相互垂直的电磁场中,被束缚在 靶表面附近沿着“跑道”环绕磁力线做圆滚性运动, 提高了气体的离化率,即使工作气压降低到 10 - 1 ~ 10 - 2 Pa 数量级,仍能增加等离子体密度,从而可提 高入射离子密度,有利于降低溅射电压,同时提高沉 积速率;而二次电子只有在能量耗尽以后才能脱离 靶表面落在阳极上,所以基体避免了二次电子的轰 击,基体温升低,无损伤。平衡磁控溅射可有效应用 于对温度要求严格的基体材料的表面改性。
常规平衡磁控溅射可增加对靶材溅射而减少对 基体的轰击,有效地解决了二极乃至三极、四极溅射
收稿日期:2004-12-20 基金项目:国家自然科学基金(No. 30400109) *联系人:教授,博导,Tel:028 - 87600625,E-mail:huangnan1956 @ 163 . com
第3期
图 1 平衡磁控溅射的工作原理图 Fig.1 Schematic representation of the principle
of balanced magnetron sputtering
Schneider 等[3]采用离化溅射和常规磁控溅射制备 Al2O3 薄膜,常规磁控溅射无偏压情况下离子轰击作 用甚小,获得非晶态薄膜的微硬度低于 10 GPa;当辅 加 - 70 V 偏压后,由于离子轰击的作用,薄膜硬度 却是 未 加 偏 压 的 2 倍。 S . Guruvenket 和 G. Mohan Rao[4]在制备氮化钨时,发现偏压为零时,氮化钨为 非晶态,当 偏 压 在 - 30 ~ - 70 V 时,生 成 了 β 相 W2N。其他文献[5 ~ 7]分别研究了基体偏压对薄膜 结构、表面形貌、力学和光学等性能的影响,结果同 样显示偏压对上述性能有较明显的影响。然而采用 基体偏压也会导致某些不利的影响,文献[3]指出采 用较高基体偏压,一方面有利于 Al2O3 相的转变,但 另一方面却导致薄膜脆性增加。
非平衡磁控溅射可分为单靶非平衡磁控溅射和 多靶非平衡磁控溅射。多靶非平衡磁控溅射是为了 弥补单靶非平衡磁控溅射的不足并进一步拓宽非平
衡磁控溅射的应用范围而研制的。磁控溅射属于视 线性沉积方式,单靶非平衡磁控溅射对复杂零件也 很难达到均匀镀膜,尤其是反应溅射,由于在基体相 对靶的正面和侧面(阴影部位)的沉积速率有很大差 别,反应气体在真空室内却均匀存在,不同部位的成 分化学计量比不同,即使采用基体旋转方式,膜层也 是多种化学计量比的混合物。多靶非平衡磁控溅射 则从多方位同时沉积,消除阴影的影响,弥补了单靶 非平衡磁控溅射的缺陷。