八年级上册信阳数学期末试卷培优测试卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册信阳数学期末试卷培优测试卷

一、八年级数学全等三角形解答题压轴题(难)

1.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.

(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;

(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.

【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或

3

2

(3)9s 【解析】

【分析】

(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出

∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;

(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.

(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.

【详解】

(1)当t=1时,AP=BQ=3,BP=AC=9,

又∵∠A=∠B=90°,

在△ACP与△BPQ中,

AP BQ

A B

AC BP

=

∠=∠

⎪=

∴△ACP≌△BPQ(SAS),

∴∠ACP=∠BPQ,

∴∠APC+∠BPQ=∠APC+∠ACP=90°,

∠CPQ=90°,

则线段PC与线段PQ垂直.

(2)设点Q 的运动速度x,

①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,

912t t xt =-⎧⎨=⎩

, 解得31t x =⎧⎨=⎩

, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,

912xt t t =⎧⎨=-⎩

解得632t x =⎧⎪⎨=⎪⎩

, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩

使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,

设经过x 秒后P 与Q 第一次相遇,

∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;

∴EB=EA=18cm.

当V Q =1时,

依题意得3x=x+2×9,

解得x=9;

当V Q =32

时, 依题意得3x=

32x+2×9, 解得x=12.

故经过9秒或12秒时P 与Q 第一次相遇.

【点睛】

本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.

2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .

(1)填空:ABC S ∆=______2cm ;

(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;

(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.

【答案】(1)8;(2)见解析;(3)

45或4. 【解析】

【分析】

(1)直接可求△ABC 的面积;

(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;

(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.

【详解】

解:(1)∵S △ABC =

12⨯AC×BC ∴S △ABC =12

×4×4=8(cm 2) 故答案为:8

(2)如图:连接CD

∵AC=BC ,D 是AB 中点

∴CD 平分∠ACB

又∵∠ACB=90°

∴∠A=∠B=∠ACD=∠DCB=45°

∴CD=BD

依题意得:BE=CF

∴在△CDF与△BDE中

BE CF

B DCA

BD CD

=

∠=∠

⎪=

∴△CDF≌△BDE(SAS)

∴DE=DF

(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,

∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°

∴△ADN≌△BDM(AAS)

∴DN=DM

当S△ADF=2S△BDE.

1

2

×AF×DN=2×

1

2

×BE×DM

∴|4-3x|=2x

∴x1=4,x2=

4

5

综上所述:x=

4

5

或4

【点睛】

本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.

3.已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若

AB=82BC=16.

(1)如图1,当点P为AB的中点时,求CD的长;

(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设

BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.

相关文档
最新文档