江苏省海门市东洲中学2019-2020学年八年级下学期期中考试数学试题

合集下载

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷附解答

2019-2020学年八年级下学期期中考试数学试卷一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .2.(3分)下列式子中,属于最简二次根式的是( ) A .12B .23C .0.3D .73.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法确定4.(3分)下列判断错误的是( ) A .对角线相等四边形是矩形B .对角线相互垂直平分四边形是菱形C .对角线相互垂直且相等的平行四边形是正方形D .对角线相互平分的四边形是平行四边形 5.(3分)当0b <时,一次函数2y x b =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.57.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<8.(3分)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若3EF=,4BD=,则菱形ABCD的周长为()A.4B.46C.47D.289.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522+C.55D.2542+二、填空题(每小题3分,共15分)11.(3分)函数2xyx+=的自变量x的取值范围是.12.(3分)如图,平行四边形ABCD的对角线AC,BD交于点O,已知10AD=,14BD=,8AC=,则OBC∆的周长为.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 .14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = .15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 .三、解答题(共8题,共75分)16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值. 17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点. (1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =. (1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示. (1)汽车行驶 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表: 品种 购买价(元/棵)成活率 A 28 90%B4095%设种植A 种树苗x 棵,承包商获得的利润为y 元. (1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少? 22.(10分)如图,在ABC ∆中,点O 是AC 边上的一个动点,过点O 作直线//MN BC ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角平分线于点F . (1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)当点O 运动到何处,且ABC ∆满足什么条件时,四边形AECF 是正方形?并说明理由.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是x 轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长; (3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分 1.(3分)如图分别给出了变量x 与y 之间的对应关系,其中y 不是x 的函数是( )A .B .C .D .【考点】2E :函数的概念【分析】函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B中y不是x的函数.故选:B.【点评】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2.(3分)下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.7【考点】74:最简二次根式【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、1223=,不是最简二次根式,故本选项错误;B、21633=,不是最简二次根式,故本选项错误;C、10.33010=,不是最简二次根式,故本选项错误;D、7是最简二次根式,故本选项正确;故选:D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.3.(3分)已知三角形三边的长分别为3、2、5,则该三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定【考点】KS:勾股定理的逆定理【分析】两小边的平方和等于最长边的平方,即可由勾股定理的逆定理证明三角形是直角三角形.【解答】解:2222(5)3+=Q,∴该三角形是直角三角形,故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c+=,那么这个三角形就是直角三角形.知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.4.(3分)下列判断错误的是()A.对角线相等四边形是矩形B.对角线相互垂直平分四边形是菱形C.对角线相互垂直且相等的平行四边形是正方形D.对角线相互平分的四边形是平行四边形【考点】7L:平行四边形的判定与性质;LC:矩形的判定;9L:菱形的判定;LF:正方形的判定【分析】利用菱形的判定定理、矩形的判定定理、平行四边形的判定定理、正方形的判定定理分别对每个选项进行判断后即可确定正确的选项. 【解答】解:A 、对角线相等四边形是矩形,错误; B 、对角线相互垂直平分四边形是菱形,正确;C 、对角线相互垂直且相等的平行四边形是正方形,正确;D 、对角线相互平分的四边形是平行四边形,正确; 故选:A .【点评】本题考查了命题与定理的知识,解题的关键是能够了解矩形和菱形的判定定理,难度不大. 5.(3分)当0b <时,一次函数2y x b =+的图象经过(( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 【考点】7F :一次函数图象与系数的关系【分析】根据一次函数系数的正负,可得出一次函数图象经过的象限,由此即可得出结论. 【解答】解:10k =>Q ,0b <,∴一次函数y x b =+的图象经过第一、三、四象限.故选:D . 【点评】本题考查了一次函数图象与系数的关系,解题的关键是找出函数图象经过的象限.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的解析式结合一次函数图象与系数的关系找出函数图象经过的象限是关键. 6.(3分)如图,一个梯子AB 斜靠在一竖直的墙AO 上,测得2AO m =.若梯子的顶端沿墙下滑0.5m ,这时梯子的底端也恰好外移0.5m ,则梯子的长度AB 为( )m .A .2.5B .3C .1.5D .3.5 【考点】KU :勾股定理的应用【分析】设BO xm =,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,即可求出AB 的长度.【解答】解:设BO xm =,依题意,得0.5AC =,0.5BD =,2AO =. 在Rt AOB ∆中,根据勾股定理得 222222AB AO OB x =+=+, 在Rt COD ∆中,根据勾股定理22222(20.5)(0.5)CD CO OD x =+=-++, 22222(20.5)(0.5)x x ∴+=-++,解得 1.5x =,22215 2.5AB ∴=+=g ,答:梯子AB 的长为2.5m .故选:A .【点评】本题考查了勾股定理在实际生活中的应用,本题中找到AB CD =为梯子长等量关系是解题的关键.7.(3分)已知点1(2,)y -,(1,0),2(3,)y 都在一次函数2y kx =-的图象上,则1y ,2y ,0的大小关系是( ) A .120y y <<B .120y y <<C .120y y <<D .210y y <<【考点】8F :一次函数图象上点的坐标特征【分析】先根据点(1,0)在一次函数2y kx =-的图象上,求出20k =>,再利用一次函数的性质判断出函数的增减性,然后根据三点横坐标的大小得出结论. 【解答】解:Q 点(1,0)在一次函数2y kx =-的图象上, 20k ∴-=,20k ∴=>,y ∴随x 的增大而增大, 213-<<Q ,120y y ∴<<.故选:B . 【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了一次函数的性质. 8.(3分)如图,菱形ABCD 的对角线AC ,BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF .若3EF =,4BD =,则菱形ABCD 的周长为( )A .4B .46C .47D .28【考点】KX :三角形中位线定理;8L :菱形的性质【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【解答】解:EQ,F分别是AB,BC边上的中点,3EF=,223AC EF∴==,Q四边形ABCD是菱形,AC BD ∴⊥,132OA AC==,122OB BD==,227AB OA OB∴=+=,∴菱形ABCD的周长为47.故选:C.【点评】此题考查菱形的性质,三角形的中位线定理,勾股定理,掌握菱形的性质是解决问题的关键.9.(3分)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),点D的坐标为(2,0),E为AB上的点,当CDE∆的周长最小时,点E的坐标为()A.(1,3)B.(3,1)C.(4,1)D.(3,2)【考点】5D:坐标与图形性质;LB:矩形的性质;PA:轴对称-最短路线问题【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时CDE∆的周长最小.(2,0)DQ,(3,0)A,(4,0)H∴,设直线CH解析式为y ax b=+,则404a bb+=⎧⎨=⎩,解得:14ab=-⎧⎨=⎩,故直线CH解析式为4y x=-+,3x∴=时,341y=-+=,∴点E坐标(3,1)故选:B.【点评】本题考查矩形的性质、坐标与图形的性质、轴对称-最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.10.(3分)如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,则ABC∆的周长最小是()A.12B.4522++C.55D.2542【考点】5D:坐标与图形性质;PA:轴对称-最短路线问题【分析】根据轴对称作最短路线得出AE B E=',进而得出B O C O∆的周'=',即可得出ABC长最小时C点坐标进而可求出ABC∆的周长.【解答】解:作B点关于y轴对称点B'点,连接AB',交y轴于点C',此时ABC∆的周长最小,Q点A、B的坐标分别为(1,4)和(3,0),∴'点坐标为:(3,0)AE=,B-,4则4B E'=,即B E AE'=,Q,'C O AE//∴'='=,3B OC O∆的周长最小为∴点C'的坐标是(0,3),此时ABC2222'+=+++=+.AB AB44244225故选:D.【点评】此题主要考查了利用轴对称求最短路线以及平行线的性质和勾股定理的运用,根据已知得出C 点位置是解题关键. 二、填空题(每小题3分,共15分)11.(3分)函数2x y x+=的自变量x 的取值范围是 2x -…且0x ≠ . 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:20x +…且0x ≠, 解得:2x -…且0x ≠.故答案为:2x -…且0x ≠. 【点评】本题考查函数自变量的取值范围,知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.12.(3分)如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知10AD =,14BD =,8AC =,则OBC ∆的周长为 21 .【考点】5L :平行四边形的性质【分析】由平行四边形的性质得出4OA OC ==,7OB OD ==,10BC AD ==,即可求出OBC ∆的周长.【解答】解:Q 四边形ABCD 是平行四边形,4OA OC ∴==,7OB OD ==,10BC AD ==,OBC ∴∆的周长471021OB OC AD =++=++=.故答案为:21【点评】本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.13.(3分)若方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩,则直线2y x b =-+与直线y x a =-的交点坐标是 (1,3)- .【考点】FE :一次函数与二元一次方程(组)【分析】根据两个函数图象的交点就是两个函数组成的方程组的解可得答案.【解答】解:因为方程组2x y b x y a +=⎧⎨-=⎩的解是13x y =-⎧⎨=⎩, 所以直线2y x b =-+与直线y x a =-的交点坐标是(1,3)-,故答案为:(1,3)-,【点评】此题主要考查了二元一次方程(组)与一次函数的关系,关键是掌握两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.14.(3分)已知:如图,90ABC ADC ∠=∠=︒,M 、N 分别是AC 、BD 的中点,10AC =,8BD =,则MN = 3 .【考点】KP :直角三角形斜边上的中线【分析】根据在直角三角形中,斜边上的中线等于斜边的一半得到5BM DM ==,根据等腰三角形的性质得到4BN =,根据勾股定理得到答案.【解答】解:连接BM 、DM ,90ABC ADC ∠=∠=︒Q ,M 是AC 的中点,152BM DM AC ∴===, N Q 是BD 的中点,MN BD ∴⊥,142BN BD ∴==, 由勾股定理得:2222543MN BM BN =-=-=,故答案为:3.【点评】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.15.(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度n 与直线在x 轴上平移的距离m 的函数图象如图2所示,则ABCD Y 的面积为 10 .【考点】7E :动点问题的函数图象【分析】根据图象可以得到当移动的距离是3时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=,当直线经过D 点,设交AB 与N ,则22DN =,作DM AB ⊥于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【解答】解:根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则835AB =-=, 当直线经过D 点,设交AB 与N ,则22DN =,如图,作DM AB ⊥于点M .y x =-Q 与x 轴形成的角是45︒,又//AB x Q 轴,45DNM ∴∠=︒,2sin 452222DM DN ∴=︒=⨯=g , 则平行四边形的面积是:5210AB DM =⨯=g ,故答案为:10.【点评】本题考查了函数的图象,根据图象理解AB 的长度,正确求得平行四边形的高是关键.三、解答题(共8题,共75分) 16.(10分)(1)计算132728712483⨯-÷+- (2)已知21x =-,21y =+,求代数式22x y xy +的值.【考点】7A :二次根式的化简求值;76:分母有理化【分析】(1)利用二次根式运算法则计算即可;(2)先分解因式,然后代入求值.【解答】解:(1)原式924343=-+-11=;(2)22x y xy +()xy x y =+ (21)(21)(2121)=-+-++122=⨯22=.【点评】本题考查了二次根式的化简求值,熟练分解因式是解题的关键.17.(8分)已知一次函数的图象经过(3,8)A 和(3,4)B --两点.(1)求这个一次函数的关系式;(2)若点(,21)P a a -+在这个函数的图象上,求a 的值.【考点】8F :一次函数图象上点的坐标特征;FA :待定系数法求一次函数解析式【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)把点P 的坐标代入函数解析式,利用方程求得a 的值.【解答】解:(1)设直线AB 的表达式为y kx b =+,Q 一次函数的图象经过(3,8)A 和(3,4)B --两点,∴3834k b k b +=⎧⎨-+=-⎩, 解得22k b =⎧⎨=⎩∴直线AB 的表达式为22y x =+;(2)由(1)知,直线AB 的表达式为22y x =+,把(,21)P a a -+代入,得2221a a +=-+解得14a =-. 【点评】主要考查了待定系数法求函数解析式,一次函数图象上点的坐标特征,解本题的关键是用方程的思想解决问题.18.(9分)如图,点D ,C 在BF 上,//AC DE ,A E ∠=∠,BD CF =.(1)求证:AB EF =;(2)连接AF ,BE ,猜想四边形ABEF 的形状,并说明理由.【考点】KD :全等三角形的判定与性质【分析】(1)利用AAS 证明ABC EFD ∆≅∆,再根据全等三角形的性质可得AB EF =;(2)首先根据全等三角形的性质可得B F ∠=∠,再根据内错角相等两直线平行可得到//AB EF ,又AB EF =,可证出四边形ABEF 为平行四边形.【解答】(1)证明://AC DE Q ,ACD EDF ∴∠=∠,BD CF =Q ,BD DC CF DC ∴+=+,即BC DF =,在ABC ∆与EFD ∆中ACD EDF A EBC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABC EFD AAS ∴∆≅∆,AB EF ∴=;(2)猜想:四边形ABEF 为平行四边形,理由如下:由(1)知ABC EFD ∆≅∆,B F ∴∠=∠,//AB EF ∴,又AB EF =Q ,∴四边形ABEF 为平行四边形.【点评】此题主要考查了全等三角形的判定与性质,平行四边形的判定,解决问题的关键是证明ABC EFD ∆≅∆.19.(9分)如图,在边长为1的小正方形组成的网格中,四边形ABCD 的四个顶点都在格点上,请按要求完成下列各题.(1)线段AB 的长为5 ,BC 的长为 ,CD 的长为 ;(2)连接AC ,通过计算说明ACD ∆和ABC ∆是什么特殊三角形.【考点】KQ :勾股定理;KS :勾股定理的逆定理【分析】(1)把线段AB 、BC 、CD 、放在一个直角三角形中利用勾股定理计算即可;(2)根据勾股定理的逆定理求出AC AD =,即可判断ACD ∆的形状;由勾股定理的逆定理得出ABC ∆是直角三角形.【解答】解:(1)由勾股定理得:22215AB =+=,22345BC =+=,222222CD =+=;故答案为:5,5,22;(2)222425AC =+=Q ,222425AD ==+=,AC AD ∴=,ACD ∴∆是等腰三角形;22252025AB AC BC +=+==Q ,ABC ∴∆是直角三角形.【点评】此题主要考查了勾股定理、勾股定理的逆定理以及等腰三角形的判定;熟练掌握勾股定理是解决问题的关键.20.(9分)某汽车出发前油箱内有油42L ,行驶若干小时后,在途中加油站加油若干升.邮箱中剩余油量()Q L 与行驶时间()t h 之间的函数关系如图所示.(1)汽车行驶 5 h 后加油,加油量为 L ;(2)求加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式;(3)如果加油站离目的地还有200km ,车速为40/km h ,请直接写出汽车到达目的地时,油箱中还有多少汽油?【考点】FH :一次函数的应用【分析】(1)根据函数图象的横坐标,可得答案;根据函数图象的纵坐标,可得加油量;(2)根据待定系数法,可得函数解析式;(3)根据汽车每小时的耗油量乘以汽车行驶200km 所需时间,可得汽车行驶200km 的耗油量,再用36升减去行驶200km 的耗油量,可得答案.【解答】解:(1)由横坐标看出,汽车行驶5小时后加油,由纵坐标看出,加了361224L -=油.故答案为5,24;(2)设解析式为Q kt b =+,将(0,42),(5,12)代入函数解析式,得42512b k b =⎧⎨+=⎩,解得642k b =-⎧⎨=⎩. 故加油前油箱剩余油量Q 与行驶时间t 之间的函数关系式为642Q t =-+;(3)汽车每小时耗油量为421265-=升, 汽车行驶200km ,车速为40/km h ,需要耗油20063040⨯=升, 36306-=升.故汽车到达目的地时,油箱中还有6升汽油.【点评】本题考查了一次函数的应用,利用待定系数法求一次函数的解析式.观察函数图象的横坐标得出时间,观察函数图象的纵坐标得出剩余油量是解题关键.21.(9分)某市在城中村改造中,需要种植A 、B 两种不同的树苗共3000棵,经招标,承包商以15万元的报价中标承包了这项工程,根据调查及相关资料表明,A 、B 两种树苗的成本价及成活率如表:品种购买价(元/棵) 成活率 A28 90% B 40 95%设种植A 种树苗x 棵,承包商获得的利润为y 元.(1)求y 与x 之间的函数关系式;(2)政府要求栽植这批树苗的成活率不低于93%,承包商应如何选种树苗才能获得最大利润?最大利润是多少?【考点】9C :一元一次不等式的应用;FH :一次函数的应用【分析】(1)根据题意和表格中的数据可以得到y 与x 的函数关系式;(2)根据题意可以的得到相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,1500002840(3000)3000012y x x x =---=+,即y 与x 之间的函数关系式是1230000y x =+;(2)由题意可得,90%95%(3000)300093%x x +-⨯…,解得,1200x …,1230000y x =+Q ,∴当1200x =时,y 取得最大值,此时44400y =,即承包商购买A 种树苗1200棵,B 种树苗1800棵时,能获得最大利润,最大利润是44400元.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的方程和不等式.22.(10分)如图,在ABCMN BC,∆中,点O是AC边上的一个动点,过点O作直线//设MN交BCA∠的角平分线于点E,交BCA∠的外角平分线于点F.(1)求证:EO FO=;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.(3)当点O运动到何处,且ABC∆满足什么条件时,四边形AECF是正方形?并说明理由.【考点】LD:矩形的判定与性质;LF:正方形的判定【分析】(1)由平行线的性质和角平分线的定义得出OCE OEC∠=∠,得∠=∠,OCF OFC出EO CO=,即可得出结论;=,FO CO(2)先证明四边形AECF是平行四边形,再由对角线相等,即可得出结论;(3)由正方形的性质得出45ACB ACE∠=∠=︒即可.∠=︒,得出290ACE【解答】解:(1)Q,MN BC//∴∠=∠,32又CF∠,Q平分GCO∴∠=∠,12∴∠=∠,13∴=,FO CO同理:EO CO=,EO FO∴=.(2)当点O运动到AC的中点时,四边形AECF是矩形.Q当点O运动到AC的中点时,AO CO=,又EO FOQ,=∴四边形AECF是平行四边形,由(1)可知,FO CO=,∴===,AO CO EO FO=,AO CO EO FO∴+=+,即AC EF∴四边形AECF是矩形.(3)当点O运动到AC的中点时,且ABC∠为直角的直角三角形时,四边形∆满足ACBAECF是正方形.Q 由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形,//MN BC Q ,AOE ACB ∴∠=∠90ACB ∠=︒Q ,90AOE ∴∠=︒,AC EF ∴⊥,∴四边形AECF 是正方形.【点评】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、菱形的判定、正方形的性质;熟练掌握平行线的性质和矩形、菱形的判定方法,并能进行推理论证是解决问题的关键.23.(11分)如图,已知直线334y x =+与坐标轴交于B ,C 两点,点A 是轴正半轴上一点,并且15ABC S ∆=,点F 是线段AB 上一动点(不与端点重合),过点F 作//FE x 轴,交BC 于E .(1)求AB 所在直线的解析式;(2)若FD x ⊥轴于D ,且点D 的坐标为(,0)m ,请用含m 的代数式表示DF 与EF 的长;(3)在x 轴上是否存在一点P ,使得PEF ∆为等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题【分析】(1)由直线334y x =+可求得B 、C 坐标,再结合15ABC S ∆=,则可求得A 点坐标,利用待定系数法可求得直线AB 的解析式;(2)根据直线AB 解析式可求得F 点的纵坐标,即可表示出DF 的长,由//EF x 轴则可得出E 点纵坐标,代入直线BC 解析式可求得E 点横坐标,从而可表示出EF 的长;(3)设(,0)P t ,当90PFE ∠=︒时,则有PF EF =,则可得到关于x 的方程,可求得P 点坐标;当90PEF ∠=︒时,则有PE EF DF ==,可求得P 点坐标;当90EPF ∠=︒时,过P 作PH EF ⊥,由等腰直角三角形的性质可知12PH EF =,可求得D 点坐标,从而可求得P 点坐标.【解答】解:(1)在334y x =+中,令0x =可得3y =,令0y =可求得4x =-, (0,3)B ∴,(4,0)C -,3OB ∴=,4OC =,15ABC S ∆=Q ,∴1152AC OB =g ,即1(4)3152OA +⨯=,解得6OA =, (6,0)A ∴,设直线AB 解析式为y kx b =+,∴603k b b +=⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AB 解析式为132y x =-+; (2)FD x ⊥Q 轴,且(,0)D m ,F ∴点横坐标为m , 在132y x =-+中,令x m =,可得132y m =-+, 132DF m ∴=-+, //EF x Q 轴,E ∴点纵坐标为132m -+, 在334y x =+中,令132y m =-+,可得133324m x -+=+,解得23x m =-, F Q 在线段AB 上,06m ∴<<2533EF m m m ∴=+=; (3)假设存在满足条件的点P ,设其坐标为(,0)t ,PEF ∆Q 为等腰直角三角形,∴有90PFE ∠=︒、90PEF ∠=︒和90EPF ∠=︒三种情况,①当90PFE ∠=︒时,则有PF EF =,由(2)可得132PF t =-+,53EF t =, 15323t t ∴-+=,解得1813t =, 18(13P ∴,0); ②当90PEF ∠=︒时,则有PE EF =, 在334y x =+中,令x t =可得334y t =+, 334PE t ∴=+, 在132y x =-+中,令334y t =+,可得313342t x +=-+,解得32x t =-, 35()22EF t t t ∴=-+-=-,∴35342t t +=-,解得1213t =-, 12(13P ∴-,0); ③当90EPF ∠=︒时,如图,过P 作PH EF ⊥于点H ,则PH HF PD EH DF ====,由(2)可知132DF m =-+,53EF m =, 1153223m m ∴-+=⨯,解得94m =, 19153248PD DF ∴==-⨯+=,94OD =, 9153488OP OD PD ∴=-=-=, 3(8P ∴,0); 综上可知存在满足条件的点P ,其坐标为18(13,0)或12(13-,0)或3(8P ,0). 【点评】本题为一次函数的综合应用,涉及三角形的面积、待定系数法、函数图象上点的坐标特征、等腰直角三角形的性质、方程思想及分类讨论思想.在(1)中求得A 点坐标是解题的关键,在(2)中分别表示出E 、F 的坐标是解题的关键,在(3)中确定出P 点的位置,利用等腰直角三角形的性质得到关于P 点坐标的方程是解题的关键,注意分三种情况.本题考查知识点较多,综合性较强,难度适中.。

江苏省海门市东洲国际八年级下学期期中考试数学试题(解析版)

江苏省海门市东洲国际八年级下学期期中考试数学试题(解析版)

海门市东洲国际学校第二学期期中测试八年级数学一、选择题:P 关于y轴对称点的坐标为()1.在平面直角坐标系中,点(1,3)A. (1 ,3 )B. ( -1 , -3 )C. ( -1 ,3)D. ( 1 , -3 )【答案】A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y). 【详解】解:点P(x,y),关于y轴对称点的坐标P′(-x,y),所以点P(-1,3)关于y轴对称的点的坐标为(1,3).故答案为:A.【点睛】本题主要考查平面直角坐标系点的对称性质,解决本题的关键是要熟练掌握点关于y轴对称的特征.2. 能判定四边形ABCD为平行四边形的是().A. AB∥CD,AD=BCB. ∠A=∠B,∠C=∠DC. AB=CD,AD=BCD. AB=AD,CB=CD【答案】C【解析】选项C中,两组对边分别相等的四边形是平行四边形.3.若O是四边形ABCD对角线的交点且OA=OB=OC=OD,则四边形ABCD是()A. 平行四边形B. 矩形C. 正方形D. 菱形【答案】B【解析】试题解析:∵OA =OB =OC =OD ,∴四边形ABCD 是平行四边形,AC =BD ,∴平行四边形ABCD 是矩形.故选B.4.用配方法解方程2410x x --=,方程应变形为( ).A. 2(2)3x +=B. 2(2)5x +=C. 2(2)3x -=D. 2(2)5x -=【答案】D【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数-4的一半的平方.解:由原方程移项,得x 2-4x=1,等式的两边同时加上一次项系数一半的平方,得x 2-4x+4=1+4,配方得(x-2)2=5.故选D .“点睛”本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.一元二次方程(x ﹣1)(x ﹣2)=0的解是( ) A. x=1 B. x=2 C. x 1=1,x 2=2 D. x 1=﹣1,x 2=﹣2 【答案】C【解析】【分析】利用因式分解法解方程即可.【详解】x ﹣1=0或x ﹣2=0,所以x 1=1,x 2=2.故选C .【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.对于函数y=2x ﹣1,下列说法正确的是( )A. 它的图象过点(1,0)B. y 值随着x 值增大而减小C. 当y >0时,x >1D. 它的图象不经过第二象限【答案】D【解析】试题解析:解:A .把x =1代入解析式得到y =1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;B .函数y =2x ﹣1中,k =2>0,则该函数图象y 值随着x 值增大而增大,故本选项错误;C .当y >0时,2x ﹣1>0,则x >0.5,故本选项错误.D .函数y =2x ﹣1中,k =2>0,b =﹣1<0,则该函数图象经过第一、三、四象限,不经过第二象限,故本选项正确;故选D .点睛:本题考查了一次函数的性质,掌握一次函数的性质是解题的关键.7.已知一组数据x 1,x 2,x 3,x 4,x 5,的方差是2,那么数据3x 1+2,3x 2+2,3x 3+2,3x 4+2,3x 5+2方差是( )A. 2B. 6C. 8D. 18 【答案】D【解析】【分析】此类题目还主要考查了方差的性质: 如果数据12n x x x ⋯⋯、、、 的方差是S,那么: (1)一组新数据12n x b x b x b ++⋯⋯+、、、 的方差仍是S (b 是常数); (2)一组新数据12n ax ax ax ⋯⋯、、、 ax 1、ax 2、……、ax n 的方差是a 2S, (a 是常数);(3)一组新数据12n ax b ax b ax b ++⋯⋯+、、、 的方差是a 2S. 【详解】解:∵一组数据x 1,x 2,x 3,x 4,x 5,的方差是2∴数据3x 1+2,3x 2+2,3x 3+2,3x 4+2,3x 5+2方差是232=18⨯故答案为:D【点睛】本题考查了数据变化使得方差变化的知识,掌握方差变化规律是解题的关键.8.已知直线()331y m x m =--+不经过第一象限,则m 的取值范围是x ( ). A. 13m ≥ B. 13m ≤ C. 133m << D. 133m ≤≤ 【答案】D【解析】试题解析:∵直线(3)31y m x m =--+不经过第一象限,则有:30310m m -≤⎧⎨-+≤⎩解得:133m ≤≤. 故选D .9.如图,四边形ABCD 是正方形,直线l 1,l 2,l 3分别通过A ,B ,C 三点,且l 1∥l 2∥l 3,若l 1与l 2的距离为5,l 2与l 3的距离为7,则正方形ABCD 的面积等于( )A. 70B. 74C. 144D. 148【答案】B【解析】 试题分析:首先过点B 和点D 作垂线,构成大的正方形,然后利用大正方形的面积减去四个直角三角形的面积得出答案.12×12-5×7÷2×4=144-70=74. 考点:平行线的性质10.如图,在等腰△ABC 中,90ACB ︒∠=,8AC =,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =,连接DE 、DF 、EF 在此运动变化的过程中,下列结论:(1)DEF 是等腰直角三角形;(2)四边形CDFE 不可能为正方形,(3)DE 长度的最小值为4;(4)连接CF ,CF 恰好把四边形CDFE 的面积分成1:2两部分,则CE =13或143其中正确的结论个数是A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】 连接CF ,证明△ADF ≌△CEF ,根据全等三角形的性质判断①,根据正方形的判定定理判断②,根据勾股定理判断③,根据面积判断④. 【详解】连接CF ,∵△ABC 等腰直角三角形,∴∠FCB=∠A=45 ,CF=AF=FB ;∵AD=CE ,∴△ADF ≌△CEF(SAS);∴EF=DF ,∠CFE=∠AFD ;∵∠AFD+∠CFD=90∘,∴∠CFE+∠CFD=∠EFD=90∘,又∵EF=DF∴△EDF是等腰直角三角形(故(1)正确).当D. E分别为AC、BC中点时,四边形CDFE是正方形(故(2)错误). 由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时142DF BC== .∴DE=(故(3)错误).∵△ADF≌△CEF,∴S△CEF=S△ADF∴S四边形CDFE=S△AFC,∵CF恰好把四边形CDFE的面积分成1:2两部分∴S△CEF:S△CDF=1:2 或S△CEF:S△CDF=2:1即S△ADF:S△CDF=1:2 或S△ADF:S△CDF=2:1当S△ADF:S△CDF=1:2时,S△ADF=13S△ACF=111684323⨯⨯⨯=又∵S△ADF=1422AD AD ⨯⨯=∴2AD=16 3∴AD=83(故(4)错误).故选:A.【点睛】本题考查了全等三角形,等腰直角三角形,以及勾股定理,掌握全等三角形,等腰直角三角形,以及勾股定理是解题的关键.二、填空题11.函数1y=x2-中,自变量x的取值范围是▲ .【答案】x2≠。

江苏省2019-2020学年八年级数学下学期期中测试卷一(含答案)

江苏省2019-2020学年八年级数学下学期期中测试卷一(含答案)

江苏省2019-2020学年下学期期中测试卷八年级数学一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球;③13个人中至少有两个人的生日是在同一个月份;④射击运动员射击一次,命中靶心;⑤水中捞月;⑥冬去春来.其中是必然事件的有()A.1个B.2个C.3个D.4个4.若把一个分式中的m、n同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A.2mm n+B.m nm n+-C.2m nm+D.m nm n-+5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0 B.12C.34D.16.点O是矩形ABCD的对角线AC的中点,E是BC边的中点,8AD=,3OE=,则线段OD的长为()A.5 B.6 C.8 D.10二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上)7.若分式12020xx--有意义,则x的取值范围是.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是.9.方程11233xx x--=--的解是.10.如图,在Rt ABC∆中,90BAC∠=︒,且6BA=,8AC=,点D是斜边BC上的一个动点,过点D分别作DM AB⊥于点M,DN AC⊥于点N,连接MN,则线段MN的最小值为.第10题图第12题图11.在PC机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为cm.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:.第13题图第14题图14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是 .15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 .16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 .三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷--18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =.19.解方程:2533322 x xx x--+=--.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近(精确到0.1),估计摸一次球能摸到黑球的概率是;袋中黑球的个数约为只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了个黑球.21.如图,平行四边形ABCD中,8B∠=︒,G是CD的中点,E=,60BC cmAB cm=,12是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?25.如图,在由边长为1的小正方形组成的56∆的三个顶点均在格点上,⨯的网格中,ABC请按要求解决下列问题:(1)通过计算判断ABC∆的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出ABCDY 的面积.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是.性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD==的性质进行探究,以下判断正确的有(填序号).①AC BD⊥;②AC、BD互相平分;③AC平分BAD∠和BCD∠;④ABC ADC∠=∠;⑤180BAD BCD∠+∠=︒;⑥筝形ABCD的面积为12AC BD⨯.(3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由. 判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).期中测试卷(解析版)一.选择题(本大题共6小题,每小题2分,共12分,每小题只有一个选项符合题意)1.下列图形中,不是轴对称图形,是中心对称图形的是()A.B.C.D.【解答】A、是轴对称图形,不是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项符合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,不是中心对称图形,故本选项不合题意.故选:B.2.下列调查中,适宜采用抽样调查方式的是()A.调在某航空公司飞行员视力的达标率B.调查乘坐飞机的旅客是否携带了违禁物品C.调查某品牌圆珠笔芯的使用寿命D.调查你组6名同学对太原市境总面积的知晓情况【解答】A、调查某航空公司飞行员实力的达标率是准确度要求高的调查,适于全面调查;B、调查乘坐飞机的旅客是否携带了违禁物品是准确度要求高的调查,适于全面调查;C、调查某品牌圆珠笔芯的使用寿命如果普查,所有笔芯都报废,这样就失去了实际意义,适宜抽样调查;D、调查你组6名同学对太原市境总面积的知晓情况,人数少,适宜全面调查.故选:C.3.下列事件:①掷一次骰子,向上一面的点数是3;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球; ③13个人中至少有两个人的生日是在同一个月份; ④射击运动员射击一次,命中靶心; ⑤水中捞月; ⑥冬去春来.其中是必然事件的有( ) A .1个B .2个C .3个D .4个【解答】①掷一次骰子,向上一面的点数是3,是随机事件;②从一个只装有黑色球的袋子摸出一个球,摸到的是白球,是不可能事件; ③13个人中至少有两个人的生日是在同一个月份,是必然事件; ④射击运动员射击一次,命中靶心,是随机事件; ⑤水中捞月,是不可能事件; ⑥冬去春来,是必然事件; 故选:B .4.若把一个分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,则这个分式可以是()A .2m m n+B .m nm n+- C .2m nm + D .m nm n-+ 【解答】A 、22(3)333m m m n m n=++,故分式中的m 、n 同时扩大3倍,分式的值也扩大3倍,故符合题意;B 、3333m n m nm n m n ++=--,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意; C 、2233(3)3m n m n m m ++=,把一个分式中的m 、n 同时扩大3倍,分式的值也扩大13倍,故不符合题意;D 、3333m n m nm n m n--=++,把一个分式中的m 、n 同时扩大3倍,分式的值不变,故不符合题意, 故选:A .5.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是( )A .0B .12C .34D .1【解答】掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是12; 故选:B .6.点O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8AD =,3OE =,则线段OD 的长为( )A .5B .6C .8D .10【解答】Q 在矩形ABCD 中,8AD =,3OE =,O 是矩形ABCD 的对角线AC 的中点,E 是BC 边的中点,8BC AD ∴==,26AB OE ==,90B ∠=︒,22226810AC AB BC ∴=++=, Q 点O 为AC 的中点,90ADC ∠=︒,152OD AC ∴==, 故选:A .二.填空题(本大题共10小题,每小题2分,共12分,请将答案填写到答题卡对应的位置上) 7.若分式12020x x --有意义,则x 的取值范围是 2020x ≠ .【解答】由题意得:20200x -≠, 解得:2020x ≠, 故答案为:2020x ≠.8.为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是 100 .【解答】为了解某工厂10月份生产的10000个灯泡的使用寿命情况,从中抽取了100个灯泡进行调查,则这次调查中的样本容量是100. 故答案为:1009.方程11233x x x--=--的解是 6x = . 【解答】方程整理得:11233xx x --=--, 去分母得:12(3)1x x --=-, 去括号得:1261x x -+=-, 移项合并得:6x -=-, 解得:6x =,经检验6x =是分式方程的解, 故答案为:6x =10.如图,在Rt ABC ∆中,90BAC ∠=︒,且6BA =,8AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为245.【解答】90BAC ∠=︒Q ,且6BA =,8AC =,2210BC BA AC ∴+,DM AB ⊥Q ,DN AC ⊥,90DMA DNA BAC ∴∠=∠=∠=︒,∴四边形DMAN 是矩形,MN AD ∴=,∴当AD BC ⊥时,AD 的值最小,此时,ABC ∆的面积1122AB AC BC AD =⨯=⨯, 245AB AC AD BC ∴==g , MN ∴的最小值为245; 故答案为:245. 11.在PC 机上,为了让使用者清楚、直观地看出磁盘“已用空间”与“可用空间”占“整个磁盘空间”地百分比,使用的统计图是扇形统计图.【解答】根据题意,得要反映出磁盘“已用空间”与“可用空间”占“整个磁盘空间”的百分比,需选用扇形统计图.故答案为:扇形统计图.12.如图,已知菱形ABCD的面积为26cm,BD的长为4cm,则AC的长为 3 cm.【解答】Q菱形ABCD的面积为26cm,BD的长为4cm,∴1462AC⨯⨯=,解得:3AC=,故答案为:3.13.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A B C--横穿双向行驶车道,其中6AB BC==米,在绿灯亮时,小明共用12秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小明通过AB时的速度.设小明通过AB时的速度是x米/秒,根据题意列方程得:66121.5x x+=.【解答】小明通过AB时的速度是x米/秒,根据题意得:66121.5x x+=,故答案为:66121.5x x+=.14.从51、53、55、57、59、60这6个数中任意抽取一个数,抽到的数能被5整除的可能性的大小是13.【解答】51、53、55、57、59、60这6个数中能被5整除的有55和60两个,所以抽到的数能被5整除的可能性的大小是2163=, 故答案为:13.15.如图,四边形ABDE 是长方形,AC DC ⊥于点C ,交BD 于点F ,AE AC =,62ADE ∠=︒,则BAF ∠的度数为 34︒ .【解答】Q 四边形ABDE 是矩形, 90BAE E ∴∠=∠=︒, 62ADE ∠=︒Q , 28EAD ∴∠=︒, AC CD ⊥Q , 90C E ∴∠=∠=︒AE AC =Q ,AD AD =,Rt ACD Rt AED(HL)∴∆≅∆ 28EAD CAD ∴∠=∠=︒, 90282834BAF ∴∠=︒-︒-︒=︒,故答案为:34︒.16.如图,在平面直角坐标系中,有一Rt ABC ∆,90C ∠=︒且(1,3)A -、(3,1)B --、(3,3)C -,已知△11A AC 是由ABC ∆旋转得到的.若点Q 在x 轴上,点P 在直线AB 上,要使以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,满足条件的点Q 的坐标为 ( 1.5,0)-或( 3.5,0)-或(6.5,0) .【解答】Q 点Q 在x 轴上,点P 在直线AB 上,以Q 、P 、1A 、1C 为顶点的四边形是平行四边形,当11A C 为平行四边形的边时, 112PQ AC ∴==,P Q 点在直线25y x =+上,∴令2y =时,252x +=,解得 1.5x =-,令2y =-时,252x +=-,解得 3.5x =-,∴点Q 的坐标为( 1.5,0)-,( 3.5,0)-,当11A C 为平行四边形的对角线时, 11A C Q 的中点坐标为(3,2),P ∴的纵坐标为4,代入25y x =+得,425x =+, 解得0.5x =-, (0.5,4)P ∴-,11A C Q 的中点坐标为:(3,2),∴直线PQ 的解析式为:42677y x =-+, 当0y =时,即426077x =-+,解得: 6.5x =,故Q 为( 1.5,0)-或( 3.5,0)-或(6.5,0). 故答案为( 1.5,0)-或( 3.5,0)-或(6.5,0).三.解答题(本大题共共11小题,共计88分) 17.计算:1(1)122xx x x ++÷-- 【解答】1(1)122xx x x ++÷-- (1)(1)12(1)1x x x x x+-+-=-g21121x x -+=g221x x=g 2x =.18. 先化简,再求值:22144(1)11a a a a -+-÷--,其中2020a =. 【解答】原式211(1)(1)1(2)a a a a a --+-=--g22(1)(1)1(2)a a a a a -+-=--g12a a +=-, 当2020a =时,原式202012021202022018+==-. 19.解方程:2533322x x x x --+=-- 【解答】去分母,得:253(2)33x x x -+-=-, 去括号,得:253633x x x -+-=-, 移项,合并,得:28x =, 系数化为1,得:4x =,经检验,当4x =时,20x -≠,即4x =是原分式方程的解, 所以原方程的解是4x =.20.一个不透明的袋子里装有黑白两种颜色的球共50只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近 (精确到0.1),估计摸一次球能摸到黑球的概率是 ;袋中黑球的个数约为 只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在0.6左右,则小明后来放进了 个黑球.【解答】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4,Q摸到黑球的频率会接近0.4,∴黑球数应为球的总数的25,∴估计袋中黑球的个数为250205⨯=只,故答案为:0.4,0.4,20;(2)设放入黑球x个,根据题意得:200.6 50xx+=+,解得25x=,经检验:25x=是原方程的根,故答案为:25;21.如图,平行四边形ABCD中,8AB cm=,12BC cm=,60B∠=︒,G是CD的中点,E 是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE=cm时,四边形CEDF是矩形,请写出判定矩形的依据(一条即可);②AE=cm时,四边形CEDF是菱形,请写出判定菱形的依据(一条即可).【解答】(1)证明:Q四边形ABCD是平行四边形,//AD BC∴,DEG CFG∴∠=∠,GDE GCF∠=∠.G Q 是CD 的中点,DG CG ∴=,在EDG ∆和FCG ∆中,DEG CFG GDE GCF DG CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EDG FCG AAS ∴∆≅∆. ED FC ∴=. //ED CF Q ,∴四边形CEDF 是平行四边形.(2)①当8AE cm =时,四边形CEDF 是矩形.理由如下: 作AP BC ⊥于P ,如图所示: 8AB cm =Q ,60B ∠=︒, 30BAP ∴∠=︒, 142BP AB cm ∴==, Q 四边形ABCD 是平行四边形,60CDE B ∴∠=∠=︒,8DC AB cm ==,12AD BC cm ==, 8AE cm =Q , 4DE cm BP ∴==,在ABP ∆和CDE ∆中,AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩,()ABP CDE SAS ∴∆≅∆, 90CED APB ∴∠=∠=︒,∴平行四边形CEDF 是矩形(有一个角是直角的平行四边形是矩形),故当8AE cm =时,四边形CEDF 是矩形; 故答案为:8.②当4AE cm =时,四边形CEDF 是菱形.理由如下: 4AE cm =Q ,12AD cm =. 8DE cm ∴=.8DC cm =Q ,60CDE B ∠=∠=︒.CDE∴∆是等边三角形.DE CE∴=.∴平行四边形CEDF是菱形(有一组邻边相等的平行四边形是菱形).故当4AE cm=时,四边形CEDF是菱形;故答案为:4.22.2020年的春节,对于我们来说,有些不一样,我们不能和小伙伴相约一起玩耍,不能去游乐场放飞自我,也不能和自己的兄弟姐妹一起吃美味的大餐,这么做,是因为我们每一个人都在面临一个眼睛看不到的敌人,它叫病毒,残酷的病毒会让人患上肺炎,人与人的接触会让这种疾病快速地传播开来,严重的还会有生命危险,目前我省已经启动突发公共卫生事件一级应急响应,但我们相信,只要大家一起努力,疫情终有会被战胜的一天.在这个不能出门的悠长假期里,某小学随机对本校部分学生进行“假期中,我在家可以这么做!A.扎实学习、B.快乐游戏、C.经典阅读、D.分担劳动、E.乐享健康”的网络调查,并根据调查结果绘制成如下两幅不完整的统计图(若每一位同学只能选择一项),请根据图中的信息,回答下列问题.(1)这次调查的总人数是人;(2)请补全条形统计图,并说明扇形统计图中E所对应的圆心角是度;(3)若学校共有学生的1700人,则选择C有多少人?【解答】(1)这次调查的总人数是:5226%200÷=(人),故答案为:200;(2)选择B的学生有:2005234165840----=(人),补全的条形统计图如右图所示,扇形统计图中E所对应的圆心角是:58 360104.4200︒⨯=︒,故答案为:104.4;(3)341700289200⨯=(人),答:选择C有289人.23.图1、图2是两张性状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点都在小正方形的顶点上.(所画图形的顶点都在小正方形的顶点上)(1)在图1中画出以AC为对角线,面积为24的中心对称图形;(2)在图2中画出以AC为对角线的正方形,并直接写出该正方形的面积.【解答】(1)如图1,ABCDY即为所求;(2)如图2,正方形AECF即为所求,其面积为222(26)40+=.24.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg ,A 型机器人搬运900kg 所用时间与B 型机器人搬运600kg 所用时间相等,问需要多长时间才能运完?【解答】设两种机器人需要x 小时搬运完成,9006001500kg kg kg +=Q ,A ∴型机器人需要搬运900kg ,B 型机器人需要搬运600kg . 依题意,得:90060030x x -=, 解得:10x =,经检验,10x =是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.25.如图,在由边长为1的小正方形组成的56⨯的网格中,ABC ∆的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断ABC ∆的形状;(2)在图中确定一个格点D ,连接AD 、CD ,使四边形ABCD 为平行四边形,并求出ABCD Y 的面积.【解答】(1)由题意可得,22125AB =+=,222425AC =+=,22345BC =+=, 222(5)(25)255+==Q ,即222AB AC BC +=,ABC ∴∆是直角三角形.(2)过点A 作//AD BC ,过点C 作//CD AB ,直线AD 和CD 的交点就是D 的位置,格点D 的位置如图,ABCD ∴Y 的面积为:52510AB AC ⨯=⨯=.26.在第九章中我们研究了几种特殊四边形,请根据你的研究经验来自己研究一种特殊四边形--筝形.初识定义:两组邻边分别相等的四边形是筝形.(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是 .性质研究:(2)类比你学过的特殊四边形的性质,通过观察、测量、折叠、证明等操作活动,对如图1的筝形(,)ABCD AB AD BC CD ==的性质进行探究,以下判断正确的有 (填序号). ①AC BD ⊥;②AC 、BD 互相平分;③AC 平分BAD ∠和BCD ∠;④ABC ADC ∠=∠;⑤180BAD BCD ∠+∠=︒;⑥筝形ABCD 的面积为12AC BD ⨯. (3)在上面的筝形性质中选择一个进行证明.性质应用:(4)直接利用你发现的筝形的性质解决下面的问题:如图2,在筝形ABCD 中,AB BC =,AD CD =,点P 是对角线BD 上一点,过P 分别做AD 、CD 垂线,垂足分别为点M 、N .当筝形ABCD 满足条件 时,四边形PNDM 是正方形?请说明理由.判定方法:(5)回忆我们学习过的特殊四边形的判定方法(如四边相等的四边形是菱形),用文字语言写出筝形的一个判定方法(除定义外): .【解答】(1)因为两组邻边分别相等的四边形是筝形,所以菱形或正方形符合题意. 故答案是:菱形或正方形;(2)正确的有①③④⑥.故答案为:①③④⑥;(3)选①.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.选③.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.BAC DAC ∴∠=∠,BCA DCA ∠=∠.AC ∴平分BAD ∠和BCD ∠.选④.理由如下:在ABC ∆和ADC ∆中,AB AD BC CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆.ABC ADC ∴∠=∠.选⑥.理由如下:AB AD =Q ,BC CD =,AC ∴垂直平分BD .AC BD ∴⊥.∴筝形ABCD 的面积为12AC BD ⨯. (4)当筝形ABCD 满足90ADC ∠=︒时,四边形PNDM 是正方形.理由如下: PM AD ⊥Q ,PN CD ⊥,90PMD PND ∴∠=∠=︒.又90ADC ∠=︒Q ,∴四边形MPND 是矩形.Q 在筝形ABCD 中,AB BC =,AD CD =,同(3)得:()ABD CBD SSS ∆≅∆,ADB CDB ∴∠=∠.又PM AD ⊥Q ,PN CD ⊥,PM PN ∴=.∴四边形MPND 是正方形.故答案为:90ADC ∠=︒;(5)一条对角线垂直且平分另一条对角线的四边形是筝形.理由如下:如图1:若AC 垂直平分BD ,则AB AD =,BD CD =,∴四边形ABCD 是筝形.故答案为:一条对角线垂直且平分另一条对角线的四边形是筝形.(答案不唯一)27.阅读理解:课外兴趣小组活动时,老师提出了如下问题:如图1,ABC ∆中,若5AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使得DE AD =,再连接BE (或将ACD ∆绕点D 逆时针旋转180︒得到)EBD ∆,把AB 、AC 、2AD 集中在ABE ∆中,利用三角形的三边关系可得28AE <<,则14AD <<.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在ABC ∆中,D 是BC 边上的中点,DE DF ⊥,DE 交AB 于点E ,DF 交AC 于点F ,连接EF .①求证:BE CF EF +>;②若90A ∠=︒,探索线段BE 、CF 、EF 之间的等量关系,并加以证明;(2)问题拓展:如图3,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段AB 上,联结EF 、CF ,那么下列结论①12DCF BCD ∠=∠;②EF CF =;③2BEC CEF S S ∆∆=;④3DFE AEF ∠=∠.中一定成立是 (填序号).【解答】(1)①延长FD 到G ,使得DG DF =,连接BG 、EG .(或把CFD ∆绕点D 逆时针旋转180︒得到)BGD ∆, CF BG ∴=,DF DG =,DE DF ⊥Q ,EF EG ∴=.在BEG ∆中,BE BG EG +>,即BE CF EF +>. ②若90A ∠=︒,则90EBC FCB ∠+∠=︒, 由①知FCD DBG ∠=∠,EF EG =, 90EBC DBG ∴∠+∠=︒,即90EBG ∠=︒, ∴在Rt EBG ∆中,222BE BG EG +=, 222BE CF EF ∴+=;(2):①F Q 是AD 的中点,AF FD ∴=,Q 在ABCD Y 中,2AD AB =,AF FD CD ∴==,DFC DCF ∴∠=∠,//AD BC Q ,DFC FCB ∴∠=∠,DCF BCF ∴∠=∠, 12DCF BCD ∴∠=∠,故此选项正确; ②延长EF ,交CD 延长线于M , Q 四边形ABCD 是平行四边形, //AB CD ∴,A MDF ∴∠=∠,F Q 为AD 中点,AF FD ∴=,在AEF ∆和DFM ∆中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AEF DMF ASA ∴∆≅∆,FE MF ∴=,AEF M ∠=∠, CE AB ⊥Q ,90AEC ∴∠=︒,90AEC ECD ∴∠=∠=︒,FM EF =Q ,FC EF FM ∴==,故②正确; ③EF FM =Q ,EFC CFM S S ∆∆∴=,MC BE >Q ,2BEC EFC S S ∆∆∴<故2BEC CEF S S ∆∆=错误;④设FEC x ∠=,则FCE x ∠=, 90DCF DFC x ∴∠=∠=︒-, 1802EFC x ∴∠=︒-,9018022703EFD x x x ∴∠=︒-+︒-=︒-, 90AEF x ∠=︒-Q ,3DFE AEF ∴∠=∠,故此选项正确. 故答案为①②④.。

八年级下册期中考试数学试题含答案解析.doc

八年级下册期中考试数学试题含答案解析.doc

2019-2020 年八年级下册期中考试数学试题含答案解析一、选择题(本题共 12 个小题。

在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里)。

1 .若 1 2x 有意义 , 则 x的取值范围 ( )A.x > 2B. x ≤1C. x≠1D. x ≤ 2222 .已知一个直角三角形的两边长分别为3 和 4,则第三边长的平方是()A. 25B. 14C. 7D.7 或 253 .下列各组数中不能作为直角三角形的三边长的是()A. 1.5, 2, 3;B. 7, 24, 25;C. 6 ,8, 10;D. 9, 12, 15.4. 如图, 四边形 ABCD 中,对角线 AC , BD 相交于点 O ,下列条件不能判定这个四边形是平行四边形的是 ()A. AB ∥ DC ,AD ∥ BCB. AB=DC,AD=BCC.AO=CO,BO=DOD.AB ∥DC ,AD=BC5 .在 5a ,8a , c, a 2b 2 , a 3 中,最简二次根式有( )9A. 1 个B. 2 个C. 3 个D. 4 个6 .如图,长为 8cm 的橡皮筋放置在 x 轴上,固定两端 A 和 B ,然后把中点 C 向上拉升3cm 至 D 点,则橡皮筋被拉长了 ( )A. 2cmB.3cmC.4cmD. 5cm7 .如图:平行四边形 ABCD 的对角线交于点 O ,且 AB=6,△OCD 的周长为 16, 则 AC 与 BD 的和是 ()A. 10B. 16C. 20D. 228 .如下图字母 B 所代表的正方形的面积是()A. 12B. 13C. 144D. 1949. 如果 最简 根 式是能合并,那么使4a2x 有意义的x 的范围是() A. x ≤10B. x≥10C. x<10D. x>1010.如图所示,在菱形 ABCD 中,AC 、BD 相交于点若 OE=3,则菱形 ABCD 的周长是()O ,E 为AB 中点,A.12B.18C. 24D. 3011.矩形一个内角的平分线把矩形的一边分成3cm和5cm ,则矩形的周长为( )A.16cmB.22cm或 26cmC.26cmD.以上都不对12 .实数 a 在数轴上的位置如图所示,则( a 4) 2(a 11) 2化简后为()A. 7B. -7C. 2a -15D.无法确定二、填空题(本题共 6 个小题。

海门初二数学期中试卷

海门初二数学期中试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √9B. √16C. √-9D. √02. 已知a,b是方程x²-5x+6=0的两根,则a+b的值为()A. 5B. 6C. 2D. 33. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (2,-3)D. (-2,-3)4. 已知一个长方形的长是5cm,宽是3cm,则它的对角线长是()A. 8cmB. 9cmC. 10cmD. 12cm5. 如果sinα=0.6,那么cosα的值是()A. 0.8B. 0.6C. -0.8D. -0.66. 在△ABC中,若∠A=45°,∠B=60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°7. 已知函数y=2x-3,当x=2时,y的值为()A. 1B. 3C. 5D. 78. 一个正方形的对角线长为10cm,则它的面积是()A. 50cm²B. 100cm²C. 150cm²D. 200cm²9. 下列命题中,正确的是()A. 平行四边形的对边相等B. 等腰三角形的底角相等C. 直角三角形的两个锐角互余D. 对顶角相等是()A. 26cmB. 28cmC. 30cmD. 32cm二、填空题(每题5分,共25分)11. 若a=3,b=-2,则a²+b²的值为______。

12. 在△ABC中,若∠A=90°,AB=6cm,AC=8cm,则BC的长度是______cm。

13. 函数y=3x+2的图象经过点______。

14. 若sinα=0.8,那么cosα的值是______。

15. 在直角坐标系中,点P(-4,5)关于原点的对称点坐标是______。

三、解答题(共135分)16. (15分)解方程:x²-5x+6=0。

江苏省南通市海门区2023-2024学年八年级下学期期中数学试题(含答案)

江苏省南通市海门区2023-2024学年八年级下学期期中数学试题(含答案)

江苏省南通市海门区2023-2024学年八年级下学期期中数学试题考生在答题前请认真阅读本注意事项:1.本试卷满分为150分,考试时间为120分钟。

考试结束后,请将答题卡交回。

2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在答题卡上指定的位置。

3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效。

一、选择题(本大题共10小题,每小题3分,共30分.)1.如图,正方形网格中的,若小方格边长为1,则的形状为()ABC △ABC △A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对2.如图,在中,于,若,则的度数为()ABCD CE AB ⊥E 125A ∠=︒BCE ∠A .B .C .D .35︒55︒25︒30︒3.如图,矩形ABCD 的对角线的交点为O ,EF 过点且分别交AB ,CD 于点E ,F ,则图O 中阴影部分的面积是矩形ABCD 的面积的()A .B .C .D .1514133104.下列各图给出了变量与之间的对应关系,其中是的函数的是()x y y xA .B .C .D .5.在下列各图象中,表示函数的图象的是()(0)y kx k =-<A .B .C .D .6.对于函数,下列结论:①它的图象必经过点;②它的图象经过第一、51y x =-+(1,5)-二、三象限;③当时,;④的值随值的增大而增大.其中正确的个数是()1x >0y <y x A .0个B .1个C .2个D .3个7.已知数据的平均数是2,方差是,则数据12320,,,,x x x x 14的平均数和方差是()1232042,42,4,422,x x x x ---- A .2,B .4,4C .6,D .6,414148.在平面直角坐标系中,将直线平移后,得到直线,则下列1:22l y x =--2:24l y x =-+平移作法正确的是()A .将向右平移3个单位长度B .将向右平移6个单位长度1l 1lC .将向上平移2个单位长度D .将向上平移4个单位长度1l 1l 9.某地电话拨号入网有两种收费方式:①计时制:0.05元/分;②包月制:50元/月.此外,每一种上网方式都得加收通信费0.02元/分.某用户估计一个月上网时间为1000分钟,你认为采用哪种收费方式较为合算()A .计时制B .包月制C .两种一样D .不确定10.自行画图,正方形ABCD 的边长为8,M 在DC 上,且,是AC 上一动点,2DM =N 则的最小值为()DN MN +A .6B .8C .12D .10二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.)11.若直线与平行,则_______.2y kx =+31y x =-k =12.如图,在中,,,点为BC 的中点,AM 平分,ABC △5AB =3AC =N BAC ∠,垂足为点,延长CM 交AB 于点D ,MN 的长为_______.CM AM ⊥M13.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD 的形状是_______.14.一次函数(k 、b 为常数,且)的图象如图所示,根据图象信息可求得y kx b =+0k ≠关于的不等式的解集为______.x 0kx b +>15.小明的期中数学成绩为80分,期末数学成绩为90分,将期中和期末按照的比例计4:6算,得到总评成绩,则小明的数学总评成绩为_______分.16.已知、、是的三边长,化简a b c ABC △______.=17.如图,已知菱形的两条对角线长分别为和,则这个菱形的高DE 为_______.6cm 8cm18.如图,正方形ABCD 的边长为4,E 为BC 上一点,且,F 为AB 边上的一个动1BE =点,连接EF ,以EF 为边向右侧作等边,连接CG ,则CG 的最小值为_______.EFG △三、解答题(本大题共8小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算(每小题6分,共12分)(1)2);22012(2023)22π-⎛⎫-+-+-- ⎪⎝⎭)21-+20.(本小题满分8分)小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是多少米?(2)小明在书店停留了多少分钟?(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?(4)我们认为骑单车的速度超过300米/分就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?21.(本小题满分10分)小明随机调查了小区部分家庭5月份的用水情况,并将收集的数据整理成如下统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.22.(本小题满分12分)海门某水果店计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克)售价(元/千克)甲种58乙种913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?23.(本小题满分8分)某中学开展演讲比赛活动;九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据上图填写下表:平均分(分)中位数(分)众数(分)九(1)班8585九(2)班8580(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些?说明理由.24.(本小题满分14分)A,B两家超市平时以同样的价格出售相同的商品.暑假期间两家超市都进行促销活动,促销方式如下:A超市:一次购物不超过300元的打9折,超过300元后的价格部分打7折;B超市:一次购物不超过100元的按原价,超过100元后的价格部分打8折.例如,一次购物的商品原价为500元,去A 超市的购物金额为:(元);3000.9(500300)0.7410⨯+-⨯=去B 超市的购物金额为:(元).100(500100)0.8420+-⨯=(1)设商品原价为元,购物金额为元,分别就两家超市的促销方式写出关于的函数x y y x 解析式;(2)促销期间,若小刚一次购物的商品原价超过200元,他去哪家超市购物更省钱?请说明理由.25.(本小题满分12分)如图,中,点是AC 上的一动点,过点作直线,设MN 交的ABC △O O MN BC ∥BCA ∠平分线于点,交的外角的平分线于点,连接、.E BCA ∠ACG ∠F AE AF(1)求证:;90ECF ∠=︒(2)当点运动到何处时,四边形AECF 是矩形?请说明理由;O (3)在(2)的条件下,要使四边形AECF 为正方形,应该满足条件:ABC △________(直接添加条件,无需证明).26.(本小题满分14分)对于给定的两个函数,任取自变量的一个值,当时,它们对应的函数值互为相反数;x 1x <当时,它们对应函数值相等.我们称这样的两个函数互为“和谐函数”.例如:1x ≥一次函数,它的“和谐函数”为.4y x =-4(1)4(1)x x y x x -+<⎧=⎨-≥⎩(1)一次函数的“和谐函数”为_______;5y x =-+(2)已知点的坐标为,点的坐标为,函数的“和谐函数”A (1,4)b -B (3,4)b +32y x =-与线段AB 有且只有一个交点,求的取值范围.b答案一、选择题(本大题共10小题,每小题3分,共30分)题号12345678910选项AABDCBDACD二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分.)11.3 12.113.菱形14. 15.8616.1x >-3a b c+-17.或18.2.5245()4.8三、解答题(本大题共8小题,共90分.)19.计算(每小题6分,共12分)(1)22012(2023)22π-⎛⎫-+-+-- ⎪⎝⎭解:原式4分(4412=-++-2分1=(2);)21-+原式4分21(32)=-+-分4=-20.(本小题满分8分)解:(1)1500米(1分)(2)分钟(1分)1284-=(3)米(1分)1200(1200600)(1500600)2700+-+-=一共用了14分钟(1分)米/分(4)0~6分钟:米/分(1分)112002006v ==6~8分钟:米/分(1分)2120060030086v -==-12~14分钟:米/分(1分)315006004501412v -==-∴12~14分钟段骑车速度最快,不在安全限度内.(1分)21.(本小题满分10分)解:(1)20户(2分)(2)(吨)(4分)011213346546272814.52x ⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯==(3)(吨)(3分)400 4.51800⨯=答:估计这个小区5月份饮用水量约为1800吨.(1分)22.(本小题满分12分)解:(1)设购进甲种水果x 千克则购进乙种水果千克.()140x -(2分)59(140)1000x x +-=千克(1分)65x =∴千克(1分)14075x -=答:购进甲种水果65千克,乙种水果75千克.(2)由题意得:1403x x-≤(2分)35x ≥设总利润为W 元(85)(139)(140)W x x =-+--(2分)560W x =-+∵∴W 随的增大而减小(1分)10k =-<x ∴当时,(1分)35x =140105x -=元(1分)35560525W =-+=最大答:当购进甲种水果35千克,乙种水果105千克时,利润最大,为525元.(1分)23.(本小题满分8分)解:(1)根据上图填写下表:平均分(分)中位数(分)众数(分)九(1)班858585九(2)班8580100(1分+1分=2分)(2)∵平均分85=85,中位数85>80∴九(1)班复赛成绩较好.(3分)(3)答:选2人参加决赛,九(2)班实力更强一些.(1分)理由:九(1)班前2名成绩为100,85.九(2)班前2名成绩为100,100.(2分)24.(本小题满分14分)解:(1)A 超市(2分)0.9(0300)0.760(300)x x y x x ≤≤⎧=⎨+>⎩B 超市(2分)(0100)0.820(100)x x y x x ≤≤⎧=⎨+>⎩(2)①当时,可得200300x <≤0.90.820x x >+∴去B 超市更省钱(2分)②当时,300x >1)时,即0.7600.820x x +>+400x <∴当时,去B 超市更省钱(2分)300400x <<2)时,即0.7600.820x x +=+400x =∴当时,去两家超市都一样(2分)400x =3)时,即0.7600.820x x +<+400x >∴当时,去A 超市更省钱(2分)400x >∴综上①②,可得:当时,去B 超市更省钱200400x <<当时,去两家超市都一样400x =当时,去A 超市更省钱(2分)400x >25.(本小题满分12分)(1)证明:∵CE 平分,CF 平分BCO ∠GCO ∠∴,1122BCO ∠=∠=∠1342GCO ∠=∠=∠∴112322ECF BCO GCO ∠=∠+∠=∠+∠(4分)1()2BCO GCO =∠+∠11802=⨯︒90=︒(2)答:当点O 运动到AC 中点时,四边形AECF 是矩形.(1分)理由:∵MN BC ∥∴,15∠=∠46∠=∠又∵,12∠=∠43∠=∠∴,52∠=∠63∠=∠∴,OE OC =OF OC =∴(3分)OE OC OF ==又∵O 是AC 中点,∴OC OA =∴,OC OA =OE OF=∴四边形AECF 是平行四边形(1分)∴OC OA OE OF +=+∴AC EF=∴是矩形(1分)AECF (3)答:(2分)90ACB ∠=︒26.(本小题满分14分)解:(1)(2分)5(1)5(1)x x y x x -<⎧=⎨-+≥⎩(2)函数的“和谐函数”为(2分)32y x =-32(1)32(1)x x y x x -+<⎧=⎨-≥⎩当时,解得或(2分)4y =23x =-2x =又∵和(1,4)A b -(3,4)B b +∴点A 和B 在直线上,且A 在B 左边4个单位,4y =4AB =又∵函数与线段AB 有且只有一个交点,32(1)32(1)x x y x x -+<⎧=⎨-≥⎩∴由图象可知:或(2分+2分)2323b -≤+<2123b -<-≤化简得:或(2分+2分)1113b -≤<-133b <≤。

2019-2020学年度第二学期八年级期中数学试题

2019-2020学年度第二学期八年级期中数学试题

2019~2020学年度下学期八年级期中测试数 学 试 题一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每2题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <1 2.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1,2C .6,8,11D .5,12,23 3.在□ABCD 中,∠A =70°,则∠B 的度数为( )A .110°B .100°C .70°D .20°4)A .﹣4B .4C .±4D .25.在平行四边形ABCD 中,已知AB =5,BC =3,则它的周长为( )A .8B .10C .14D .16 6.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分 7.下列式子中,为最简二次根式的是( )ABCD8.已知直角三角形的一个锐角为60度,斜边长为2,那么此直角三角形的周长是( )A .2.5B .3 C2 D39.如图1,在□ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长等于( ) A .8cm B .6cm C .4cm D .2cm 10.如图2,点E 在正方形ABCD 的边AB 上,若EB =1,EC =2,那么正方形ABCD 的面积为( ) AB .3CD .511.等腰三角形腰长为13,底边长为10,则它的面积高为( ) A .90 B .60 C .30 D .25 12.如图3,在△ABC 中,∠C =90°,AC =2,点D 在BC∠ADC =2∠B ,AD BC 的长为( )A .3﹣1B .3 +1C .5﹣1D .5 +1图3 DABE2 1 图2A B E CD 图113.如图4,将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,设筷子露在杯子外面的长度h cm,则h的取值范围是()A.h≤17cm B.h≥8cmC.7cm≤h≤16cm D.15cm≤h≤16cm14.如图5,把一个长方形的纸片对折两次,然后剪下一个角.要得到一个正方形,剪口与折痕所成锐角的大小为()A.30°B.45°C.60°D.90°15.如图6,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是()A.(0,-5)B.(0,-6)C.(0,-7)D.(0,-8)16.如图7所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC的中点,若EF=1,则AB=(A.6 B.4C.2 D二、填空题(本大题共4个小题;每小题3分,共12分.把正确答案填在横线上)17.18.如图8,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积和为19.在平面直角坐标系xOy中,若A的坐标为(1OA为边长的菱形的周长为.20.如图9,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为.三.解答题(本大题共6个小题,满分66分.解答应写出文字说明、证明过程或演算步骤)21.(每小题6分,满分12分)(1)计算:2122⎛⎫-⎪⎝⎭.图5A BFCM图7 EA BCDF图9E(2)已知2x =2y =+22x xy y ++的值. 22.(每小题满分8分)已知a 、b 、c 是△ABC 的三边,且满足422422a b c b a c +=+,试判断△ABC 的形状.阅读下面解题过程:解:由422422a b c b a c +=+得:442222a b a c b c -=-①2222222()()()a b a b c a b +-=-②即222a b c +=③∴△ABC 为Rt △.④试问:以上解题过程是否正确: .若不正确,请指出错在哪一步? (填代号) 错误原因是 . 本题的结论应为 .23.(每题满分10分) 如图10,□ABCD 中,以B 为圆心,BA 的长为半径画弧,交BC 于点F ,作∠BAC的角平分线,交AD 于点E ,连接EF . (1)求证:四边形ABFE 是菱形;(2)若AB =4,∠ABC =60°,求四边形ABFE 的面积.A B C F图10 E24.(本题满分10分)如图11,在△ABC 中,AB =AC ,△ABC 的高BD ,CE 交于点F . (1)求证:FB =FC .(2)若FB =5,FD =3,求AB .A BCD F 图11 E如图12,点E 在□ABCD 内部,AF ∥BE ,DF ∥CE . (1)求证:△BCE ≌△ADF ; (2)设□ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST 的值.ABCF图12E已知:如图13,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.图13AB C备用图1AB C备用图2。

江苏省2019-2020八年级下学期期中考试数学试题6

江苏省2019-2020八年级下学期期中考试数学试题6

FEDCBA江苏省2019-2020年八年级下学期期中考试数学试题(满分:100分,时间:120分钟)一、选择题(本大题共8小题,每小题2分,共16分,每小题仅有一个答案正确 )1.下列图形中,既是轴对称图形又是中心对称图形的是( ▲ ) A .角 B .等边三角形 C .平行四边形 D .矩形 2.下列调查中,适合采用全面调查(普查)方式的是( ▲ )A .对某食品质量的调查.B .对数学课本中印刷错误的调查.C .对学校建立英语角看法的调查.D .对公民保护环境意识的调查. 3.下列各式正确的是( ▲ )A .a m a n m n --=B .22x y x y =C .11++=++b a x b x aD .()0≠=a ma na m n4.下列命题中,正确的个数是( ▲ )①13个人中至少有2人的生日是同一个月是必然事件②为了解我班学生的数学成绩, 从中抽取10名学生的数学成绩是总体的一个样本③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.A .1B .2C .3D .45.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( ▲ )A .AB//DC ,AD//BCB .AB//DC ,AD=BC C .AO=CO ,BO=DOD .AB=DC ,AD=BC第5题 第6题 第8题 6. 如图,在△ABC 中,E 、D 、F 分别是AB 、BC 、CA 的中点, AB =AC =5,BC=8,则四边形AEDF •的面积是 ( ▲ ) A .10B .12C .6D .207.在500个数据中,用适当的方法抽取50个为样本进行统计, 频率分布表中54.5~57.5这一组的频率是0.15,那么估计总体数据在54.5~57.5之间的约有( ▲ ) A .150个B .75个C .60个D .15个8.如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE=DF ,AE 、BF 相交于点O ,下列结论:(1)AE=BF ;(2)AE ⊥BF ;(3)AO=OE ;(4)AOB DEOF S S ∆=四边形中正确的有( ▲ ) A .4个B .3个C .2个D .1个二、填空题(本题共10小题,每小题2分,共20分) 9.当x =___ ▲ ___时,分式11x x +-无意义. F ABCD OE10.222()11,(2)21()y yx y y y +==-++ 11. 若分式21-x 的值为正数,则x 的范围是 ▲ . 12. 某班在大课间活动中抽查了10名学生每分钟跳绳次数,得到如下数据(单位:次):88,9l ,93,102,108,117,121,130,146,188.则跳绳次数在90~110这一组的频率是 ▲ .第14题 第16题 第17题13. 小明想了解自己一学期数学成绩的变化趋势,应选用 ▲ 统计图来描述数据. 14. 如图ABCD 中,∠ABC 的平分线交边AD 于E,DC=4,DE=2,ABCD 的周长_ ▲ __.15. E 、F 、G 、H 分别为四边形ABCD 各边的中点,添加_ ▲ _条件,四边形EFGH 为菱形。

江苏省2019-2020八年级下学期期中考试数学试题7

江苏省2019-2020八年级下学期期中考试数学试题7

江苏省 八年级下学期期中考试数学试题(考试时间:120分钟 试卷总分:150分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求的,请将正确选项前的字母代号填写在答题纸...相应位置上......) 1.下列四个图形中,是中心对称图形的是 ( ▲ )2.下列调查适合采用“普查”的是 ( ▲ ) A .了解在校大学生的主要娱乐方式 B .了解某个班级学生的体重 C .一批灯泡的使用寿命 D .调查《新闻联播》电视栏目的收视率3.100个白色乒乓球中有20个被染红,随机抽取20个球,下列结论正确的是(▲) A .红球一定刚好4个 B .红球不可能少于4个 C .红球可能多于4个 D .抽到的白球一定比红球多4.如果把分式yx xy中的x 和y 都扩大2倍,则分式的值 ( ▲ )A .扩大为4倍;B .扩大为2倍;C .不变;D .缩小2倍 5.已知,在□ABCD 中,若∠A+∠C =200°,则∠B 的度数是 (▲) A.100° B.160° C.80° D.60° 6.已知点A (1,y 1)、B (2,y 2)、C (﹣3,y 3)都在反比例函数的图象上,则y 1、y 2、y 3的大小关系是 ( ▲ ) A . y 3<y 1<y 2 B . y 1<y 2<y 3 C . y 2<y 1<y 3 D . y 3<y 2<y 1 7.如图,已知E 是□ABCD 的边CD 的中点,AD 、BE 的延长线相交于点F ,若DF =3,DE =2,则□ABCD 的周长为 ( ▲ ) A.5 B.7 C.10 D.14第8题图第7题图8.如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ▲ )A .8B .3C .4D .32 二.填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请将答案直接填写在答题纸相应位置上.........) 9.某校为了解该校1300名毕业生的数学考试成绩,从中抽查了130名考生的数学成绩.在这次调查中,样本容量是 ▲ .10.“任意打开一本200页的数学书,正好是第35页”,这是___▲____事件. 11.在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为31,那么袋中共有 ▲ 个球.12.若分式22+-x x 的值为0,则x = ▲ .13.若2,3a b =则a a b=+ ▲ . 14.□ABCD 的周长为30,对角线AC 、BD 相交于点O ,若△AOB 的周长比△BOC 的周长少3,则AB = ▲ .15.若菱形的对角线的长的比为3:4,周长为20,则这个菱形的面积为 ▲ . 16.顺次连接四边形ABCD 各边中点E 、F 、G 、H ,得到四边形EFGH ,只要添加 ▲ 条件,就能保证四边形EFGH 是矩形.17.关于x 的方程211x ax +=-的解是正数,则a 的取值范围是 ▲ . 18.如图,点A 是反比例函数y =2x(x >0)的图象上任意一点,AB ∥x 轴交反比例函数y =3x-(x <0)的图象于点B ,以AB 为边作平行四边形ABCD ,其中C 、D在x 轴上,则平行四边形ABCD 的面积为 ▲ .第18题图三、解答题(本大题共10小题,共96分.请在答题纸指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.) 19. (本题8分) (1)化简:221b a a b a b a b ⎛⎫-÷⎪--+⎝⎭; (2)解方程:21122x x x=--- .20.(本题8分)先化简:232224xx x x x x ⎛⎫-÷ ⎪-+-⎝⎭,然后请在33<<-x 中择一个你喜欢的整数..代入求值.21.(本题8分)正方形网格中(网格中的每个小正方形边长是1),ABC ∆的顶点均在格点上,请在所给的直角坐标系中解答下列问题:⑴ 作出ABC ∆绕点A 逆时针旋转90°的11AB C ∆,再作出11AB C ∆关于原点O 成中心对称的122A B C ∆.⑵ 点1B 的坐标为 ,点2C 的坐标 为 .⑶ ABC ∆经过怎样的旋转可得到122A B C ∆,23.(本题10分)某市八年级有3000名学生参加“爱我中华知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中随机抽取了200名学生的得分进行统计.请你根据不完整的表格,解答下列问题: (1)补全频数分布表; (2)补全频数分布直方图;(3)若将得分转化为等级,规定50≤x <60评为“D ”,60≤x <70评为“C ”,70≤x <90评为“B ”,90≤x <100评为“A ”.估计这3000名学生中,有多少学生得分等级为A ?24.(本题10分)如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF . (1)线段BD 与CD 有何数量关系,为什么?(2)当△ABC 满足什么条件时,四边形AFBD 是矩形?请说明理由.成绩 x 分 频数 频率 50≤x <60 10 60≤ x <70 16 0.08 70≤ x <800.2 80≤ x <9062 0.31 90≤ x <10072 0.36 F ABD C EABCDEFA ′B ′25.(本题10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?26.(本题10分)如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在边AD 上的点B′处,点A 落在点A′处,已知AD=10,CD=4,B′D=2. (1)求证:B ′E =BF ;(2)求AE 的长.27.(满分12分)如图,一次函数411+=x k y 与反比例函数22k y x=的图象交于点A (2,m )和B (-6,-2),与y 轴交于点C . (1)1k = ,2k = ;(2)根据函数图象可知,当1y >2y 时,x 的取值范围是 ; (3)过点A 作AD ⊥x 轴于点D ,点P 是反比例函数在第一象限的图象上一点。

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷(含答案)

2019-2020学年八年级下学期期中考试数学试卷一、选择题(本题共12个小题.在每题所列四个选项中,只有一个符合题意,把符合题意的选项所对应的字母代号写在答题纸中各题对应的方格里).1、下列式子:①;②;③﹣;④;⑤,是二次根式的有()A.①③ B.①③⑤ C.①②③ D.①②③⑤2、在菱形ABCD中,如果∠B=110°,那么∠D的度数是A.35° B.70° C.110° D.130°3、在三边分别为下列长度的三角形中,是直角三角形的是()A.9,12,14 B.2,, C.4,3, D.4,3,54、化简的结果是()A.﹣ B.﹣ C.﹣ D.﹣5、如图,在▱ABCD中,∠ODA=90°,AC=20cm,BD=12cm,则AD的长为()A.8cm B.10cm C.12cm D.16cm6、已知a、b、c是三角形的三边长,如果满足(a﹣6)2+=0,则三角形形状是(A.底与腰不相等的等腰三角形B.等边三角形C.钝角三角形 D.直角三角形7、下列运算正确的是()A.﹣= B. =2 C.﹣= D. =2﹣8、如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()A.2 B.3 C.4 D.59、如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BA E=22.5°,则BE的长为()A. B.2 C.4﹣4 D.4﹣210、已知a<b,则化简二次根式的正确结果是()A.B.C.D.11、实数a在数轴上的位置如图所示,则化简后为()A.7 B.﹣7 C.2a﹣15 D.无法确定12、已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,BP长为()A.1 B.2 C.2.5 D.3二、填空题(本题共6个小题.请把最终结果填写在答题纸中各题对应的横线上13、小红说:“因为4=2,所以4不是二次根式.”你认为小红的说法对吗?(填对或错).14、已知x=+1,则x2﹣2x+4= .15、如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积.16、如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.17、如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若EF=2,BC=10,则AB的长为.18、对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.那么12※4= .三、解答题(共66分。

2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)

2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)

2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍错误!未找到引用源。

C. 2倍D. 6倍2.两个直角三角形全等的条件是()A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD的对角线AC、BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对第4题图5.□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线的和是()A.18B.28C.36D.466. 若点M(x,y)满足x+y=0,则点M位于()A. 第一、三象限两坐标轴夹角的平分线上;B. x轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y轴上。

7.已知x、y为正数,且||+(y2-3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.158.在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个第9题图第10题图10. 如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若 BD= 6,则四边形CODE的周长是 ( )A.10 B.12 C.18 D.24二.细心填一填,一锤定音(每小题3分,共30分)11. 在RtABC中,∠C=90°,∠A=65°,则∠B= .12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm .13.如图,已知□ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是 .1 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。

江苏省2020年八年级下学期期中考试数学试卷3

江苏省2020年八年级下学期期中考试数学试卷3

江苏省 八年级下学期期中考试数学试卷 一、选择题(本大题共10题,每小题3分,共计30分) 1. 下列各式a 5、n 2m 、12π、a b +1、a +b 3中分式有…………………………………( ▲ ) A .2个 B .3个 C .4个 D .5个2. 顺次连结矩形四边的中点所得的四边形是………………………………………( ▲ )A .矩形B . 正方形C . 菱形D .以上都不对3.下列各组线段(单位:㎝)中,成比例线段的是( ▲ )A 、1、2、3、4B 、1、2、2、4C 、3、5、9、13D 、1、2、2、34.如图所示,要使得△ABC ∽△ACD ,只需增加条件 ( ▲ )A .BCAB CD AC = B .DB AD CD •=2 C .B BCD ∠=∠ D .ADC ACB ∠=∠ 5. 如果把分式nm n -3中的m 和n 都扩大3倍,那么分式的值………………( ▲ ) A .不变 B .扩大3倍 C .缩小3倍 D .扩大9倍6.如图,平行四边形ABCD 的对角线交于点O ,且AB =7,△OCD 的周长为23,则平行四边形ABCD的两条对角线的和是……………………………………………………( ▲ )A .32B .28C .16D .467.关于x 的一元二次方程(m -1)x 2+x +m 2-1=0的一个根是0,则m 的值为………………( ▲ )A.1B. 1或-1C. -1D.0.58.为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是………………( ▲ )A .40004000210x x -=+B .40004000210x x -=+C .40004000210x x -=-D .40004000210x x -=- 9.若要使分式3x 2-6x +3(x-1)3的值为整数,则整数x 可取的个数为( ▲ ) A. 5个 B. 2个 C. 3个 D. 4个10.在平面直角坐标系中,直角梯形AOBC 的位置如图所示,∠OAC =90°,AC ∥OB ,OA =4,AC=5,OB =6.M 、N 分别在线段AC 、线段BC 上运动,当△MON 的面积达到最大时,存在一种使得△MON 周长最小的情况,则此时点M 的坐标为 ( ▲ )A.(0,4) B .(3,4) C . ( 52,4) D . (3, 3) 二、填空题(本大题共8小题,每小题3分,共计24分)11.当x ▲ 时,分式12x x +-的值为0. A O B x y 1 1 CMN 第10题图 第6题图 C B A D 第4题图12.34,1x y xy -的最简公分母是 ____▲ . 13.在比例尺为1:7500的某市建设规划图上,量得两点之间的直线距离约为200cm ,则这两地的实际距离为 ▲ 千米.14.如图,在□ABCD 中,BD 为对角线,E 、F 分别是AD 、BD 的中点,连结EF .若EF =3,则CD的长为 ▲ .15. 如果分式方程x x +1 = m x +1无解,则m = ▲ . 16.已知113x y -=,则代数式2722x xy y x xy y+---的值为 ▲ . 17.如图,将三角形纸片的一角折叠,使点B 落在AC 边上的F 处,折痕为DE .已知AB =A C =3,BC =4,若以点E ,F ,C 为顶点的三角形与△ABC 相似,那么BE 的长是 ▲ .18.关于x 的方程:c c x x 11+=+的解是c x =1,c x 12=,cc x x 11-=-解是c x =1,c x 12-= , 则x +1x -3 = c +1c -3的解是 ▲ . 三、解答题(本大题共8小题,共计66分)19.(本题满分8分)计算或化简:(1)计算:211a a a --+ ;(2)先化简122)12143(22+-+÷---+m m m m m m ,再从(1)中m 的取值范围内,选取一个你认为合适的m 的整数值代入求值.20.解方程(本题满分8分)(1)(x -5)2 =2(5-x ) (2)2x 2-4x -6=0(用配方法);21.(本题满分8分)如图1,在4×4的正方形方格中,△ABC 的顶点都在边长为1的小正方形的顶点.(1)填空:AB= _,∠BAC= °.(2)请在图2中的两个3×3的正方形方格中各.画一个..和△ABC 相似但不全等...的格点三角形.AC B F ED C B A (第 14题图) (第17题图)图1 图222.(本题满分7分)如图,点P是菱形ABCD的对角线BD上一点,连结CP并延长,交AD于E,交BA的延长线点F.(1)△AP E与△FPA相似吗?请说明理由.(2)若PE=1,EF=2,试求PC的长度.23.(本题满分8分)某中学利用假期进行学校改造,先要加固1560平方米校舍,按计划进行6天后,由于熟练,后来每天比原来多做25%,结果比计划提前了4天完成.你能知道他们原来每天能加固多少平方米校舍么?实际上加固校舍花了多少天时间?24. (本题满分8分)阅读下列材料:我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则称这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形. 如正方形就是和谐四边形.结合阅读材料,完成下列问题:(1)下列哪个四边形一定是和谐四边形(▲)A . 平行四边形B. 矩形C. 菱形D. 等腰梯形(2)如图,等腰Rt△ABD中,∠BAD=90°.若点C为平面上一点,AC为凸四边形....ABCD的和 , 请直接写出∠ABC的度数.谐线,且AB BC25.(本题9分)如图1,矩形ABCD 中,点P 从A 出发,以3cm/s 的速度沿边A →B →C →D 匀速运动;同时点Q 从B 出发,沿边B →C →D 匀速运动,当其中一个点到达终点时两点同时停止运动,设点P 运动的时间为t s .△APQ 的面积s (cm 2)与t (s)之间函数关系的部分图像由图2中的曲线段OE 与线段EF 给出.(1)点Q 运动的速度为 ▲ cm/s ,a ﹦ ▲ cm 2;(2)若BC ﹦3cm ,① 写出当t >3时S 关于t 的函数关系式;② 在图(2)中画出①中相应的函数图像.26.(本题满分10分)如图①,在□ABCD 中,AB =13,BC =50,点P 从点B 出发,沿B —A —D—A 运动.已知沿B —A 运动时的速度为每秒13个单位长度,沿A —D —A 运动时的速度为每秒8个单位长度.点Q 从点 B 出发沿BC 方向运动,速度为每秒5个单位长度. 若P 、Q 两点同时出发,当点Q 到达点C 时,P 、Q 两点同时停止运动.设点P 的运动时间为t (秒).连结PQ .(1)当点P 沿A —D —A 运动时,求AP 的长(用含t 的代数式表示).(2)过点Q 作QR//AB ,交AD 于点R ,连结BR ,如图②.在点P 沿B —A —D 运动过程中,是否存在线段PQ 扫过的图形(阴影部分)被线段BR 分成面积相等的两部分的情况,若存在,求出所有t 的值,若不存在,请说明理由.(3)设点C 、D 关于直线PQ 的对称点分别为'C 、'D ,在点P 沿B —A —D 运动过程中,当''C D //BC 时,求t 的值(直接写出结果).(图1) C D B Q 3 S t O F E a2。

江苏省南通市海门区海门区东洲国际学校2023-2024学年八年级下学期期中数学试题(含答案)

江苏省南通市海门区海门区东洲国际学校2023-2024学年八年级下学期期中数学试题(含答案)

海门区东洲国际学校2023~2024学年第二学期期中考试八年级数学卷考试时间:120分钟试卷分值:150分一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题纸上.1.如图,在中,对角线与相交于点,则下列结论错误的是A. B. C. D.2.方程的左边配成完全平方后所得方程为A. B. C. D.3.某小区计划在一块长、宽的长方形空地上修建三条同样宽的道路(如图),剩余的空地上种植草坪,使草坪的面积为.设道路的宽为,则下面所列方程正确的是A. B.C. D.4.下列关于一次函数的图象的说法中,错误的是A.函数图象经过第一、二、四象限 B.当时,C.函数图象与轴的交点坐标为(2,0)D.的值随着值的增大而减小5.李师傅家的超市今年1月盈利3000元,3月盈利3630元.若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是A. B. C. D.6.物美超市试销一批新款祄衫,一周内销售情况如下表所示,超市经理想要了解哪种型号最畅销,那么他最关注的统计量应该是ABCD □AC BD O AB CD ∥OB OD =AB AD =ABC ADC∠∠=2650x x +-=2(3)4x +=2(3)14x -=21(6)2x +=2(3)14x +=32m 20m 2570m m x 232203570x ⨯-=()()3220570x x --=()()32220570x x --=23570x =22y x =-+0x >2y <x y x 10.5%10%20%21%型号(厘米)383940414243数量(件)13213548268A.平均数B.众数C.中位数D.方差7.关于的一元二次方程有两个实数根,则实数的取值范围是A. B. C. D.8.根据图象,可得关于的不等式的解集是A. B. C. D.9.如图,在矩形中,动点从点出发,沿着、、运动到点停止,设点运动的路程为,的面积为,如果与的函数图象如图2所示,则的周长为A. B. C.17 D.2410.已知实数,满足,则的最大值为A.24B. C.D.-4二、填空题(本题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)不需写出解答过程,把最后结果填在答题纸对应的位置上.11.菱形的对角线长分别为和,则该菱形的面积等于_______________.12.如果,则方程必有一根是_________.13.已知一次函数,若对于范围内任意自变量的值,其对应的函数值都小于,则的取值范围是__________________.14.已知一组数据:,小明用,计算这一组数据的方差,x 22210x x m +-+=m 12m <12m >0m 0m …x 3kx x >-+2x <2x >1x <1x >ABCD P B BC CD DA A P x ABP △y y x ABC △6+8+m n 222m n mn +=+()()2(23)22m n m n m n -++-4431636cm 8cm 2cm 0a b c ++=200ax bx c a ++=≠()y x k =-3x <x y 2k k 12320,,,,x x x x ⋯()()()22212202444S 20x x x -+-+⋯+-=那么_________.15.如图,四边形中,,,,,,则______________.16.设,是的两根,则___________.17.在平面直角坐标系中,点的坐标为,点的“变换点”的坐标定义如下:当时,点坐标为;当时,点坐标为.线段上所有点按上述“变换点”组成一个新的图形,若直线与组成的新的图形有两个交点,则的取值范围是_________________________________.18.如图,正方形边长为3,点,分别是边,上的两个动点,且,连接、,则的最小值为____________________.三、解答题(本题共8小题,共90分)解答时应写出文字说明、证明过程或演算步骤.请在答题纸对应的位置和区域内解答.19.(本题共20分)解方程(注意解题要求)(1)(1);(配方法)(2).(3)(4).20.(本题共6分)如图,在菱形中,,交于点,点,在上,.求证:四边形是菱形.12320x x x x +++⋯+=ABCD AD BC ∥B 60∠= C 30∠= 2AD =7BC =AB =m n 2202470x x ++=()()222023620258m m n n ++++=P (),a b P P 'a b …P '(),a b -a b <P '()4,2a b +-():0.5326l y x x =-+-……5y kx =+k ABCD E F BC CD BE CF =BF DE BF DE +2210x x --=22(2)(31)0x x --+=()2(4)54x x +=+2237x x +=ABCD AC BD O E F AC AE CF =EBFD21.(本题共8分)已知的两边、的长是关于的一元二次方程的两个实数根,第三边长为5.(1)试说明:方程必有两个不相等的实数根;(2)当为何值时,是等腰三角形,求的周长.22.(本题共10分)如图,直线与轴交于点,与轴交于点.(1)求直线的解析式;(2)若直线上的点在第一象限,且,求点的坐标.23.(本题共10分)“新型冠状病毒肺炎”疫情牵动着亿万国人的心,为进一步加强疫情防控工作,兰州市某学校利用网络平台进行疫情防控知识测试.洪涛同学对九年级1班和2班全体学生的测试成绩数据进行了收集、整理和分析,研究过程中的部分数据如下.信息一:疫情防控知识测试题共10道题目,每小题10分;信息二:两个班级的人数均为40人;信息三:九年级1班成绩频数分布直方图如图,信息四:九年级2班平均分(分);ABC △AB AC x ()2223320x k x k k -++++=k ABC △ABC △AB x ()1,0A y ()0,2B -AB AB C 2BOC S =△C 6037017803909100880.5317398⨯+⨯+⨯+⨯+⨯=++++信息五:统计量班级平均数中位数众数方差九年级1班82.590158.75九年级2班80.575174.75根据以上信息,解决下列问题:(1)______,______;(2)你认为哪个班级的成绩更加稳定?请说明理由;(3)在本次测试中,九年级1班甲同学和九年级2班乙同学的成绩均为80分,你认为两人在各自班级中谁的成绩排名更靠前?请说明理由.24.(本题共12分)我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:票价种类(A )夜场票(B )日通票(C )节假日通票单价(元)80120150某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买种票张,种票张数是种票的3倍还多7张,种票张,根据以上信息解答下列问题:(1)直接写出与之间的函数关系式;(2)设购票总费用为元,求(元)与(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?25.(本题共12分)在矩形中,,.(1)如图1,为边上一点,将沿直线翻折至的位置,其中点是点的对称点,当点落在边上时,求的长.(2)如图2,点是边上一动点,过点作交边于点,将沿直线翻折得,连接,当是以为腰的等腰三角形时,求的长;(3)如图3,点是射线上的一个动点,将沿翻折,其中点的对称点为,当,,三点在同一直线上时,请直接写出的长.m nm =n =A x B A C y x y W W x ABCD 10AB =8BC =P BC ABP △AP APQ △Q B Q CD DQ E AB E EF DE ⊥BC F BEF △EF B EF '△DB 'DEB '△DE AE M AB ADM △DM A A 'A 'M C AM26.(本题共12分)预备知识:在一节数学课上,老师提出了这样一个问题:随着变量的变化,动点在平面直角坐标系中的运动轨迹是什么?一番深思熟虑后,聪明的小明说:“是一条直线”,老师问:“你能求出这条直线的函数表达式吗?”小明的思路如下:设这条直线的函数表达式为,将点代入得:,整理得.为任意实数,等式恒成立;,.,.这条直线的函数表达式为.请仿照小明的做法,完成问题:(1)随着变量的变化,动点在平面直角坐标系中的运动轨迹是直线,求直线的函数表达式.问题探究:(2)如图1,在平面直角坐标系中,已知,,且,,则点的坐标为_______________.结论应用:(3)如图2,在平面直角坐标系中,已知点,是直线上的一个动点,连接,过点作,且,连接,求线段的最小值.()P 3,2t t -()0y kx b k =+≠()3,2P t t -23t k t b -=⋅+()3120k t b ++-=t 310k ∴+=20b -=13k ∴=-2b =∴123y x =-+()2,3P t t -()2,0A ()6,9B 90BAC ∠= AB AC =C ()1,0P Q 132y x =-+PQ P PQ PQ '⊥PQ PQ '=OQ 'OQ '海门区东洲国际学校八年级数学期中考试一、选择题(本题共10小题,每小题3分,共30分)12345678910CDCCBBCDBB二、填空题(本题共8小题,第11~12题每小题3分,第13~18题每小题4分,共30分)11.24;12.x =1;13.;14.80;15.2.5;16.2016;17.;18.;三、解答题19.(本题共20分)(1)2)(3)- 41(4)20.(本题共6分)(略)21.(本题共8分)(1)证明:△=(2k +3)2-4(k 2+3k +2)=1,:无论k 取何值时,方程总有两个不相等的实数根;(2)ABC 是等腰三角形;当AB =AC 时,△=b 2-4ac =0,:(2k +3) 2-4 (k 2+3k +2)=0解得k 不存在;当AB =BC 时,即AB =5,:5+AC =2k +3,5AC =k 2+3k +2,解得k =3或4,:AC =4或6ABC 的周长为14或16.22.(本题共10分)(1)(2)C (2,2)23.(本题共10分)(1)m =85 ,n =70 ;(2).九年级1班的方差是158.75,九年级2班的方差是174.75,九年级1班的方差大于九年级2班的方差,九年级1班的成绩更加稳定;(3)九年级1班的成绩排名更靠前,理由如下:九年级1班的平均数是82.5分,九年级2班的平均数是80.5分,九年级1班的平均数高于九年级2班的平均数;.九年级1班的中位数是85分,九年级2班的中位数是75分,九年级1班的中位数高于九年级2班的中位数;又.九年级1班的众数是90分,九年级2班的众数是70分,九年级1班的成绩排名更靠前.1k ≥3526k -≤<-531x =231-=x 412=x =1x =2x 13x =20.5x =22y x =-24.(本题共12分)解:(1)x +3x +7+y =100,所以y=93-4x ;(2)w =80x +120(3x +7)+150(93-4x )=-160x +14790;(3)依题意得:解得20≤x ≤22,因为整数x 为20、21、22,所以共有3种购票方案:A 、20,B 、67,C 、13;A 、21,B 、70,C 、9;A 、22,B 、73,C 、5;而w =-160x +14790,因为k =-160<0,所以y 随x 的增大而减小,所以当x =22时,y 最小=22x (-160)+14790=11270,即当A 种票为22张,B 种票73张,C 种票为5张时费用最少,最少费用为11270元.25.(本题共12分)(1)DQ=6(2)1.8或(3)4或1626.(本题共12分)(1)y =-0.5x +3(2)C (-7,4)(3)209345375x x x ⎪≥-+≥⎧⎪⎨⎩≥310557。

江苏省2019-2020八年级下学期期中考试数学试题3

江苏省2019-2020八年级下学期期中考试数学试题3

江苏省 八年级下学期期中考试数学试题一、选择题(每题3分,共24分.)1. 下列图形中,既是轴对称图形又是中心对称图形的是 ( )2.使分式24xx -有意义的x 的取值范围是 ( )A .x =2B .x ≠2C .x =-2D .x ≠-23. 若323xyx y+中的x 和y 都扩大到原来的2倍,那么分式的值 ( )A.缩小为原来的一半B.不变C.扩大到原来的2倍D.扩大到原来的4倍 4. 顺次连接矩形四边中点所得的四边形一定是 ( ) A.平行四边形 B.矩形 C.菱形 D.正方形5、矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图象表示大致为( )6、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A 、8 B 、10 C 、8或10 D 、无法确定7、如图,在一张矩形纸片ABCD 中,AB =4,BC =8,点E ,F 分别在AD ,BC上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF =2.以上结论中,你认为正确的有( )个. A . 1 B . 2 C . 3 D . 48. 如图,OABC 是平行四边形,对角线OB 在y 轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =和y =的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:A .B .C .D .QDCP BA①=; ②阴影部分面积是(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称. 其中正确的结论是( )A .①②③B .②④C .①③④D . ①④二、填空题(每空2分,共20分)9、已知双曲线x k y 1+=经过点(-1,2),那么k 的值等于 .10、若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是 。

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

2019-2020学年初中八年级(下)数学期中考试试卷(含答案)

是这个台阶两个相对的端点,A 点有一只蚂蚁,想到 B 点去吃可口的食物,则蚂蚁沿着台
阶面爬到 B 点的最短路程是_________.
16.△ABC 中,AB=2 3 ,AC=2,BC 边上的高 AD= 3 ,则 BC=__________.
三、解答题(共 72 分) 17.(20 分)计算:
(1) 3 3 8 2 27

13.三角形的两边长分别为 3 和 5,要使这个三角形是直角三角形,则第三边长是

14 . 在 数 轴 上 表 示 实 数 a 的 点 如 图 所 示 , 化 简 (a 5)2 a 2 的 结 果


0 2 a5
15.如图,是一个三级台阶,它的每一级的长、宽、高分别为 20dm、3dm、2dm,A 和 B
(2) (4 2 3 6) 2 2
(3) 46 0.5) ( 8 6 1 )
2
32
3
18.(8分)已知等式 | a 2019 | a 2020 a 成立,求 a 20192 的值.
19、(10 分)如图,在四边形 ABCD 中,∠B=90°,AB=BC=2,AD=1,CD=3. (1)求∠DAB 的度数. (2)求四边形 ABCD 的面积.
A.16 B.8 C.4 D.2
6.甲、乙两艘客轮同时离开港口,航行的速度都是 40m/min,甲客轮用 15min 到达点 A,
乙客轮用 20min 到达点 B,若 A,B 两点的直线距离为 1000m,甲客轮沿着北偏东 30°的方
向航行,则乙客轮的航行方向可能是( )
A.北偏西 30°
B.南偏西 30°
D. 6
A. 8 2 10 B. 2 2 2 2 C. 2 3 6 D. 12 2 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东洲中学2019-2020学年度第二学期期中考试
八年级 数学试卷
(试卷满分150分 考试时间120分钟)
一、选择题(每题3分,共30分)
1.一次函数31y x =-的图象不经过( ▲ )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.在三边分别为下列长度的三角形中,不是直角三角形的是( ▲ )
A .6,8,10
B .1,2,3
C .2,3,5
D .4,5,7
3.对一组数据:3,4,5,6,7,下列说法正确的是( ▲ )
A .平均数是4.5
B .众数是5
C .中位数是5.5
D .方差是2
4.下列方程中,属于一元二次方程的是( ▲ )
A .2210x -=
B .221y x +=
C .220x -=
D .2141
x =- 5.下面给出的四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比,其中能判定四边形ABCD 是平行四边形的条件是( ▲ )
A .3∶4∶3∶4
B .3∶3∶4∶4
C .2∶3∶4∶5
D .3∶4∶4∶3
6.若正比例函数y =kx 的图象经过第二、四象限,且
7.过点A (2m ,1)和B (2,m ),则k 的值为( ▲ )
A .﹣12
B .﹣2
C .﹣1
D .1 7.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点
E ,则这个点E 表示的实数是( ▲ ) A .45-B .52-C .51-D .35-
8.某校男子足球队的年龄分布如图所示,则根据图中信
息可知这些队员年龄的平均数,中位数分别是( ▲ )
A .15.5,15.5
B .15.5,15
C .15,15.5
D .15,15
9.肆虐的冠状病毒肺炎具有人传人性,调查发现:1人
感染病毒后如果不隔离,那么经过两轮传染将会有225人感染,若设1人平均感染x 人,依题意可列方程( ▲ )
A .1+x =225
B .1+x 2=225
C .(1+x )2=225
D .1+(1+x 2 )=225
10.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC
于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( ▲ )
A .102o
B .112o
C .122o
D .92o
二、填空题(11~14题每题3分,15~18题每题4分,共28分)
11.已知关于x 的方程260x x p --=的一个根是1,则p =▲. 12.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是▲. 13.将直线y =2x -5向上平移2个单位,所得直线解析式为▲.
14.关于x 的一次函数()1y k x k =-+的图象如图所示,则k 的取值范围是▲.
15.如图所示,平行四边形ABCD 中,对角线AC BD 、交于点,O 点E 是BC 的中点.若▱ABCD 的周长为20,8,cm AC cm =则OEC △的周长为▲.
16.如图,四边形ABCD 是菱形,对角线AC 、
BD 相交于点O ,DH ⊥AB 于
点H ,连接OH ,∠CAD =35°,则∠HOB 的度数为▲.
17.如图,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对
角线BD 上移动,则PE +PC 的最小值是▲.
18.若实数m 、n 是方程x 2+x-2020=0的两个根,则=++n m m 22▲.
三、解答题(共92分)
19.(本题10分)如图,网格中每个小正方形的边长都是1,且,,,A B C D 都在格点上. (1)求四边形ABCD 的周长;(2)求证: 90ABC ︒∠=
20.(本题12分)用指定的方法解下列方程:
(1)用配方法解方程:2
x x
-+=;
2830
(2)用公式法解方程:5x2+2x﹣1=0;
(3)用因式分解法解方程:2450
+
x x-=
21.(本题10分)为了了解初三学生的中考体育备考情况,我校体育组从初三年级全年级学生中随机抽取部分学生进行测试,现将从报排球项目所有女生中随机抽取到的60名女生的排球成绩(40秒内有效垫球个数)进行整理,得到下列图表中信息:
垫球个数x频数
≤<n
x
010
≤< 4
x
1020
≤<m
2030
x
≤<26
x
3040
≤≤10
4050
x
请根据所给信息,解答下列问题:
(1)m=▲,n=▲;
(2)这60名学生垫球个数的中位数落在▲段;
(3)全校报考排球项目女生共有450人,根据以往经验垫球个数在30及30个以上在中考中能取得良好以上成绩,请估计中考体育考试中女生排球项目达到良好以上的女生人数.22.(本题10分)关于x的一元二次方程x2-2x+m-1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)如果x=2是方程的一个根,求m的值及方程的另一个根.
23.(本题12分)如图,直线y=kx+b经过点A(-5,0),B(-1,4)
(1)求直线AB的表达式;
(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
24.(本题12分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,
且DE ∥AC ,CE ∥BD .
(1)求证:四边形OCED 是菱形;
(2)若∠BAC =30°,AC =4,求菱形OCED 的面积.
25.(本题12分)因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.
(1)求出2018至2020年五一长假期间游客人次的年平均增长率;
(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?
26.(本题14分)阅读材料I :教材中我们学习了:若关于x 的一元二次方程20ax bx c ++=的两
根为12,x x 、1212,b c x x x x a a +=-=,根据这一性质,我们可以求出己知方程关于12x x 、的代数式的值.
问题解决:
(1)已知12x x 、为方程2310x x +-=的两根,则12x x +=▲,12x x =▲,那么2212x x +=▲.(请你完成以上的填空)
阅读材料II :已知221010m m n n --=+-=,,且1mn ≠.求n
m n m ,1+的值. 解:由210n n +-=可知0n ≠
21110n n
∴+-= 21110.n n
∴--= 又210,m m --=且1mn ≠,即1m n ≠
1,m n
∴是方程210x x --=的两根. 111,1m m n n
∴+=⋅=- 问题解决:
(2)已知222310320,m m n n --=+-=,且1mn ≠.求22
1m n +的值; (3)若0220183,032018222=++=++b b a a ,则=+ab ab 1▲.。

相关文档
最新文档