(数学)专题解析几何(教师)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考题型专题冲刺精讲(数学)专题五解析几何
【命题特点】
近三年高考解析几何每年出一道满分为12分的解析几何大题.究其原因,一是解析几何是中学数学的一个重要组成部分,二是同学们在未来学习、发展中的需要所致.细细品读这三年的解析几何大题,感觉如山间的涓涓清泉滋润心田,甘甜可口,不愿离去.为了找到清泉流向远方的目标,我从其志、探其源、求其真.经过探究,发现这几年的解析几何大题的命题特点可概括如下:依纲靠本,查基考能;朴实取材,独具匠心;
不断创新,关注交汇;交切中点,核是线圆;长度面积,最值定值;平行垂直,向量驾驭;求轨探迹,运动探究;
数形结合,各领风骚;灵气十足,回味无穷;文理有别,意境深远.
复习建议
1.加强直线和圆锥曲线的基础知识,初步掌握了解决直线与圆锥曲线有关问题的基本技能和基本方法。
2.由于直线与圆锥曲线是高考考查的重点内容,选择、填空题灵活多变,思维能力要求较高,解答题背景新颖、综合性强,代数推理能力要求高,因此有必要对直线与圆锥曲线的重点内容、高考的热点问题作深入的研究。
3.在第一轮复习的基础上,再通过纵向深入,横向联系,进一步掌握解决直线与圆锥曲线问题的思想和方法,提高我们分析问题和解决问题的能力。
4.在注重提高计算能力的同时,要加强心理辅导,帮助学生克服惧怕计算的心态。
【试题常见设计形式】
近四年新教材高考对解析几何内容的考查主要集中在如下几个类型:①求曲线方程(类型确定、类型未定);②直线与圆锥曲线的交点问题(含切线问题);③与曲线有关的最(极)值问题;④与曲线有关的几何证明(对称性或求对称曲线、平行、垂直);⑤探求曲线方程中几何量及参数间的数量特征;
解析几何虽然内容庞杂,但基本问题却只有几个.如①求直线与圆锥曲线的方程;②求动点的轨迹或轨迹方程;③求特定对象的值;④求变量的取值范围或最值;⑤不等关系的判定与证明;⑥圆锥曲线有关性质的探求与证明等.对各类问题,学生应从理论上掌握几种基本方法,使之在实际应用中有法可依,克服解题的盲目性.如“求变量的取值范围”,可指导学生掌握三种方法:几何法(数形结合),函数法和不等式法. 从宏观上把握解决直线与圆锥曲线问题的解题要点,能帮助学生易于找到解题切入点,优化解题过程,常用的解题策略有:①建立适当的平面直角坐标系;②设而不求,变式消元;③利用韦达定理沟通坐标与参数的关系;④发掘平面几何性质,简化代数运算;⑤用函数与方程思想沟通等与不等的关系;⑥注意对特殊情形的检验和补充;⑦充分利用向量的工具作用;⑧注意运算的可行性分析,等等。运算是解析几何的瓶颈,它严重制约考生得分的高低,甚至形成心理障碍.教学中要指导学生注重算理、算法,细化运算过程,转化相关条件,回避非必求量,注意整体代换等运算技能,从能力的角度提高对运算的认识,反思运算失误的经验教训,不断提高运算水平.
【突破方法技巧】
1.突出解析几何的基本思想:解析几何的实质是用代数方法研究几何问题,通过曲线的方程研究曲线的性质,因此要掌握求曲线方程的思路和方法,它是解析几何的核心之一.求曲线的方程的常用方法有两类:
一类是曲线形状明确,方程形式已知(如直线、圆、圆锥曲线的标准方程等),常用待定系数法求方程.
另一类是曲线形状不明确或不便于用标准形式表示,一般采用以下方法:
(1)直译法:将原题中由文字语言明确给出动点所满足的等量关系直接翻译成由动点坐标表示的等
量关系式.
(2)代入法:所求动点与已知动点有着相互关系,可用所求动点坐标(x ,y )表示出已知动点的坐标,然后代入已知的曲线方程.
(3)参数法:通过一个(或多个)中间变量的引入,使所求点的坐标之间的关系更容易确立,消去参数得坐标的直接关系便是普通方程.
(4)交轨法:动点是两条动曲线的交点构成的,由x ,y 满足的两个动曲线方程中消去参数,可得所求方程.故交轨法也属参数法.
2.熟练掌握直线、圆及圆锥曲线的基本知识 (1)直线和圆
①直线的倾斜角及其斜率确定了直线的方向.需要注意的是:(ⅰ)倾斜角α的范围是:0≤α<π;(ⅱ)所有的直线必有倾斜角,但未必有斜率.
②直线方程的四种特殊形式,每一种形式都有各自成立的条件,应在不同的题设条件下灵活使用.如截距式不能表示平行于x 轴,y 轴以及过原点的直线,在求直线方程时尤其是要注意斜率不存在的情况.
③讨论点与圆、直线与圆、圆与圆的位置关系时,一般可从代数特征(方程组解的个数)或几何特征(点或直线到圆心的距离与两圆的圆心距与半径的关系)去考虑,其中几何特征较为简捷、实用.
(2)椭圆
①完整地理解椭圆的定义并重视定义在解题中的应用.椭圆是平面内到两定点F 1,F 2的距离之和等于常数2a (2a >|F 1F 2|)的动点的轨迹.还有另一种定义(圆锥曲线的统一定义):平面内到定点的距离和到定直线的距离之比为常数e (0<e <1)的动点轨迹为椭圆,(顺便指出:e >1,e =1时的轨迹分别为双曲线和抛物线).
②椭圆的标准方程有两种形式,决定于焦点所在的坐标轴.焦点
是F (±c ,0)时,标准方程为2222x y a b +=1(a >b >0);焦点是F (0,±c )时,标准方程为22
22y x a b
+=1(a
>b >0).这里隐含2
2
2
a b c =+,此关系体现在△OFB (B 为短轴端点)中.
③深刻理解a ,b ,c ,e ,2
a c
的本质含义及相互关系,实际上就掌握了几何性质.
(3)双曲线
①类比椭圆,双曲线也有两种定义,两种标准方程形式.同样要重视定义在解题中的运用,要深
刻理解几何量a ,b ,c ,e ,2
a c
的本质含义及其相互间的关系.
②双曲线的渐近线是区别于椭圆的一道“风景线”,其实它是矩形的两条对角线所在的直线(参照课本).
③双曲线2222x y a b
-=±1(a >0,b >0)隐含了一个附加公式222
c a b =+此关系体现在△OAB (A ,B 分别
为实轴,虚轴的一个端点)中;特别地,当a =b 2 .