高职高考数学试卷分析共15页PPT资料

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试卷结构
选 择 题


解答题

数学高考题目通常较基础,但纵观去年考题, 可以说“出人意料”的简单,多数同学说比平 时做的模拟题简单不少。难度相对降低的数学 题更注重了对基础知识和基本技能的考查。今 年考题的特点可以概括为:紧扣大纲、难度较 低、考查重点、知识覆盖面全。下面我们就以 今年试卷的大致考题方向总结如下
❖ 7、两点A(-3,1)与B(2,-4)间的距离是 。
❖ 8、已知斜线长是它在平面上射影长的2倍, 则斜线与平面所成的角是
❖ 9、在20张奖券中,有1张一等奖,3张二等 奖,从中任抽一张,则中奖的概率是 。
❖ 10、y23sinx的最大值是 。
❖ 11、在等差数列 {a n } 中,若 a112,a50, 则该数列的前8项之和_________。
总共10章节内容: 1:集合;2:不等式;3:函数; 4指数函数和对数函数; 5:三角函数;6:数列;7:向量; 8:直线和圆;9:立体几何; 10概率和统计初步.
题⑴考查集合的关系或运算;
例如:1、已知M= { -1,1 }, N = { 1, 2}, 则M∩ N 等于( )
A { 1}, B { -1, 1}, C { 1, 2}, D {-1, 1, 2}
❖ 9、已知直线L过点(0,1)且与直线 L:yx垂直,则直线L的方 程是( )
❖ A.xy10B.xy10 C.xy10D.xy10 ❖ 题10平面以及有关内容
❖ 10 若直 l平线 面 ,直m 线 平面 ,则直 l与 m 的 线位置 ( 关 ) 系是
❖ A.平行 B、相交 C、异面 D、平行或异面
题(2)主要考查三角函数中的化简或证明。 例:已知sina=1,求(1-cosa)(1+cosa)的值.
题(3)主要考查数列的有关计算。
例:已知数列 { a n } 中,若
(1)求 a2 , a3 ;
a11,an1an2,(n N )
(2)求数列 { a n } 的通项公式.
题(4)主要考查直线的方程。 例:三角形OAB三个 顶点分别O(0,0),A(1,1)B(0,2). (I)求直线OA的方程: (II)求三角形OAB的面积,
例:某商品每件进货价格为80元,若每件零售价 定为120元,则能卖出200件。如果每件零售价格 每降低1元,则销售量将增加10件。为了获得最大 利润,此商品的每件零售价格应定为多少?
更多精品资请访问
更多品资源请访问
❖ 2、2x 1 5的解集_____________________。

3、若f(x)=
3
x2,(x
0,)则f(2)=

❖ 4、若log2=a2,xlo3g, (3x = b0),则log6=
❖ ❖
wenku.baidu.com
56、、u 已A u B u r知C su u iD u nra =u B u C u r54 = 且a是。第二象限角,那么cosa=
题2考查不等式及其解法(一元二次不等式和绝对值不等式的解法
例如:2、不等式x 2< 0的解是( )
A x<2 Bx>2
C x < -2 D x > -2
题⑶考查函数的定义域及其奇偶性和单调性;
3、函数 f(x)lo2gx的定义域是( ) A (0,) B (,0) C (1,) D (,1)
题⑷考查三角函数的定义及其周期性;
题(5)主要考查求圆的方程。 例:直线y=-2x+m与y轴相交于点A(0,2) (1)求m的值; (2)求以坐标原点0为圆心,且过点A的圆的方程.
题(6)主要考查向量的有关计算。
例:已知向量
a(1,0),b(0,1)
(1)求
a b
;
(2)若向量 a b与 a b垂直,求实数 的值
题(7)主要考查二次函数的最值的应用题 (利润和面积)。 例:利用一面墙,另三边的长度等于20米 的篱笆围成一个矩形区域EFGH,设EF=x 米,(I)写出矩形EFGH的面积S关于x的函数 关系式,并指出其定义域; (II)当取何值时,S最大?并求最大面积.
C. 12
D. 14
❖ 题7考查向量的有关内容(主要是平行,垂直以及数量积; 若向量a=(1,1)与b=(m,2)共线,则实数m等于( )
❖ A.1
B2
C.3
D.4
❖ 题8题9考查直线与圆的有关内容;
❖ 8、函数 f (x) x2 的图象是( )
❖ A、关于原点对称 B关于y轴对称C关于点(0,1)对称 D关于直线x=1对称
❖ 12、用数字1,2,3,4可以组成 个没有 重复数字三位数。
题(1)主要考查集合的交并补的运算。以及结合不等式的解法, 或者集合的包含关系。
例: 已知集合A={x|0<x<2},B={x│|x|<1},求A∩B。
已知集合A={x∣|x+1|<2},B={x∣x+a<0}且A B,求 实数a的取值范围。
4、函数y=sinx的最小正周期等于( B )
A 4 B 2 C D
题⑸题⑹考查数列的通项公2式和前n项和公式;
5、数列 { a n }的通项公式 an 2n,则a3等于(

A2
B4
C6
D8
6、等差数列{ a n }中,若 =( a12,a36,该数3列 项的 s3等 前 和 于 ))
A.8
B. 10
题1考查集合的有关内容;题2考查不等式的 解法题;题3考查函数的有关内容;题4考查指数 和对数的有关计算;题5三角函数的内容;题6考 查一次函数或二次函数的有关内容;题7考查向量 的有关内容;题8考查数列的有关内容;题9,10 考查直线和圆的有关内容;题11立体几何的内容; 题12考查的概率计算
❖ 1、集合{1,2,3}的子集共有____________个。
相关文档
最新文档