青岛市2020年中考数学模拟试题及答案

合集下载

2020年山东省青岛市中考数学模拟试卷(一)(有答案)

2020年山东省青岛市中考数学模拟试卷(一)(有答案)

2019年山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。

2020年山东省青岛市实验中学中考数学模拟试卷及答案详解(21页)

2020年山东省青岛市实验中学中考数学模拟试卷及答案详解(21页)

2020年山东省青岛市实验中学中考数学模拟试卷一.选择题(满分24分,每小题3分)1.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等2.下列图形经过折叠不能围成棱柱的是()A.B.C.D.3.下列四个图案中,是轴对称图形的是()A.B.C.D.4.掷一枚质地均匀的硬币100次,下列说法正确的是()A.不可能100次正面朝上B.不可能50次正面朝上C.必有50次正面朝上D.可能50次正面朝上5.如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O 于点E,分别交P A、PB于点C、D,若P A=6,则△PCD的周长为()A.8B.6C.12D.106.化简的结果是()A.﹣1B.1C.﹣a D.a7.某中学有一块长30cm,宽20cm的矩形空地,该中学计划在这块空地上划出三分之二的区域种花,设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30B.(30﹣2x)(20﹣x)=×20×30C.30x+2×20x=×20×30D.(30﹣2x)(20﹣x)=×20×308.根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A.3n B.3n(n+1)C.6n D.6n(n+1)二.填空题(满分18分,每小题3分)9.分解因式:x2﹣9=.10.如图,四边形ABCD是正方形,曲线DA1B1C1D1…叫做“正方形的渐开线”,其中曲线DA1、A1B1、B1C1、C1D1、…的圆心依次按A、B、C、D循环,它们依次连接.取AB=1,则曲线DA1B1…C2D2的长是.(结果保留π)11.为了估计鱼池里有多少条鱼,先捕上100条作上记号,然后放回到鱼池里,过一段时间,待有记号的鱼完全混合鱼群后,再捕上200条鱼,发现其中带记号的鱼20条,则可判断鱼池里大约有条鱼.12.如图,有六个矩形水池环绕,矩形的内侧边所在直线恰好围成正六边形ABCDEF,正六边形的边长为4米.要从水源点P处向各水池铺设供水管道,这些管道的总长度最短是米.(结果保留根号)13.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得.14.在平面直角坐标系xOy中,记直线y=x+1为l.点A1是直线l 与y轴的交点,以A1O为边作正方形A1OC1B1,使点C1落在在x 轴正半轴上,作射线C1B1交直线l于点A2,以A2C1为边作正方形A2C1C2B2,使点C2落在在x轴正半轴上,依次作下去,得到如图所示的图形.则点B4的坐标是,点B n的坐标是.三.解答题(满分4分,每小题4分)15.(4分)画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是.(2)确定由B地到河边l的最短路线的依据是.四.解答题(满分74分)16.(8分)(1)用配方法解方程:2x2+1=3x.(2)已知:a2+6ab﹣40b2=0(a≠0),求+的值.17.(6分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(6分)甲、乙两同学玩转盘游戏时,把质地相同的两个盘A、B 分别平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两同学分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之积为偶数时甲胜;数字之积为奇数时乙胜.若指针恰好在分割线上,则需要重新转动转盘.(1)用树状图或列表的方法,求甲获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由19.(6分)某加工厂有工人60名,生产某种一个螺栓套两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,能使生产出的螺栓和螺母刚好配套?20.(8分)如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC、CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,经试验后发现,如图3,当∠BCD=150°时台灯光线最佳.求此时连杆端点D离桌面l的高度比原来降低了多少厘米?21.(8分)四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF、AC、DE,当BF⊥AE时,求证:四边形ACED是平行四边形.22.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?23.(10分)(1)叙述并证明三角形内角和定理(证明用图1);(2)如图2是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.24.(12分)如图,已知矩形ABCD,AB=6,AD=2,对角线AC,BD交于点O,E为对角线AC上一点.(1)求证:△OBC是等边三角形;(2)连结BE,当BE=时,求线段AE的长;(3)在BC边上取点F,设P,Q分别为线段AE,BF的中点,连结EF,PQ.若EF=2,求PQ的取值范围.、参考答案一.选择题1.解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;B、+a和﹣a一定不相等;错误,当a=0时二者相等;C、﹣a一定是负数;错误,当a=0时不符合;D、﹣(+a)和+(﹣a)一定相等;正确.故选:D.2.解:A可以围成四棱柱,C可以围成五棱柱,D可以围成三棱柱,B选项侧面上多出一个长方形,故不能围成一个三棱柱.故选:B.3.解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:C.4.解:掷一枚质地均匀的硬币100次,此事件是随机事件,因此有可能100次正面朝上,有可能50次正面朝上,故A、B、C错误;故选:D.5.解:∵P A、PB分别切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=P A+AC+PD+BD=P A+PB=6+6=12,即△PCD的周长为12,故选:C.6.解:=﹣=﹣a.故选:C.7.解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:B.8.解:从图中我们发现(1)中有6个平行四边形,6=1×6,(2)中有18个平行四边形,18=(1+2)×6,(3)中有36个平行四边形,36=(1+2+3)×6,∴第n个中有3n(n+1)个平行四边形.故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).10.解:曲线DA1B1…C2D2的长=++…+=(1+2+…+8)=×36=18π.故答案为:18π.11.解:根据题意得:100÷(20÷200×100%)=1000(条).答:鱼池里大约有1000条鱼;故答案为:1000.12.解:过点P作PG⊥ED于G,由于正六边形的中心角为360°÷6=60°.所以∠P=30°,正六边形的边长为4米,则GD=×4=2米.PG ===2米.根据垂线段最短,P到ED的最短距离为PG=2米.∴这些管道的总长度最短是6×2=12米.13.解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100;故答案为3x+=100.14.解:把x=0代入直线y=x+1,可得:y=1,所以可得:点B1的坐标是(1,1)把x=1代入直线y=x+1,可得:y=2,所以可得:点B2的坐标是(3,2),同理可得点B3的坐标是(7,4);点B4的坐标是(15,8);由以上得出规律是B n的坐标为(2n﹣1,2n﹣1).故答案为:(15,8);(2n﹣1,2n﹣1).三.解答题15.解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.四.解答题16.解:(1)∵2x2+1=3x,∴2x2﹣3x=﹣1,∴x2﹣x=,∴(x﹣)2=,∴x﹣=±,∴x1=1,x2=,(2)方程a2+6ab﹣40b2=0变形得:(a+3b)2=49b2∴a=4b≠0,或a=﹣10b≠0,∴+=或+=﹣17.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:×360°=60°;故答案为:2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图;(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.18.解:(1)画树状图为:共有6种等可能的结果数,其中指针所在区域的数字之积为偶数的结果数为4,所以甲胜的概率==;(2)这个游戏规则对甲、乙双方不公平.理由如下:∵甲胜的概率=,乙胜的概率=,而≠,∴这个游戏规则对甲、乙双方不公平.19.解:设应安排x人生产螺栓,有y人生产螺母.由题意,得,解这个方程组得:,答:应安排25人生产螺栓,35人生产螺母,才能使生产出的螺栓和螺母刚好配套.20.解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°﹣90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=(20+5)cm;(2)过C作CG⊥BH,CK⊥DE,由题意得,BC=CD=20m,CG=KH,∴在Rt△CGB中,sin∠CBH=,∴CG=10cm,∴KH=10cm,∵∠BCG=90°﹣60°=30°,∴∠DCK=150°﹣90°﹣30°=30°,在Rt△DCK中,sin∠DCK===,∴DK=10cm,∴(20+5)﹣(15+10)=10﹣10,答:比原来降低了(10﹣10)厘米.21.证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AE平分∠BAD,∴∠EAB=∠EAD=∠AEB,∴AB=BE,∴BE=CD.(2)∵BA=BE,BF⊥AE,∴AF=EF,∵AD∥CE,∴∠DAF=∠CEF,在△ADF和△ECF中,,∴△DAF≌△CEF∴AD=CE,∵AD∥CE,∴四边形ADEC是平行四边形.22.解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,停车1440辆次,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870∴当x=时,y有最大值.但x只能取整数,∴x取8或9.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840(元)由上得,每辆次小车的停车费应定为8元,此时的日净收入为7840元.23.(1)定理:三角形的内角和是180°.已知:△ABC的三个内角分别为∠BAC,∠B,∠C;求证:∠BAC+∠B+∠C=180°.证明:如图,过点A作直线MN,使MN∥BC,,∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)∵∠MAB+∠NAC+∠BAC=180°(平角定义)∴∠B+∠C+∠BAC=180°(等量代换)∴∠BAC+∠B+∠C=180°.(2)解:如图2,∵∠A+∠E=∠DME,∠G+∠D=∠ANG,∠C+∠F=∠BHC,∵∠DME+∠ANG=∠BPH,∴∠A+∠E+∠G+∠D=∠BPH,∵∠B+∠BHC+∠BPH=180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.24.(1)证明:∵四边形ABCD是矩形,∴AD=BC=2,OA=OC=OB=OD,∠ABC=90°∴AC===4,∴OB=OC=2,∵AD=2,∴OB=OC=BC,∴△OBC是等边三角形;(2)解:作BM⊥AC于M,如图1所示:∵△OBC是等边三角形,∴∠ACB=60°,∴∠BAC=30°,∴BM=AB=3,∴AM=BM=3,EM===1,当点E在M的左侧时,AE=AM﹣EM=3﹣1;当点E在M的右侧时,AE=AM+EM=3+1;综上所述,当BE=时,线段AE的长为3﹣1或3+1;(3)解:当点E与点C重合时,Q与O重合,如图2所示:作ON⊥BC于N,则ON∥AB,∴ON是△ABC的中位线,∴ON=AB=3,CN=BN=BC=,∵EF=2,BC=2,∴BF=2﹣2,∵P为BF的中点,∴BP=PF=BF=﹣1,∴PN=BN﹣BP=﹣(﹣1)=1,∴PQ===;当EF⊥AC时,如图3所示:作QN⊥BC于N,则QN∥AB,∵∠ACB=60°,∴∠CFE=30°,∴EF=CE=2,∴CE=,∴CF=2CE=,AE=AC﹣CE=4﹣=,∴BF=BC﹣CF=,∵Q是AE的中点,∴AQ=EQ=AE=,∴CQ=CE+EQ=,∵QN∥AB,∴△CQN∽△CAB,∴==,即==,解得:QN=,CN=,∴BN=BC﹣CN=,∵P为BF的中点,∴BP=BF=,∴PN=BC﹣CN﹣BP=,∴PQ===;当EF∥AB时,如图4所示:此时PQ最长,∵P,Q分别为线段AE,BF的中点,∴PQ为梯形ABFE的中位线,∴PQ=(EF+AB)=(2+6)=4,∴PQ的取值范围为≤PQ≤4.。

【中考模拟】2020年山东省青岛市中考数学 模拟试卷三(含答案)

【中考模拟】2020年山东省青岛市中考数学 模拟试卷三(含答案)

2020年山东省青岛市中考数学模拟试卷三一、选择题1.43-的相反数是( ) A .43 B .43- C . 34- D .342.下列图形中,既是轴对称图形,又是中心对称图形的是( )3.北京市在经济发展、社会进步、城市建设、民生改善等方面取得新成绩、新面貌.综合实力稳步提升.全市地区生产总值达到280000亿元,将280000用科学记数法表示为( )A.280×103B.28×104C.2.8×105D.0.28×1064.若a+b=4,ab=2,则a 2+b 2的值为( )A.14B.12C.10D.85.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )6.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A.向右平移了3个单位长度B.向左平移了3个单位长度C.向上平移了3个单位长度D.向下平移了3个单位长度 7.如图中有四条互相不平行的直线L 1.L 2.L 3.L 4所截出的七个角.关于这七个角的度数关系,下列何者正确( )A.∠2=∠4+∠7B.∠3=∠1+∠6C.∠1+∠4+∠6=180°D.∠2+∠3+∠5=360° 8.如图,点A 在双曲线x y 3=上,点B 在双曲线xky =(k ≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为( )A.6B.9C.10D.12二、填空题 9.已知二次根式与是同类二次根式,(a +b)a 的值是______.10.关于x 的一元二次方程(k-1)x 2-2x+1=0有两个不相等的实数根,则实数k 的取值范围是 . 11.已知一组数据:2,1,﹣1,0,3,则这组数据的极差是 .12.已知⊙O 的半径是rcm ,则其圆内接正六边形的面积是 cm 2.13.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB ,BC 上,且AE=BF=1,则OC= .14.图为二次函数y=ax 2+bx+c 的图象,给出下列说法:①ab <0;②方程x 2+bc+c=0的根为x 1=﹣1,x 2=3; ③a+b+c >0;④当x >1时,y 随x 值的增大而增大; ⑤当y >0时,﹣1<x <3.其中正确的说法有 .(请写出所有正确说法的序号)三、解答题15.化简:1)111(2+÷-++x x x x ..16.解不等式组:.17.如图,已知AB ∥CD ∥EF,GC ⊥CF,∠ABC=65º,∠EFC=40º,求∠BCG 的度数。

山东省青岛市2020版中考数学模拟试卷(I)卷

山东省青岛市2020版中考数学模拟试卷(I)卷

山东省青岛市2020版中考数学模拟试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共38分)1. (4分)下列各式结果是负数的是()A .B .C .D .2. (4分) (2017七下·江东期中) 下列运算正确的是()A . a3•a4=a12B . (a3)4=a7C . (a2b)3=a6b3D . a3÷a4=a3. (2分)如图是一个正六棱柱的主视图和左视图,则图中的a=()A .B .C .D .4. (4分)据中新社报道:2011年中国粮食总产量达到546 400 000吨,用科学记数法表示为()A . 5.464×107吨B . 5.464×108吨C . 5.464×109吨D . 5.464×1010吨5. (4分) (2017七下·江东期中) 如图,直线b、c被直线a所截,则∠1与∠2是()A . 同位角B . 同旁内角C . 内错角D . 对顶角6. (4分)如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2 ,则a的值为()A . 4B . 2+C .D .7. (4分) (2017八下·巢湖期末) 如果数据1,2,2,x的平均数与众数相同,那么x等于()A . 1B . 2C . 3D . 48. (4分)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x,则下面所列方程中正确的是()A . 256(1-x)2=289B . 289(1﹣x)2=256C . 289(1-2x)=256D . 256(1-2x)=2899. (4分)如图,在Rt△ABC中,∠ACB=90°,AB=4.分别以AC,BC为直径作半圆,面积分别记为S1 , S2 ,则S1+S2的值等于()A . 2πB . 3πC . 4πD . 8π10. (4分)二次函数y=ax2+bx+c与一次函数y=ax+c在同一直角坐标系内的大致图象是()A .B .C .D .二、填空题 (共4题;共16分)11. (4分)计算:= 2;=________ .12. (4分)(2013·绍兴) 分解因式:x2﹣y2=________.13. (4分)(2017·奉贤模拟) 如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是________.14. (4分)(2018·黔西南模拟) 二次函数(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>y2;③a=﹣ c;④若△ABC是等腰三角形,则b=﹣.其中正确的有________(请将结论正确的序号全部填上)三、 (本大题共2小题,每小题8分,满分16分) (共4题;共32分)15. (8分) (2016七上·九台期中) 已知:|x+3|与(y﹣2)2互为相反数,求xy﹣ x2的值.16. (8分) (2016七上·罗田期中) 仔细观察下列三组数第一组:1、﹣4、9、﹣16、25…第二组:0、﹣5、8、﹣17、24…第三组:0、10、﹣16、34、﹣48…解答下列问题:(1)每一组的第6个数分别是________、________、________;(2)分别写出第二组和第三组的第n个数________、________;(3)取每组数的第10个数,计算它们的和.17. (8分) (2018九上·洛阳期末) 如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,1)、B(4,0)、C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转得到90°得到△A2B2C2;(2)求点C从开始到点C2的过程中所经过的路径长.18. (8分) (2018七上·沙依巴克期末) 某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?四、 (本大题共2小题,每小题10分,满分20分) (共2题;共20分)19. (10分)(2017·濉溪模拟) 某条道路上通行车辆限速为60千米/时,在离道路50米的点P处建一个监测点,道路AB段为检测区(如图).在△ABP中,已知∠PAB=30°,∠PBA=45°,那么车辆通过AB段的时间在多少秒以内时,可认定为超速(精确到0.1秒)?(参考数据:≈1.41,≈1.73,60千米/时= 米/秒)20. (10分)(2017·瑞安模拟) 如图,⊙O是以AB为直径的圆,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点F,连结CA,CB.(1)求证:AC平分∠DAB;(2)若⊙O的半径为5,且tan∠DAC= ,求BC的长.五、 (本题满分12分) (共2题;共24分)21. (12分)(2016·江西模拟) 某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1一班588981010855二班1066910457108表2班级平均数中位数众数方差及格率优秀率一班7.68a 3.8270%30%二班b7.510 4.9480%40%(1)在表2中,a=________,b=________;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.22. (12分) (2016七上·孝义期末) 一次数学课上,老师要求学生根据图示张鑫与李亮的对话内容,展开如下活动:活动1:仔细阅读对话内容活动2:根据对话内容,提出一些数学问题,并解答.下面是学生提出的两个问题,请你列方程解答.(1)如果张鑫没有办卡,她需要付多少钱?(2)你认为买多少元钱的书办卡就便宜?六、 (本题满分14分) (共1题;共14分)23. (14.0分)(2012·徐州) 如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C 时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2 .已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是________;(2)d=________,m=________,n=________;(3)F出发多少秒时,正方形EFGH的面积为16cm2?参考答案一、选择题 (共10题;共38分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共16分)11-1、12-1、13-1、14-1、三、 (本大题共2小题,每小题8分,满分16分) (共4题;共32分)15-1、16-1、16-2、16-3、17-1、17-2、18-1、四、 (本大题共2小题,每小题10分,满分20分) (共2题;共20分) 19-1、20-1、20-2、五、 (本题满分12分) (共2题;共24分) 21-1、21-2、21-3、22-1、22-2、六、 (本题满分14分) (共1题;共14分) 23-1、答案:略23-2、23-3、。

青岛市2020届数学中考模拟试卷

青岛市2020届数学中考模拟试卷

青岛市2020届数学中考模拟试卷一、选择题1.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),对角线BD 与x 轴平行,若直线y =kx+5+2k (k≠0)与菱形ABCD 有交点,则k 的取值范围是( )A.3243k -≤-… B.223k --剟C.324k --剟D.﹣2≤k≤2且k≠02.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是( ) A .∠1=50°,∠2=40° B .∠1=40°,∠2=50° C .∠1=30°,∠2=60° D .∠1=∠2=45°3.北京气象部门测得冬季某周内七天的气温如下:3,5,5,4,6,5,7(单位:℃),则这组数据的平均数和众数分别是( ) A .6,5B .5.5,5C .5,5D .5,44.如图,直线y =﹣x+b 与双曲线(0)ky x x=> 交于A 、B 两点,连接OA 、OB ,AM ⊥y 轴于点M ,BN ⊥x 轴于点N ,有以下结论:①S △AOM =S △BON ;②OA =OB ;③五边形MABNO 的面积22MABNO b S 五边形;④若∠AOB=45°,则S △AOB =2k ,⑤当AB 时,ON ﹣BN =1;其中结论正确的个数有( )A .5个B .4个C .3个D .2个5.关于x 的一元二次方程2(23)210a x x ---=有实数根,则a 满足( ) A .a≥1B .a>1且a≠32C .a≥1且a≠32D .a≠326.若x ﹣2y+1=0,则2x ÷4y ×8等于( ) A .1B .4C .8D .﹣167.下列汽车标志中,不是轴对称图形的是( )A. B. C. D.8.如图,点D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于点O ,现有四个条件:①AB =AC ;②OB=OC;③∠ABE=∠ACD;④BE=CD,选择其中2个条件作为题设,余下2个条件作为结论,所有命题中,真命题的个数为()A..3 B..4 C..5 D.、69.如图,▱ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①∠ACD=30°,②S▱ABCD=AC•BC;③OE:6;④S△OCF=2S△OEF,⑤△OEF∽△BCF成立的个数有()A.2个B.3个C.4个D.5个10.如图,在四边形ABCD中,对角线AC⊥BD,垂足为点O,顺次连接四边形ABCD各边中点E,F,G,H,则所得四边形EFGH的形状为()A.对角线不相等的平行四边形B.矩形C.菱形D.正方形11.已知二次函数y=ax2+bx+c,其函数y与自变量x之间的部分对应值如表所示:A.8B.﹣8C.4D.﹣412.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=4:3,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.4:3 B.16:49 C.4:7 D.9:49二、填空题13.已知关于x的一元二次方程x2﹣x+m﹣1=0有两个不相等的实数根,则实数m的取值范围是_____.14.如图,在△ABC中,∠A=30°,∠B=50°,延长BC到点D,则∠ACD=______°.15.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.通过多次摸球试验后,发现摸到红色球、黄色球的频率分别是0.2、0.3.则可估计纸箱中蓝色球有_____个.16.A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为__.17.如图,直线L1∥L2,AB⊥CD,∠1=34°,那么∠2的度数是___度.18.因式分解:=_______.三、解答题19.我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?20.已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是____;(2)求直线AB的表达式;(3)一次函数y=kx+2与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是_____.21.先化简,再求值:2211121x xx x x----÷++,其中x=sin60°﹣122.我市某乡镇在农业产业合作化销售中,其中一农产品经分析发现月销售量y(万件)与月份x(月)的关系为:4(18,20(912,x x x y x x x +⎧=⎨-+⎩为整数)为整数)剟…,每件产品的利润z (元)与月份x (月)的关系如下表:(2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润(万元)与月份x (月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少?23.为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(2)设租用x 辆乙种客车,租车总费用为w 元,请写出w 与x 之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,租用乙种客车不少5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?25.如图,AB 为⊙O 的直径,点D 在⊙O 外,∠BAD 的平分线与⊙O 交于点C ,连接BC 、CD ,且∠D =90°.(1)求证:CD 是⊙O 的切线;(2)若∠DCA =60°,BC =3,求AB 的长.【参考答案】*** 一、选择题13.m<54.14.8015.16.5%.17.18.三、解答题19.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x天根据题意,得1010511.5x x++=解得x=20经检验,x=20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天)(6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.20.(1)4;(2)y=﹣12x+72;(3)0<k≤1或﹣15≤k<0;(4)(0,32)或(0,112).【解析】【分析】(1)根据A、B、C三点的坐标可得AC=3﹣1=2,BC=5﹣1=4,∠C=90°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2是一次函数,所以k≠0,分两种情况进行讨论:①当k>0时,求出y=kx+2过A(1,3)时的k值;②当k<0时,求出y=kx+2过B(5,1)时的k值,进而求解即可;(4)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=﹣12x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P 点坐标.【详解】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3﹣1=2,BC=5﹣1=4,∠C=90°,∴S△ABC=12AC•BC=12×2×4=4.故答案为4;(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴351k bk b+=⎧⎨+=⎩,解得1k27b2⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的表达式为y=﹣12x+72;(3)当k>0时,y=kx+2过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2与线段AB有公共点,则0<k≤1;当k<0时,y=kx+2过B(5,1),1=5k+2,解得k=﹣15,∴一次函数y=kx+2与线段AB有公共点,则﹣15≤k<0.综上,满足条件的k的取值范围是0<k≤1或﹣15≤k<0;(4)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=﹣12x+n,∵C点坐标是(1,1),∴1=﹣12+n,解得n=32,∴直线CP的解析式为y=﹣12x+32,∴P(0,32 ).设直线AB:y=﹣12x+72交y轴于点D,则D(0,72).将直线AB向上平移72﹣32=2个单位,得到直线y=﹣12x+112,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(0,112).综上所述,所求P点坐标是(0,32)或(0,112).故答案为(0,32)或(0,112).【点睛】本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键. 21.﹣11x +. 【解析】 【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】2211121x xx x x ----÷++, =﹣1﹣2(1)(1)(1)1x x xx x+-⋅+- =﹣1+1x x + =11x xx --++=﹣11x +, 当x =sin60°﹣1﹣1.【点睛】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.22.(1) z =﹣x+20; (2) 221680(18)40400(912)x x x w x x x ⎧-++=⎨-+⎩剟剟(x 均为整数)(3)当x =8时,w 取最大值,最大值为144万元 【解析】 【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出每件产品利润(元)与月份x (月)的关系式,然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式,再依据函数的增减性求得最大利润. 【详解】(1)依题意,设每件产品利润(元)与月份x (月)的关系式为:z =kx+b ,由表中的数据有19=155k b k b +⎧⎨=+⎩ ,解得120k b =-⎧⎨=⎩, 故每件产品利润(元)与月份x (月)的关系式为:z =﹣x+20(2)依题意,当1≤x≤8时,w =z•y=(20﹣x )(x+4)=﹣x 2+16x+80 当9≤x≤12时,w =z•y=(20﹣x )(﹣x+20)=x 2﹣40x+400∴221680(18)40400(912)x x x w x x x ⎧-++=⎨-+⎩剟剟(x 均为整数) (3)由(2)得221680(18)40400(912)x x x w x x x ⎧-++=⎨-+⎩剟剟(x 均为整数)当1≤x≤8时,对称轴为x =2ba -=8 ∴当x =8时,w 取最大值,最大值为144 当9≤x≤12时,对称轴为x =2ba-=20 ∴当x =9时,w 取最大值,最大值为121 ∴当x =8时,w 取最大值,最大值为144万元 【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.根据每天的利润=一件的利润×销售件数,建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.23.(1)老师有16名,学生有284名;租用客车总数为8辆;(2)w =100x+2400;(3)共有3种租车方案:①租用甲种客车3辆,乙种客车5辆,租车费用为2900元;②租用甲种客车2辆,乙种客车6辆,租车费用为3000元;③租用甲种客车1辆,乙种客车7辆,租车费用为3100元;最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆. 【解析】 【分析】(1)设出老师有x 名,学生有y 名,得出二元一次方程组,解出即可;再由每辆客车上至少要有2名老师,且要保证300名师生有车坐,可得租用客车总数;(2)由租用x 辆乙种客车,得甲种客车数为:(8﹣x )辆,由题意得出w =400x+300(8﹣x )即可; (3)由题意得出400x+300(8﹣x )≤3100,且x≥5,得出x 取值范围,分析得出即可. 【详解】解:(1)设老师有x 名,学生有y 名. 依题意,列方程组1712184x y x y =-⎧⎨=+⎩,解得:16284x y =⎧⎨=⎩,∵每辆客车上至少要有2名老师, ∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于30050427=(取整为8)辆, 综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆. (2)∵租用x 辆乙种客车, ∴甲种客车数为:(8﹣x )辆, ∴w =400x+300(8﹣x )=100x+2400.(3)∵租车总费用不超过3100元,租用乙种客车不少于5辆, ∴400x+300(8﹣x )≤3100,x≥5 解得:5≤x≤7, 为使300名师生都有座, ∴42x+30(8﹣x )≥300, 解得:x≥5,∴5≤x≤7,(x 为整数), ∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元; 方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元; 方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元; 故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆. 【点睛】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x 辆甲种客车与租车费用的不等式关系是解决问题的关键.24.(1)水果店第一次购进水果800元,第二次购进水果1200元;(2)水果每千克售价为10元 【解析】 【分析】(1)设该水果店两次分别购买了x 元和y 元的水果.根据“购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,”、“两次购进水果共花去了2000元”列出方程组并解答;(2)设该水果每千克售价为m 元,,则由“售完这些水果获利不低于3780元”列出不等式并解答. 【详解】(1)设水果店第一次购进水果x 元,第二次购进水果y 元 由题意,得20002414x y y x +=⎧⎪⎨=⨯⎪⎩-解之,得8001200x y =⎧⎨=⎩故水果店第一次购进水果800元,第二次购进水果1200元.(2)设该水果每千克售价为m 元,第一次购进水果8004=200÷ 千克,第二次购进水果12003=400÷ 千克,由题意()2001-30+4001-420003780m ⨯⨯⋅-≥⎡⎤⎣⎦%(%)解之,得10m ≥故该水果每千克售价为10元. 【点睛】此题考查一元一次不等式的应用,二元一次方程组的应用,解题关键在于列出方程 25.(1)见解析;(2)π 【解析】 【分析】(1)连接OC ,只需证明∠OCD =90°即可;(2)由圆周角定理得出∠ACB =90°,即可求得∠OCB =60°,得到△OBC 是等边三角形,可求得半径为3,弧BC 的圆心角度数,再利用弧长公式求得结果即可. 【详解】解:(1)证明:连接OC,∵AC是∠BAD的平分线,∴∠CAD=∠BAC,又∵OA=OC,∴∠OAC=∠OCA,∴∠OCA=∠CAD,∴OC∥AD,∴∠OCD=∠D=90°,∴CD是⊙O的切线;(2)解:∵∠ACD=60°,∴∠OCA=30°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠OCB=60°,∵OC=OB,∴△OCB是等边三角形,∴OB=OC=BC=3,∠COB=60°,∴AB的长:603180ππ⋅=.【点睛】此题主要考查圆的切线的判定、等腰三角形的性质及圆周角定理的运用.一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点。

精品解析2020年山东省青岛市中考数学模拟试卷(解析版)

精品解析2020年山东省青岛市中考数学模拟试卷(解析版)

中考数学试卷(样题)一、选择题(本题满分24分,共有8道小题,每小题3分,)1.-5的绝对值是( )A. -B. -5C. 5D. 55【答案】C【解析】【分析】数轴上表示数a的点与原点的距离,叫做数a的绝对值.【详解】﹣5的绝对值是|﹣5|=5故选C【点睛】本题考核知识点:绝对值.解题关键点:理解绝对值的意义.2.某种计算机完成一次基本运算的时间约为0.000 000 001 s,把0.000 000 001 s用科学记数法可表示为( )A. 0.1×10-8 sB. 0.1×10-9 sC. 1×10-8 sD. 1×10-9 s【答案】D【解析】试题解析:0.000000001=1×10-9,故选D.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A选项:不是轴对称图形.是中心对称图形,故此选项不符合题意;B 选项:是轴对称图形,又是中心对称图形,故此选项符合题意;C 选项:是轴对称图形,不是中心对称图形,故此选项不符合题意;D 选项:不是轴对称图形,不是中心对称图形,故此选项不符合题意. 故选B .【点睛】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.计算a ·a 5-(2a 3)2的结果为( ) A. a 6-2a 5 B. -a 6C. a 6-4a 5D. -3a 6【答案】D 【解析】试题解析:原式66643.a a a =-=- 故选D.点睛:同底数幂相乘,底数不变指数相加.5.如图,线段AB 经过平移得到线段A B '',其中点A ,B 的对应点分别为点A ',B ',这四个点都在格点上.若线段AB 上有一个点(),P a b ,则点P 在A B ''上的对应点P '的坐标为( )A. ()2,3a b -+B. ()2,3a b ++C. ()2,3a b --D. ()2,3a b +-【答案】A【解析】【分析】先利用点A它的对应点A′的坐标特征可得到线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,然后利用点平移的坐标规律写出点P(a,b)平移后的对应点P′的坐标.【详解】∵点A(1,−1)先向左平移2个单位,再向上平移3和单位得到点A′(−1,2),∴线段AB先向左平移2个单位,再向上平移3和单位得到线段A′B′,∴点P(a,b)平移后的对应点P′的坐标为(a−2,b+3).故选A【点睛】本题考查坐标与平移,熟练掌握坐标平移的性质是解题关键.6.A、B两地相距180km,新修的高速公路开通后,在A、B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为x km/h,则根据题意可列方程为A. 1801801(150%)x x-=+B.1801801(150%)x x-=+C.1801801(150%)x x-=-D.1801801(150%)x x-=-【答案】A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来平均车速为x km/h,则根据题意可列方程为:180x﹣180150%x+()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.7.如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD 为15cm,若纸扇两面贴纸,则贴纸的面积为()A. 175πcm 2B. 350πcm 2C.8003πcm 2 D. 150πcm 2【答案】B 【解析】 【分析】贴纸部分的面积等于大扇形的面积减去小扇形ADE 的面积,由此即可解答. 【详解】∵AB=25,BD=15, ∴AD=10,∴S 贴纸=2212025120102360360ππ⎛⎫⋅⨯⋅⨯-⨯ ⎪⎝⎭=175π×2=350cm 2,故选B .【点睛】本题主要考查扇形面积的计算的应用,解答本题的关键是熟练掌握扇形面积计算公式. 8.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A. x <-2或x >2B. x <-2或0<x <2C. -2<x <0或0<x <2D. -2<x <0或x >2【答案】D 【解析】 【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论. 【详解】解:∵反比例函数与正比例函数的图象均关于原点对称, ∴A 、B 两点关于原点对称,∵点A 的横坐标为2,∴点B 的横坐标为-2,∵由函数图象可知,当-2<x <0或x >2时函数y 1=k 1x 的图象在22k y x=的上方, ∴当y 1>y 2时,x 的取值范围是-2<x <0或x >2. 故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.计算:3282=_____.【答案】2【解析】【分析】先把二次根式化为最简二次根式,然后把括号内合并后再进行二次根式的除法运算即可得出答案.【详解】原式=(42﹣22)÷2=22÷2=2.故答案为2.【点睛】本题考查了二次根式的混合运算.把二次根式化为最简二次根式,再根据混合运算顺序进行计算是解题的关键.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有________名.【答案】2400【解析】【详解】解:估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为240011.如图AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________.【答案】62°【解析】试题分析:连接AD,根据AB是直径,可知∠ADB=90°,然后根据同弧所对的圆周角可得∠BAD=∠DCB=28°,然后根据直角三角形的两锐角互补可得∠ABD=62°.故答案为:62.点睛:此题主要考查了圆周角定理,解题时先利用直径所对的圆周角为直角,得到直角三角形,然后根据同弧所对的圆周角相等即可求解.12.把一个长、宽、高分别为3cm、2cm、1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________.【答案】6 h【解析】试题分析:根据题意可得铜块的体积=3×2×1=6,则圆柱体的体积=Sh=6,则S=.考点:反比例函数的应用13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5CE=,F为DE的中点.若CEF∆的周长为18,则OF的长为________.【答案】7 2【解析】【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【详解】解:∵四边形ABCD是正方形,∴BO DO =,BC CD =,90BCD ︒∠=. 在Rt DCE ∆中,F 为DE 的中点, ∴12CF DE EF DF ===. ∵CEF ∆的周长为18,5CE =, ∴18513CF EF +=-=, ∴13DE DF EF =+=.在Rt DCE ∆中,根据勾股定理,得2213512DC =-=, ∴12BC =, ∴1257BE =-=.在BDE ∆中,∵BO DO =,F 为DE 的中点, 又∵OF 为BDE ∆的中位线,∴1722OF BE ==. 故答案为72.【点睛】本题考查的是正方形的性质,涉及到直角三角形的性质、三角形中位线定理等知识,难度适中. 14.如图,以边长为20cm 的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中 虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为________cm 3 .【答案】144 【解析】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD =AK =BE =BF =CG =CH =4cm ,∴∠A =∠B =∠C =60°,AB =BC =AC ,∠POQ =60°,∴∠ADO =∠AKO =90°. 连结AO ,作QM ⊥OP 于M .在Rt △AOD 中,∠OAD =∠OAK =30°,∴OD =33AD =33cm .∵PQ =OP =DE =20﹣2×4=12(cm ),∴QM =OP •sin60°=12×3 2=63(cm),∴无盖柱形盒子的容积=143126323⨯⨯⨯=144(cm3);故答案为144.三、解答题(共1小题,满分4分)15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【答案】作图见解析【解析】试题分析:根据基本作图作出一个角等于已知角,然后作出这个角的角平分线,然后截取线段OC的长,作垂线,再垂线段的长为半径,以O点作圆即可.试题解析:如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.计算(1)化简:2211()n nnn n+-+÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【答案】(1)11nn+-;(2)m>﹣98.【解析】试题分析:(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果;(2)根据方程有两个不相等的实数根,得到根的判别式大于0,求出m的范围即可.试题解析:解:(1)原式=221n nn++•21nn-=21nn+()•11nn n+-()()=11nn+-;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣98.点睛:本题考查了分式的混合运算,以及根的判别式,熟练掌握运算法则是解答本题的关键.17.小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜.这个游戏对双方公平吗?请说明理由.【答案】不公平;理由见解析【解析】试题分析:根据题意画出树状图,再分别求出两次数字之和大于5和两次数字之和不大于5的概率,如果概率相等,则游戏公平,如果不概率相等,则游戏不公平;试题解析:根据题意,画树状图如下:∴P(两次数字之和大于5)=63168=,P(两次数字之和不大于5)=105168=,∵38≠58,∴游戏不公平;18.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)【参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70】【答案】热气球离地面的高度约为233米. 【解析】 【分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可. 【详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°, 在Rt △ADB 中,∠ABD=45°, ∴DB=x ,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD= AD CD, ∴100x x = 710, 解得,x≈233.答:热气球离地面的高度约为233米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.19.甲、乙两名队员10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表: 平均成绩/环中位数/环 众数/环 方差 甲 a77 1.2乙 7b8c(1)求a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【答案】(1)a=7,b=7.5,c=4.2;(2)见解析. 【解析】 【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可; (2)结合平均数和中位数、众数、方差三方面的特点进行分析. 【详解】(1)甲的平均成绩a=516274829112421⨯+⨯+⨯+⨯+⨯++++=7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b=7+82=7.5(环), 其方差c=110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2] =110×(16+9+1+3+4+9) =4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.20. 某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.【答案】甲盒用0.6米材料;制作每个乙盒用0.5米材料;l=0.1n+1500,1700.【解析】试题分析:首先设制作每个乙盒用米材料,则制作甲盒用(1+20%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n的取值范围,然后根据l与n的关系列出函数解析式,根据一次函数的增减性求出最小值.试题解析:(1)设制作每个乙盒用米材料,则制作甲盒用(1+20%)米材料由题可得:解得(米)经检验是原方程的解,所以答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料(2)由题∴∵,∴,∴当时,考点:分式方程的应用,一次函数的性质.21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【答案】(1)证明见解析;(2)四边形BEDF是菱形;理由见解析.【解析】试题分析:(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,{AB CDBAE DCF AE CF=∠=∠=,∴△ABE≌△CDF(SAS);(2)四边形BEDF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=16-x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为172m. (1)求抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?【答案】(1)抛物线的函数关系式为y=16-x 2+2x+4,拱顶D 到地面OA 的距离为10 m ;(2)两排灯的水平距离最小是3m . 【解析】【详解】试题分析:根据点B 和点C 在函数图象上,利用待定系数法求出b 和c 的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA 的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y 的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x 的值,然后进行做差得出最小值. 试题解析:(1)由题知点17(0,4),3,2B C ⎛⎫⎪⎝⎭在抛物线上 所以41719326c b c =⎧⎪⎨=-⨯++⎪⎩,解得24b c =⎧⎨=⎩,所以21246y x x =-++ 所以,当62bx a=-=时,10t y =≦ 答:21246y x x =-++,拱顶D 到地面OA 的距离为10米 (2)由题知车最外侧与地面OA 的交点为(2,0)(或(10,0)) 当x=2或x=10时,2263y =>,所以可以通过 (3)令8y =,即212486x x -++=,可得212240x x -+=,解得12623,623x x =+=-1243x x-=答:两排灯的水平距离最小是43考点:二次函数的实际应用.23.问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形所以,当n=4时,m=0用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形所以,当n=5时,m=1用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=6时,m=1综上所述,可得表①探究二:用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,……解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k-1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了__________________根木棒.(只填结果)【答案】n=7,m=2;503个;672.【解析】【分析】(1)、根据给出的解题方法得出答案;(2)、根据题意将表格填写完整;应用:(1)、根据题意得出k的值,从而得出三角形的个数;根据三角形的性质得出答案.【详解】试题解析:探究二(1)若分成1根木棒、1根木棒和5根木棒,则不能搭成三角形若分为2根木棒、2根木棒和3根木棒,则能搭成一种等腰三角形若分为3根木棒、3根木棒和1根木棒,则能搭成一种等腰三角形(2)所以,当n=7时,m=2问题应用:(1)∵2016=4×504 所以k=504,则可以搭成k-1=503个不同的等腰三角形;(2) 672考点:规律题24.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S△ACD=9:16?若存在,求出t的值;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)258或5;(2)213=1232S t t-++;(3)92;(4)2.88.【解析】试题分析:(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=258,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质表示出EH,根据相似三角形的性质表示出QM,FQ,根据图形的面积即可得到结论;(3)根据题意列方程得到t的值,于是得到结论;(4)由角平分线的性质得到DM的长,根据勾股定理得到ON的长,由三角形的面积公式表示出OP,根据勾股定理列方程即可得到结论.试题解析:(1)∵矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=12AO=52,∵∠PMA=∠ADC=90°,∠P AM=∠CAD,∴△APM∽△ADC,∴AP AM AC AD=,∴AP=t=25 8,②当AP=AO=t=5,∴当t为258或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠P AO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴EH CE AB AC=,∴EH=35 t,∵DN =AD CD AC⋅=245, ∵QM ∥DN , ∴△CQM ∽△CDN ,∴QM CQ DN CD=,即62465QM t-=, ∴QM =2445t -,∴DG =2424455t --=45t , ∵FQ ∥AC , ∴△DFQ ∽△DOC ,∴FQ DGOC DN=, ∴FQ =56t ,∴S 五边形OECQF =S △OEC +S 四边形OCQF =13152445(5)25265t t t -⨯⨯++⋅=2131232t t -++, ∴S 与t 的函数关系式为2131232S t t =-++;(3)存在, ∵S △ACD =12×6×8=24, ∴S 五边形OECQF :S △ACD =(2131232t t -++):24=9:16,解得t =92,t =0,(不合题意,舍去), ∴t =92时,S 五边形S 五边形OECQF :S △ACD =9:16; (4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N , ∵∠POD =∠COD , ∴DM =DN =245, ∴ON =OM75,∵OP •DM =3PD , ∴OP =558t -, ∴PM =18558t -, ∵222PD PM DM =+,∴22218524(8)()()585t t -=-+,解得:t ≈15(不合题意,舍去),t ≈2.88, ∴当t =2.88时,OD 平分∠COP .。

2020年山东省青岛市市南区中考数学模拟试卷(5月份)(含答案解析)

2020年山东省青岛市市南区中考数学模拟试卷(5月份)(含答案解析)

2020年山东省青岛市市南区中考数学模拟试卷(5月份)一、选择题(本大题共4小题,共12.0分)1. 据国土资源部数据显示,我国是全球“可燃冰”资源储量最多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为( )A. 3.9×1010B. 3.9×109C. 0.39×1011D. 39×1092. 下列运算正确的是( )A. 2x 2⋅x 3=2x 5B. (x −2)2=x 2−4C. x 2+x 3=x 5D. (x 3)4=x 73. 如图,点A 的坐标为(1,3),O 为坐标原点,将OA 绕点A 按逆时针方向旋转90°得到AO′,则点O′的坐标是( ).A. (4,−1)B. (−1,4)C. (4,2)D. (2,−4)4. 8.在去年的体育中考中,某校6名学生的体育成绩统计如下表: 成绩 17 18 20 人数 2 3 1则下列关于这组数据的说法错误的是( )A. 众数是18B. 中位数是18C. 平均数是18D. 方差是2二、填空题(本大题共4小题,共12.0分)5. 计算:(−12)−2−|√3−2|+√32÷√118=______. 6. 已知,如图,AB 是⊙O 的直径,点D ,C 在⊙O 上,连接AD 、DC 、AC ,如果∠BAD =25°,那么∠C 的度数是______.7. 如图,已知点A 的坐标为(−6,0),直线y =−x +b 与y 轴交于点B ,连接AB.若∠α=75°,则b 的值为______.8.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,将ΔBCF沿BF对折,得到ΔBPF,延长FP交BA的延长线于点Q.给出下列结论:①AE=BF;②AE⊥BF;③ΔBQF是等边三角形;④若正方形ABCD的边长为3,则线段AQ的长为34其中,正确的结论有_______.(把你认为正确的结论的序号都填上)三、计算题(本大题共1小题,共7.0分)9.计算(1)5x+3yx2−y2−2xx2−y2(2)(1−1x+1)÷x2−1x2+2x+1四、解答题(本大题共3小题,共29.0分)10.如图,Rt△ABC中,∠ACB=90°,D是边BC上一点,点E、F分别是线段AB、AD中点,联结CE、CF、EF.(1)求证:△CEF≌△AEF;(2)联结DE,当BD=2CD时,求证:AD=2DE.11.2020年春节前夕,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩等防护用品成了年货,供应紧张.某药店用2000元购进某品牌的一批口罩后,供不应求,又用5000元购进这种口罩,第二批口罩的数量是第一批的2倍,但进货单价比第一批贵2元.(1)第一批口罩进货单价多少元?(2)若两次购进口罩按同一价格销售,两批全部售完后,获利不少于2000元,那么销售单价至少为多少元?(3)由于党的好政策,爱心工人加班加点地生产,口罩变得不再紧俏,药店第三批进货单价比第一批便宜1元,若按照(2)中销售单价出售,每天可以售出60个,药店为了促销,决定降低一定的价格,每降低一元,每天多售出20个,问单价定为多少时,每天利润最大?最大是多少?12.如图,在矩形ABCD中,AB=6cm,AD=8cm,直线EF从点A出发沿AD方向匀速运动,速度是2cm/s,运动过程中始终保持EF//AC.F交AD于E,交DC于点F;同时,点P从点C出发沿CB方向匀速运动,速度是1cm/s,连接PE、PF,设运动时间t(s)(0<t<4).(1)当t=1时,求EF长;(2)求t为何值时,四边形EPCD为矩形;(3)设△PEF的面积为S(cm2),求出面积S关于时间t的表达式;(4)在运动过程中,是否存在某一时刻使S△PCF:S矩形ABCD=3:16?若存在,求出t的值;若不存在,请说明理由.【答案与解析】1.答案:A解析:解:39000000000=3.9×1010.故选:A.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.2.答案:A解析:解:A、2x2⋅x3=2x5,故本选项正确;B、应为(x−2)2=x2−4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.本题主要考查了合并同类项的法则,完全平方公式,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.3.答案:C解析:【试题解析】本题考查旋转变换,坐标与图形的性质等知识,解题的关键是正确画出图形解决问题.根据题意画出图形即可解决问题.解:观察图象可知O′的坐标为(4,2).故选C.4.答案:D解析:根据众数、中位数的定义和平均数、方差的计算公式分别进行解答即可.【详解】A、这组数据中18出现了3次,次数最多,则这组数据的众数是18.故本选项说法正确;B、把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18.故本选项说法正确;C、这组数据的平均数是:(17×2+18×3+20)÷6=18.故本选项说法正确;[2×(17−18)2+3×(18−18)2+(20−18)2]=1.故本选项说法错误.D、这组数据的方差是:16故选:D.本题考查了众数、中位数、平均数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);平均数是所有[(x1−x)2+数据的和除以数据总数;一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n(x2−x)2+⋯+(x n−x)2].5.答案:2+4√3解析:解:原式=4−2+√3+3√3=2+4√3,故答案为:2+4√3.根据二次根式的混合计算解答即可.此题考查二次根式的混合计算,关键是根据二次根式的混合计算解答.6.答案:65°解析:本题考查圆周角定理中的两个推论:①直径所对的圆周角是直角,②同弧所对的圆周角相等.因为AB是⊙O的直径,所以求得∠ADB=90°,进而求得∠B的度数,又因为∠B=∠C,所以∠C的度数可求出.解:连接DB,∵AB是⊙O的直径,∴∠ADB=90°,∵∠BAD=25°,∴∠B=65°,∴∠C=∠B=65°(同弧所对的圆周角相等).故答案为65°.7.答案:2√3解析:解:直线y=−x+b与y轴的交点为(0,b),与x轴的交点为(b,0),设直线y=−x+b与x轴的交点为C,∴OB=OC,∴∠BCO=45°,∵∠α=75°,∴∠BAO=30°,∵点A的坐标为(−6,0),∴OA=6,在Rt△AOB中,OB=AO⋅tan30°=2√3,∴b=2√3.故答案为2√3.求出B、C点坐标,判断△BOC是直角等腰三角形,得到∠C=45°,利用三角形的外角性质,得到∠A=30°,在直角三角形AOB中求OB即可.本题考查一次函数图象的性质,直角三角形的边角关系.8.答案:①②④解析:本题考查了折叠问题,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.由题意可证△BFC≌△ABE,可判断①②,由折叠可判断④,根据勾股定理可求AM,DM,根据平行线分线段成比例可求AQ,可判断③.解:∵四边形ABCD是正方形∴AB=BC=AD=CD=3,∠C=∠D=∠ABC=90°∵CF=BE,AB=BC,∠C=∠ABC∴△AEB≌△BCF∴AE=BF,∠EAB=∠FBC∵∠FBC+∠ABF=90°∴∠EAB+∠ABF=90°∴∠AGB=90°即AE⊥BF故①②正确∵折叠∴BC=BP,∠CBF=∠PBF∴AB=BP且BM=BM∴Rt△ABM≌Rt△BMP∴AM=MP,∠ABM=∠PBM∵∠ABM+∠PBM+∠CBF+∠PBF=180°∴∠MBF=45°故③是错误的,∵在Rt△DMF中,MF2=FD2+DM2.∴(1.5+AM)2=(3−AM)2+1.52∴AM=1,∴DM=2∵CD//BA∴AQ:DF=AM:DM=1:2,∴AQ=34故④正确故答案为①②④.9.答案:解:(1)原式=3x+3yx2−y2=3(x+y)(x+y)(x−y)=3x−y;(2)原式=(x+1x+1−1x+1)÷(x+1)(x−1)(x+1)2=xx+1⋅x+1x−1=xx−1.解析:【试题解析】(1)先根据同分母分式的减法计算,再约分化简即可得;(2)根据分式的混合运算顺序和运算法则计算可得.本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.10.答案:解:证明:(1)∵∠ACB=90°,且E线段AB中点,∴CE=12AB=AE,∵∠ACD=90°,F为线段AD中点,∴AF=CF=12AD,在△CEF和△AEF中,{CF=AF EF=EF CE=AE,∴△CEF≌△AEF(SSS);(2)连接DE,∵点E、F分别是线段AB、AD中点,∴EF=12BD,EF//BC,∵BD=2CD,∴EF=CD.又∵EF//BC,∴四边形CFEDD是平行四边形,∴DE=CF,∵CF=AF=FD,∴AD=2DE.解析:此题考查了全等三角形的判定与性质,中位线定理,以及平行四边形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.(1)在直角三角形ABC中,E为斜边AB的中点,利用斜边上的中线等于斜边的一半得到CE=AE,在直角三角形ACD中,F为斜边AD的中点,利用斜边上的中线等于斜边的一半得到AF=CF,再由EF=EF,利用SSS即可得证;(2)由EF为三角形ABD的中点,利用中位线定理得到EF与BD平行,EF等于BD的一半,再由BD= 2DC,等量代换得到EF=CD,再由EF与CD平行,得到四边形CFEDD为平行四边形,可得出DE= CF即可解决问题;11.答案:解:(1)设第一批口罩的进货单价为x元,则第二批口罩的进货单价为(x+2)元,。

【中考模拟】2020年山东省青岛市中考数学 模拟试卷二(含答案)

【中考模拟】2020年山东省青岛市中考数学 模拟试卷二(含答案)

2020年山东省青岛市中考数学模拟试卷二一、选择题1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大2.下列图案是我国几家银行的标志,其中既是轴对称图形,又是中心对称图形的有( )A.1个B.2个C.3个D.4个3.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( )A.0.149×106B.1.49×107C.1.49×108D.14.9×1074.若(x+2)(x-1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.25.如图,在⊙O中,弦AB,CD相交于点P,若∠A=40°,∠APD=75°,则∠B=A.15°B.40°C.75°D.35°6.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法在表示目标A,B,D,E的位置时,其中表示不正确的是( )A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=35°,则∠A=()A.70°B.80°C.55°D.65°8.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx-1(x>0)的图像与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤8二、填空题9.化简×﹣4××(1﹣)0的结果是.10.已知x1和x2分别为方程x2+x﹣2=0的两个实数根,那么x1+x2= ;x1•x2= .11.已知一组数据0,2,x,4,5的众数是4,那么这组数据的中位数是 .12.同一个圆的内接正方形和正三角形的边心距的比为.13.如图,在矩形ABCD中,BC=20 cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3 cm/s和2 cm/s,则最快________s 后,四边形ABPQ成为矩形.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则在下列代数式:①ac;②a+b+c;③4a-2b+c;④2a+b;⑤b2-4ac中,值大于0的序号为 .三、解答题15.化简:.16.解不等式组:,并在数轴上表示不等式组的解集.17.如图,△ABC中,∠A=70º,外角平分线CE∥AB.求∠B和∠ACB的度数.18.如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.19.参与我市教育资源倍增工程的学校有A、B两个校区,为了加强融合,两个校区的学生特举办了以“弘扬校园真善美,文名礼仪在我心”为主题的演讲比赛.两校区参赛人数相等,比赛结束后,按分数进行分类统计,共有7分、8分、9分、10分(满分10分)四个等级.依据统计数据绘制了如下尚不完整的统计图表.(1)根据图表信息可知两个校区参加的人数为人,并将图2的统计图补充完整;(2)经计算,B校区的平均分是8.3分,中位数是8分,请计算A校区的平均分、中位数,并从平均数和中位数的角度分析哪个校区成绩较好;(3)如果该学校要组织8人的代表队参加学区内的演讲团体赛,决定从这两个校区中的一所挑选参赛选手,请你分析,应选哪个小区?20.自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)21.某超市规定:凡一次购买大米180kg以上可以按原价打折出售,购买180kg(包括180kg)以下只能按原价出售.餐馆经营户周老板到超市买大米,原计划买的大米只能按原价付款,需要500元;若多买40kg,则按打折价格付款,恰巧也是需要500元.(1)求周老板原计划购买大米数量x(kg)的范围.(2)若按原价购买4kg与按打折购买5kg的款相同,则周老板原计划购买多少大米?22.如图,在矩形ABCD中,沿EF将矩形折叠,使A、C重合,AC与EF交于点H.(1)求证:△ABE≌△AGF;(2)若AB=6,BC=8,求△ABE的面积.23.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?24.已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:①线段PB= ,PC= ;②猜想:PA2,PB2,PQ2三者之间的数量关系为;(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;(3)若动点P满足=,求的值.(提示:请利用备用图进行探求)25.已知:m、n是方程x2﹣6x+5=0的两个实数根,且m<n,抛物线y=﹣x2+bx+c的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.参考答案1.C2.B.3.C4.C.5.D6.D.7.A8.A9.答案为:.10.答案为:﹣1;﹣2.11.答案为:4;12.答案为::1.13.答案为: 414.答案为:①②⑤;15.原式=16.答案为:4<x≤6.17.∠B=70º,∠ACB=40º18.解:19.解:(1)20;补充统计图如图所示;(2)A校区的平均分为8.第10名与第11名都得7分,所以中位数为7分;由于两校区平均分相等,B校区成绩的中位数大于A校区的中位数,所以B校区的成绩较好.(3)因为选8名学生参加学区内的演讲团体赛,20.解:21.22.23.解:(1)y=ax2+bx-75的图象过点(5,0)、(7,16),∴25a+5b-75=0,49a+7b-75=0,解得a=-1,b=20,∴y=-x2+20x-75,∵y=-x2+20x-75=-(x-10)2+25,∴y=-x2+20x-75的顶点坐标是(10,25),∴当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不低于7元且不超过13元时,该种商品每天的销售利润不低于16元.24.解答:解:(1)如图①:①∵△ABC是等腰直直角三角形,AC=1+∴AB===+,∵PA=,∴PB=,作CD⊥AB于D,则AD=CD=,∴PD=AD﹣PA=,在RT△PCD中,PC==2,故答案为,2;②如图1.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD﹣PD)2=(DC﹣PD)2=DC2﹣2DCPD+PD2,PB2=(DB+PD)2=(DC+DP)2=CD2+2DCPD+PD2∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2(2)如图②:过点C作CD⊥AB,垂足为D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵AP2=(AD+PD)2=(DC+PD)2=CD2+2DCPD+PD2,PB2=(DP﹣BD)2=(PD﹣DC)2=DC2﹣2DCPD+PD2,∴AP2+BP2=2CD2+2PD2,∵在Rt△PCD中,由勾股定理可知:PC2=DC2+PD2,∴AP2+BP2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴AP2+BP2=PQ2.(3)如图③:过点C作CD⊥AB,垂足为D.①当点P位于点P1处时.∵,∴.∴.在Rt△CP1D中,由勾股定理得:==DC,在Rt△ACD中,由勾股定理得:AC===DC,∴=.②当点P位于点P2处时.∵=,∴.在Rt△CP2D中,由勾股定理得:==,在Rt△ACD中,由勾股定理得:AC=== DC,∴=.综上所述,的比值为或.25.解:(1)解方程x2﹣6x+5=0,(x﹣1)(x﹣5)=0,得x1=5,x2=1由m<n,有m=1,n=5,所以点A、B的坐标分别为A(1,0),B(0,5).将A(1,0),B(0,5)的坐标分别代入y=﹣x2+bx+c.得,解这个方程组,得:所以,抛物线的解析式为y=﹣x2﹣4x+5(2)由y=﹣x2﹣4x+5,令y=0,得﹣x2﹣4x+5=0,解这个方程,得x1=﹣5,x2=1,所以C点的坐标为(﹣5,0).由顶点坐标公式计算,得点D(﹣2,9).过D作x轴的垂线交x轴于M.则S△DMC=×9×(5﹣2)=S梯形MDBO=×2×(9+5)=14,S△BOC=×5×5=,所以,S△BCD=S梯形MDBO+S△DMC﹣S△BOC=14+﹣=15.(3)设P点的坐标为(a,0)因为线段BC过B、C两点,所以BC所在的直线方程为y=x+5.那么,PH与直线BC的交点坐标为E(a,a+5),PH与抛物线y=﹣x2﹣4x+5的交点坐标为H(a,﹣a2﹣4a+5).由题意,得①EH=EP,即(﹣a2﹣4a+5)﹣(a+5)=(a+5)解这个方程,得a=﹣或a=﹣5(舍去)②EH=EP,即(﹣a2﹣4a+5)﹣(a+5)=(a+5)解这个方程,得a=﹣或a=﹣5(舍去),P点的坐标为(﹣,0)或(﹣,0).。

2020年青岛市数学中考第一次模拟试题及答案

2020年青岛市数学中考第一次模拟试题及答案

18.如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD,过点 A 作 AM⊥BD 于点
M,过点 D 作 DN⊥AB 于点 N,且 DN= 3 2 ,在 DB 的延长线上取一点 P,满足∠ABD
=∠MAP+∠PAB,则 AP=_____.
19.如图,在矩形 ABCD 中,AB=3,AD=5,点 E 在 DC 上,将矩形 ABCD 沿 AE 折叠,点 D
25.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
为相反数,可直接求解.
9.A
解析:A 【解析】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
7.B
解析:B 【解析】
【分析】
由题意可知 A= 1 (1 1 ) ,再将括号中两项通分并利用同分母分式的减法法则计算, x 1 x 1
再用分式的乘法法则计算即可得到结果.
【详解】
解:A=
1 1 x 1
由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】
∴延长 AB 交 x 轴于 P′,当 P 在 P′点时,PA-PB=AB,

山东青岛2020年中考数学模拟试卷 四(含答案)

山东青岛2020年中考数学模拟试卷 四(含答案)

山东青岛2020年中考数学模拟试卷四一、选择题1.已知a2=1,b是2的相反数,则a+b的值为( )A.﹣3B.﹣1C.﹣1或﹣3D.1或﹣32.如图,不是中心对称图形的是()A. B. C. D.3.第二届山西文博会刚刚落下帷幕,本届文博会共推出招商项目356个,涉及金额688亿元.数据688亿元用科学记数法表示正确的是( )A.6.88×108元 B.68.8×108元 C.6.88×1010元 D.0.688×1011元4.下列运算正确的是()A.(a2)3=a5B.a3•a=a4C.(3ab)2=6a2b2D.a6÷a3=a25.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<56.在平面直角坐标系中,点P(m-3,4-2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD 与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()二、填空题9.计算﹣3+= .10.关于x的一元二次方程x2﹣x+m=O没有实数根,则m的取值范围是 .11.在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,6,7,x,10,9,已知这组数据的平均数是8,则这组数据的中位数是.12.同一个圆的内接正方形和正三角形的边心距的比为 .13.如图,在矩形ABCD中,AB=6,BC=8,P为AD上任一点,过点P作PE⊥AC于点E,PF⊥BD于点F,则PE+PF= .14.如图所示,在平面直角坐标系xoy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为l,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n 的坐标为 .(n为正整数)15.已知△ABC,按如下步骤作图:①以A为圆心,AC长为半径画弧;②以B为圆心,BC长为半径画弧,与前一条弧相交于点D,连接CD.若AC=5,BC=CD=8,则AB的长为.三、计算题16.化简:.17.解不等式组:,并把解集在如图数轴上表示出来.四、解答题18.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.19.某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上的有 人;(2)表中m的值为 ;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.20.钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)21.为提高学校的机房条件,学校决定新购进一批电脑,经了解某电脑公司有甲、乙两种型号的电脑销售,已知甲电脑的售价比乙电脑高1000元,如果购买相同数量的甲、乙两种型号的电脑,甲所需费用为10万元,乙所需费用为8万元.(1)问甲、乙两种型号的电脑每台售价各多少元?(2)学校决定购买甲、乙两种型号的电脑共100台,且购买乙型号电脑的台数超过甲型号电脑的台数,但不多于甲型号电脑台数的4倍,则当购买甲、乙两种型号的电脑各多少台时,学校需要的总费用最少?并求出最少的费用.22.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.23.某公司经销一种商品,每件商品的成本为50元,经市场的调查,在一段时间内,销售量w (件)随销售单价x(元/件)的变化而变化,具体关系式为w=-2x+240.设这种商品在这段时间内的销售利润为y(元),解答如下问题:(1)求y与x的关系式;(2)当x取何值时,y的值最大?(3)如果物价部门规定这种商品的销售单价不得高于80元/件,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?五、综合题24.如图,已知⊙A与y轴交于C、D两点,圆心A的坐标为(1,0),⊙A的半径为,过点C作⊙A的切线交x轴于点B(﹣4,0).(1)求切线BC的解析式;(2)若点P是第一象限内⊙A上的一点,过点P作⊙A的切线与直线BC相交于点G,且∠CGP=120°,求点G的坐标;(3)向左移动⊙A(圆心A始终保持在x轴上),与直线BC交于E、F,在移动过程中是否存在点A,使△AEF是直角三角形?若存在,求出点A的坐标;若不存在,请说明理由.25.如图①,抛物线y=﹣x2+x+4与y轴交于点A,与x轴交于点B,C,将直线AB绕点A逆时针旋转90°,所得直线与x轴交于点D.(1)求直线AD的函数解析式;(2)如图②,若点P是直线AD上方抛物线上的一个动点①当点P到直线AD的距离最大时,求点P的坐标和最大距离;②当点P到直线AD的距离为时,求sin∠PAD的值.参考答案1.答案为:C.2.D.3.答案为:C4.B5.B6.答案为:A.7.B8.B9.答案为:3.10.答案为:m>0.25.11.答案为:8.12.答案为::1.13.答案为:4.8.14.答案为:(n ,).15.答案为:3+4.16.原式=17.答案为:2<x <318.解:P (两次摸出的小球的标号之和为“8”或“6”)=41.19.解:(1)在这次测试中,七年级在80分以上的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为78、79,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数78分,其名次在该班25名之前,八年级学生乙的成绩小于中位数78分,其名次在该班25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).20.21.解:22.【解答】证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.23.一、综合题24.解:(1)如图1所示,连接AC,则AC=,在Rt△AOC中,AC=,OA=1,则OC=2,∴点C的坐标为(0,2);设切线BC的解析式为y=kx+b,它过点C(0,2),B(﹣4,0),则有,解之得;∴.如图1所示,设点G的坐标为(a,c),过点G作GH⊥x轴,垂足为H点,则OH=a,GH=c=a+2,连接AP,AG;因为AC=AP,AG=AG,所以Rt△ACG≌Rt△APG(HL),所以∠AGC=×120°=60°,在Rt△ACG中,∠AGC=60°,AC=,∴sin60°=,∴AG=;在Rt△AGH中,AH=OH﹣OA=a﹣1,GH=a+2,∵AH2+GH2=AG2,∴(a﹣1)2+=,解之得:a1=,a2=﹣(舍去);∴点G的坐标为(, +2).如图2所示,在移动过程中,存在点A,使△AEF为直角三角形.要使△AEF为直角三角形,∵AE=AF,∴∠AEF=∠AFE≠90°,∴只能是∠EAF=90°;当圆心A在点B的右侧时,过点A作AM⊥BC,垂足为点M,在Rt△AEF中,AE=AF=,则EF=,AM=EF=;在Rt△OBC中,OC=2,OB=4,则BC=2,∵∠BOC=∠BMA=90°,∠OBC=∠OBM,∴△BOC∽△BMA,∴=,∴AB=,∴OA=OB﹣AB=4﹣,∴点A的坐标为(﹣4+,0);当圆心A在点B的左侧时,设圆心为A′,过点A′作A′M′⊥BC于点M′,可得:△A′M′B≌△AMB,A′B=AB=,∴OA′=OB+A′B=4+,∴点A′的坐标为(﹣4﹣,0);综上所述,点A的坐标为(﹣4+,0)或(﹣4﹣,0).25.解:(1)当x=0时,y=4,则点A的坐标为(0,4),当y=0时,0=﹣x2+x+4,解得,x1=﹣4,x2=8,则点B的坐标为(﹣4,0),点C的坐标为(8,0),∴OA=OB=4,∴∠OBA=∠OAB=45°,∵将直线AB绕点A逆时针旋转90°得到直线AD,∴∠BAD=90°,∴OAD=45°,∴∠ODA=45°,∴OA=OD,∴点D的坐标为(4,0),设直线AD的函数解析式为y=kx+b,,得,即直线AD的函数解析式为y=﹣x+4;(2)作PN⊥x轴交直线AD于点N,如右图①所示,设点P的坐标为(t,﹣t2+t+4),则点N的坐标为(t,﹣t+4),∴PN=(﹣t2+t+4)﹣(﹣t+4)=﹣t2+t,∴PN⊥x轴,∴PN∥y轴,∴∠OAD=∠PNH=45°,作PH⊥AD于点H,则∠PHN=90°,∴PH==(﹣t2+t)=t=﹣(t﹣6)2+,∴当t=6时,PH取得最大值,此时点P的坐标为(6,),即当点P到直线AD的距离最大时,点P的坐标是(6,),最大距离是;②当点P到直线AD的距离为时,如右图②所示,则t=,解得,t1=2,t2=10,则P1的坐标为(2,),P2的坐标为(10,﹣),当P1的坐标为(2,),则P1A==,∴sin∠P1AD==;当P2的坐标为(10,﹣),则P2A==,∴sin∠P2AD==;由上可得,sin∠PAD的值是或.。

青岛2020中考数学综合模拟测试卷(含答案及解析)

青岛2020中考数学综合模拟测试卷(含答案及解析)

2020山东省青岛市初级中学学业水平模拟考试数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.-6的相反数是()A.-6B.6C.-D.2.下列四个图形中,是中心对称图形的是()3.如图所示的几何体的俯视图是()4.“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000件.将8750000件用科学记数法表示为()件.A.875×104B.87.5×105C.8.75×106D.0.875×1075.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球,因此小亮估计口袋中的红球大约有()个.A.45B.48C.50D.556.已知矩形的面积为36cm2,相邻的两条边长分别为x cm和y cm,则y与x之间的函数图象大致是()7.直线l与半径为r的☉O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6B.r=6C.r>6D.r≥68.如图,△ABO缩小后变为△A'B'O,其中A、B的对应点分别为A'、B',点A、B、A'、B'均在图中格点上.若线段AB上有一点P(m,n),则点P在A'B'上的对应点P'的坐标为()A. B.(m,n) C. D.第Ⅱ卷(非选择题,共96分)二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:2-1+÷=.10.某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:甲=1.69m,乙=1.69m,甲=0.0006,乙=0.00315,则这两名运动员中的成绩更稳定.11.某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x,根据题意,可得方程.12.如图,一个正比例函数图象与一次函数y=-x+1的图象相交于点P,则这个正比例函数的表达式是.13.如图,AB是☉O直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是.14.要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的,其他三个面必须用刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需要用刀切次;分割成64个小正方体,至少需要用刀切次.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:如图,直线AB与直线BC相交于点B,点D是直线BC上一点.求作:点E,使直线DE∥AB,且点E到B,D两点的距离相等.(在题目的原图中完成作图)结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)解方程组:-(2)化简:·-.17.(本小题满分6分)请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月光明中学八年级学生每天干家务活平均时间的调查报告调查方式抽样调查调查步骤1.数据的收集:(1)在光明中学八年级每班随机调查5名学生;(2)统计这些学生2013年4月每天干家务活的平均时间(单位:min),结果如下(其中A表示10min;B表示20min;C表示30min):B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以频数分布直方图的形式呈现上述统计结果.请补全频数分布直方图.3.数据的分析:列式计算所随机调查学生每天干家务活平均时间的平均数(结果保留整数).光明中学八年级共有240名学生,其中大约有名学生每天干家务活的平18.(本小题满分6分)小明和小刚做摸纸牌游戏.如图,两组相同的纸牌,每组两张,牌面数字分别是2和3.将两组牌背面朝上,洗匀后从每组牌中各摸出一张,称为一次游戏.当两张牌的牌面数字之积为奇数时,小明得2分,否则小刚得1分.这个游戏对双方公平吗?请说明理由.19.(本小题满分6分)某校学生捐款支援地震灾区,第一次捐款总额为6600元,第二次捐款总额为7260元,第二次捐款人数比第一次多30人,而且两次人均捐款额恰好相等.求第一次的捐款人数.20.(本小题满分8分)如图,马路的两边CF,DE互相平行,线段CD为人行横道,马路两侧的A,B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路的两边垂直.马路宽20米,A,B相距62米, ∠A=67°,∠B=37°.(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B.求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米.参考数据:sin67°≈,cos67°≈,tan67°≈,sin37°≈,cos37°≈,tan37°≈21.(本小题满分8分)已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=时,四边形MENF是正方形(只写结论,不需证明).22.(本小题满分10分)某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案,方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请比较哪种方案的最大利润更高,并说明理由.23.(本小题满分10分)在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式.图①图②这种利用面积关系解决问题的方法,使抽象的数量关系因几何直观而形象化.【研究速算】提出问题:47×43,56×54,79×71,…是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法?图③几何建模:用矩形的面积表示两个正数的乘积,以47×43为例:(1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面.(2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和.即47×43=(40+10)×40+3×7=5×4×100+3×7=2021.用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果.归纳提炼:两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述):【研究方程】提出问题:怎样图解一元二次方程x2+2x-35=0(x>0)?几何建模:图④(1)变形:x(x+2)=35.(2)画四个长为x+2,宽为x的矩形,构造图④.(3)分析:图中的大正方形面积可以有两种不同的表达方式,(x+x+2)2或四个长x+2,宽x的矩形面积之和,加上中间边长为2的小正方形面积.即(x+x+2)2=4x(x+2)+22,∵x(x+2)=35,∴(x+x+2)2=4×35+22,∴(2x+2)2=144,∵x>0,∴x=5.归纳提炼:求关于x的一元二次方程x(x+b)=c(x>0,b>0,c>0)的解.要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长).图⑤【研究不等关系】提出问题:怎样运用矩形面积表示(y+3)(y+2)与2y+5的大小关系(其中y>0)?几何建模:(1)画长y+3,宽y+2的矩形,按图⑤方式分割.(2)变形:2y+5=(y+3)+(y+2).(3)分析:图⑤中大矩形的面积可以表示为(y+3)(y+2);阴影部分面积可以表示为(y+3)×1,画点部分的面积可表示为y+2.由图形的部分与整体的关系可知,(y+3)(y+2)>(y+3)+(y+2),即(y+3)(y+2)>2y+5.归纳提炼:当a>2,b>2时,表示ab与a+b的大小关系.根据题意,设a=2+m,b=2+n(m>0,n>0).要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长).24.(本小题满分12分)已知,如图,▱ABCD中,AD=3cm,CD=1cm,∠B=45°.点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连结并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N.设运动时间为t(s)(0<t<1).解答下列问题:(1)当t为何值时,四边形AQDM是平行四边形?(2)设四边形ANPM的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使四边形ANPM的面积是▱ABCD面积的一半?若存在,求出相应的t 值,若不存在,说明理由;(4)连结AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成∶1的两部分?若存在,求出相应的t值,若不存在,说明理由.答案全解全析:1.B 只有符号不同的两个数互为相反数,-6的相反数为6,故选B.2.D 选项A、B、C中的图形都是轴对称图形,D选项中的图形为中心对称图形,故选D.3.B 根据原几何体的图形特征可判断其俯视图为显示圆心的圆,故选B.4.C 科学记数法是指将一个数写成a×10n的形式,其中1≤|a|<10,n是比整数位数少1的数,对于数8 750 000,a=8.75,n=6,所以8 750 000用科学记数法表示为8.75×106,故选C.5.A 设口袋中有红球x个,由题意得,=,解得x=45.故选A.6.A 由题意得xy=36,即y=,且x>0,y>0,故选A.7.C 直线与☉O相交,设点O到l的距离为d,则d<r,即r>6.故选C.8.D 由题图可知A(4,6),A'(2,3),即△AOB与△A'OB'的位似比为2∶1,∵P的坐标为(m,n),所以P',.评析本题主要考查三角形的位似变换,属容易题.9.答案解析2-1+÷=+=+2=.10.答案甲解析方差是衡量数据波动大小的量,因甲<乙,所以甲运动员成绩更稳定.11.答案40(1+x)2=48.4解析由题意得2011年缴税为40(1+x),2012年缴税为40(1+x)+40(1+x)x=40(1+x)2,所以得方程40(1+x)2=48.4.12.答案y=-2x解析当y=2时,2=-x+1,x=-1,∴P(-1,2),∴正比例函数表达式是y=-2x.13.答案-解析连结CO,∵AB是☉O的直径,∴∠ACB=90°,又∠B=30°,∴AB=2AC=4,∴∠COB=2∠A=120°,∴S阴影=S扇形COB-S△COB=-×22=-.14.答案6;6解析将大正方体一个顶点处的三个面每个面从棱的三等分点处切,每个面切2刀,共切2×3=6刀,即可将正方体分割成27个小正方体;假设大正方体为4×4×4,可按题干所给方法三刀分成8块2×2×2的小正方体,将8块小正方体排成一列,成2×2×16的长方体,在2×2的面切两刀,成32个1×1×2的小长方体,将这些长方体排成一列,成1×2×32的长方体,在1×2的面切一刀,成64个1×1×1的小正方体,所以至少需切3+2+1=6次.评析本题考查学生对几何体的认识以及对问题的探究能力,通过实践操作提高学生有条理地解决问题的能力.15.解析正确作图(如图);结论:图中点E即为要求作的点.16.解析(1),①-,②①+②得3x=3,∴x=1.将x=1代入②得1-y=0,∴y=1.∴原方程组的解是, .(2)·-=·()(-)=-.17.解析调查步骤2.数据的处理:C对应的学生人数为5,正确补全频数分布直方图略.调查步骤3.数据的分析:=×(10×10+15×20+5×30)=×550=≈18(分钟).答:所随机调查的学生每天干家务活平均时间的平均数约是18分钟. 调查结论:12018.解析∴P(积为奇数)=,P(积为偶数)=,∴小明得分:×2=(分),小刚得分:×1=(分),∵≠,∴这个游戏对双方不公平.19.解析设第一次有x名学生捐款,则第二次有(x+30)名学生捐款, 根据题意得=,解这个方程,得x=300.经检验,x=300是分式方程的根.答:第一次有300名学生捐款.20.解析(1)根据题意知,DE⊥AB,CF⊥AB.设DE为x米,在Rt△ADE中,∠A=67°,∴tan 67°==≈,则AE≈x米,∵DC∥AB,∴CF=DE=x米.在Rt△CBF中,∠B=37°,∴tan 37°==≈,则BF≈x米.∵AE+EF+FB=62,∴x+20+x=62,解得x=24.即CD与AB之间的距离为24米.(2)在Rt△ADE中,∠A=67°,sin 67°=,≈=26(米).∴AD=°在Rt△CBF中,∠B=37°,sin 37°=,≈=40(米).∴BC=°∴AD+DC+CB=26+20+40=86(米),86-62=24(米).即他沿折线A→D→C→B到达超市比直接横穿马路多走24米. 21.解析(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC.又∵MA=MD,∴△ABM≌△DCM(SAS).(2)四边形MENF是菱形.理由:∵CF=FM,CN=NB,∴FN∥MB,同理可得EN∥MC,∴四边形MENF是平行四边形.∵△ABM≌△DCM,∴MB=MC,又∵ME=MB,MF=MC,∴ME=MF,∴平行四边形MENF是菱形.(3)2∶1.评析本题考查矩形的性质、三角形全等的判定、正方形的判定等知识,属中等难度题目.22.解析(1)w=(x-20)[250-10×(x-25)]=(x-20)(250-10x+250)=-10x2+700x-10 000,∴w与x之间的函数关系式是w=-10x2+700x-10 000.(2)w=-10x2+700x-10 000=-10(x2-70x+1 000)=-10(x2-70x+352-1 225+1 000)=-10(x-35)2+2 250,∵a=-10<0,∴w有最大值,当x=35时,w最大值=2 250.∴当销售单价为35元时,该文具每天的销售利润最大.(3)方案A:由题意可知20<x≤30,∵a=-10<0,对称轴是x=35,∴抛物线开口向下,在对称轴左侧w随x的增大而增大,∴当x=30时,w取得最大值,w A最大=-10×(30-35)2+2 250=2 000(元).方案B:由题意得,-(-),解得45≤x≤49.在对称轴右侧w随x的增大而减小,∴当x=45时,w取得最大值,w B最大=-10×(45-35)2+2 250=1 250(元).∵2 000元>1 250元,∴方案A的最大利润更高.评析本题根据条件确定各量的代数式是关键点也是易错点,运用二次函数求最值时需考虑自变量的取值范围.23.解析【研究速算】归纳提炼:十位数字加1的和与十位数字相乘,再乘以100,加上两个个位数字的积,构成运算结果. 【研究方程】归纳提炼:画四个长为x+b,宽为x的矩形,构造图①,则图中的大正方形面积可以有两种不同的表达方式,(x+x+b)2或四个长为x+b,宽为x的矩形面积之和,加上中间边长为b的小正方形面积.即(x+x+b)2=4x(x+b)+b2,图①∵x(x+b)=c,∴(x+x+b)2=4c+b2,∴(2x+b)2=4c+b2.∵x>0,∴x=-.【研究不等关系】归纳提炼:(1)画长为2+m,宽为2+n的矩形,并按图②方式分割.图②(2)变形:a+b=(2+m)+(2+n).(3)分析:图中大矩形的面积可表示为(2+m)(2+n);阴影部分的面积可表示为2+m与2+n的和.由图形的部分与整体的关系知,(2+m)(2+n)>(2+m)+(2+n),即ab>a+b.24.解析(1)∵四边形AQDM是平行四边形,∴PA=PD,即3t=3-3t,解得t=.答:当t= s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MAP=∠QDP,又∵∠MPA=∠QPD,∴△MAP∽△QDP,∴=,即-=-,∴AM=t.∵MN⊥BC,在Rt△MBN中,sin 45°==,∴MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,又∵MN⊥BC,∴MN⊥AD,∴S四边形ANPM=S△MAP+S△NAP=×AP×OM+×AP×ON=×AP×(OM+ON)=×AP×MN=×3t×(1+t)=t2+t.答:y与t之间的函数关系式是y=t2+t.(3)假设存在某一时刻t,使四边形ANPM的面积是▱ABCD面积的一半. 此时t2+t=×3×,即t2+t-1=0,解得t1=-,t2=--(舍去).答:当t=- s时,四边形ANPM的面积是▱ABCD面积的一半.(4)假设存在某一时刻t,使NP与AC的交点把线段AC分成∶1的两部分.设NP与AC相交于点E,那么AE∶EC=∶1或AE∶EC=1∶.当AE∶EC=∶1时,∵四边形ABCD是平行四边形,∴AD∥BC,∴△APE∽△CNE,, 解得t=-.∴=,即=-()当AE∶EC=1∶时,,解得t=-.同理可得=,即=-()答:当t=- s或- s时,NP与AC的交点把线段AC分成∶1的两部分.评析本题是以平行四边形为背景的动点问题,综合考查了平行四边形的性质,三角形面积的表示方法、相似的判定与性质以及分类讨论的数学思想方法,属难题.。

青岛2020中考数学综合模拟测试卷(含答案及解析)

青岛2020中考数学综合模拟测试卷(含答案及解析)

20山东省青岛市初级中学学业水平考试数学27A(满分:120分时间:120分钟)第Ⅰ卷(选择题,共24分)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.-2的绝对值是()A.-B.-2C.D.22.下列图形中,既是轴对称图形,又是中心对称图形的是()3.如图,正方体表面上画有一圈黑色线条,则它的左视图是()4.已知,☉O1与☉O2的半径分别是4和6,O1O2=2,则☉O1与☉O2的位置关系是()A.内切B.相交C.外切D.外离5.则下列说法正确的是()A.学生成绩的极差是4B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A'的坐标是()A.(6,1)B.(0,1)C.(0,-3)D.(6,-3)7.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A. B. C. D.8.点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=-的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3第Ⅱ卷(非选择题,共96分)二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:(-3)0+×=.10.为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为元.11.如图,点A、B、C在☉O上,∠AOC=60°,则∠ABC的度数是°.12.如图,在一块长为22米、宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x 米,则根据题意可列方程为.13.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A'B'C,使得点A'恰好落在AB上,连结BB',则BB'的长度为.14.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为cm.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a,c,∠α.求作:△ABC,使BC=a,AB=c,∠ABC=∠α.结论:四、解答题(本题满分74分,共有9道小题)16.(本小题满分8分,每题4分)(1)化简:·-;(2)解不等式组:--17.(本小题满分6分)某校为开展每天一小时阳光体育活动,准备组建篮球、排球、足球、乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据绘制成如下两幅统计图:根据图中的信息解答下列问题:(1)补全条形统计图;(2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;(3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.(本小题满分6分)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”、“花开富贵”、“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?并说明理由.27B19.(本小题满分6分)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.(本小题满分8分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离(B、F、C在一条直线上).(1)求教学楼AB的高度;(2)学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).参考数据21.(本小题满分8分)已知:如图,四边形ABCD的对角线AC、BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.(1)求证:△BOE≌△DOF;(2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.(本小题满分10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.(本小题满分10分)问题提出:以n边形的n个顶点和它内部的m个点,共(m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊化的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.图①探究二:以△ABC的三个顶点和它内部的2个点P、Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;图②另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.图③显然,不管哪种情况,都可把△ABC分割成5个互不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P、Q、R,共6个点为顶点可把△ABC分割成个互不重叠的小三角形,并在图④中画出一种分割示意图.图④探究四:以△ABC的三个顶点和它内部的m个点,共(m+3)个顶点可把△ABC分割成个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共(m+4)个顶点,可把四边形分割成个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共(m+n)个顶点,可把△ABC分割成个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的2012个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.(本小题满分12分)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分别是AC、AB的中点,连结DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连结PQ,设运动时间为t(s)(0<t<4).解答下列问题:(1)当t为何值时,PQ⊥AB?(2)当点Q在B、E之间运动时,设五边形PQBCD的面积为y(cm2),求y与t之间的函数关系式;(3)在(2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S△PQE∶S=1∶29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.五边形PQBCD备用图一、选择题1.D因为负数的绝对值是它的相反数,所以-2的绝对值是2.故选D.2.C A是中心对称图形,B是轴对称图形,D是轴对称图形,C既是轴对称图形又是中心对称图形,故选C.3.B正方体的三视图都是正方形,从左侧看黑色线条为竖直实线,所以左视图为中间有竖直实线的正方形.故选B.4.A由圆与圆的位置关系可知:当d=R-r时,两圆内切.故选A.5.C极差是最大值减最小值,即100-60=40分;众数是学生成绩出现次数最多的数,即80分;中位数是成绩从低到高(或从高到低)排列,中间两个数的平均数,即80分;学生成绩的平均数是成绩总和除以总人数,即81分.综上,说法正确的是C,故选C.6.B由题图可知,点A(3,-1).向左平移3个单位,横坐标减3,纵坐标不变;再向上平移2个单位,横坐标不变,纵坐标加2,所以A'的坐标是(0,1).故选B.7.D题图中,左转盘红蓝比是1∶1,右转盘红蓝比是1∶2.同为红的概率是,同为蓝的概率是,所以红蓝的概率是1--=.故选D.8.A因为k=-3<0,所以图象在第二、四象限,因为x1<x2<0,所以点A、B在第二象限,y1、y2>0;因为x3>0,所以点C在第四象限,y3<0.根据反比例函数的性质,当k<0时,在每个象限内,y随x 的增大而增大,所以当x1<x2时,y1<y2.所以y3<y1<y2,故选A.二、填空题9.答案7解析原式=1+=1+6=7.10.答案 1.6×1010解析科学记数法是把一个数写成a×10n的形式,其中1≤|a|<10,此整数位数有11位,则n=11-1=10,所以表示为1.6×1010.11.答案150解析因为∠AOC=60°,所以优弧AC的度数是360°-60°=300°,所以∠ABC=×300°=150°.12.答案(22-x)(17-x)=300解析剩余部分可以拼成长为(22-x)米,宽为(17-x)米的矩形,而剩余部分的面积为300平方米,所以可得方程(22-x)(17-x)=300.13.答案解析因为△ABC中,∠ACB=90°,∠ABC=30°,AC=1,所以BC=,∠A=60°,因为CA=CA',所以△CAA'是等边三角形,所以∠ACA'=60°,所以旋转角是60°,所以∠BCB'=60°,又因为CB=CB',所以△CBB'是等边三角形,所以BB'=BC=.14.答案15解析圆柱侧面展开图如图所示,作点A关于DE的对称点A',连结A'C,与DE交于点P,连结PA、PC,则A→P→C就是最短线路.在Rt△A'BC中,BC=9cm,A'B=12cm,所以A'C=15cm,所以PA+PC=A'C=15cm.评析本题考查圆柱的侧面展开图,以及运用轴对称和勾股定理求两线段和的最小值,解题的关键是运用轴对称构造直角三角形,题目背景富有趣味性,易激发学生做题兴趣.三、作图题15.解析(3分)结论:△ABC就是所求的三角形.(4分)四、解答题16.解析(1)原式=·-=-.(4分)(2)--解不等式①得x>,解不等式②得x≤4,∴原不等式组的解集为<x≤4.(4分)17.解析(1)15÷30%=50,50-10-20-15=5,图略.(2分)(2)400×=160(人).(4分)(3)略.意见和建议只要合理即可.(6分)18.解析(1)=(或5%).(2分)(2)平均每张奖券获得的购物券金额为100×+50×+20×+0×=14(元),∵14>10,∴选择抽奖更合算.(6分)19.解析设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:-=,(4分)解这个方程,得x=75,(5分)经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.(6分)20.解析(1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,(3分)∴tan22°=,-≈,x≈12.即教学楼的高约为12米.(6分)(2)由(1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=,∴AE=≈≈27,即A、E之间的距离约为27米.(8分)评析本题考查学生运用三角函数知识解决实际问题的能力,属中档题.依据题意构造直角三角形是解题的有效途径,题目的计算属于易错点.21.解析(1)证明:∵BE⊥AC,DF⊥AC,∴∠BEO=∠DFO=90°,又∵∠EOB=∠FOD,OE=OF,∴△BOE≌△DOF(ASA).(4分)(2)四边形ABCD是矩形.∵△BOE≌△DOF,∴OB=OD.又∵OA=OC,∴四边形ABCD是平行四边形.∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.(8分)22.解析(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),-则有解得∴y=-30x+600.当x=14时,y=180;当x=16时,y=120,即点(14,180),(16,120)均在函数y=-30x+600的图象上.∴y与x之间的函数关系式为y=-30x+600.(4分)(2)w=(x-6)(-30x+600)=-30x2+780x+3600,即w与x之间的函数关系式为w=-30x2+780x-3600.(7分)(3)由题意得6(-30x+600)≤900,解得x≥15,=13,w=-30x2+780x-3600图象对称轴为x=--∵a=-30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.(10分)评析本题考查学生根据实际情况确定一次函数和二次函数解析式的能力,考查学生综合运用函数知识解决实际问题的能力.属中档题.23.解析探究三:7.分割示意图.(答案不唯一)(2分)探究四:3+2(m-1)或2m+1.(4分)探究拓展:4+2(m-1)或2m+2.(6分)问题解决:n+2(m-1)或2m+n-2.(8分)实际应用:把n=8,m=2012代入上述代数式,得2m+n-2=2×2012+8-2=4024+8-2=4030.(10分)评析本题主要考查学生综合运用三角形、四边形、多边形的有关知识,分析问题,探究规律,以及对知识的迁移能力,属中等偏难题.图①24.解析(1)如图①,在Rt△ABC中,AC=6,BC=8,∴AB==10.∵D、E分别是AC、AB的中点,∴AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4,∵PQ⊥AB,∴∠PQB=∠C=90°.又∵DE∥BC,∴∠AED=∠B,∴△PQE∽△ACB,∴=,由题意得PE=4-t,QE=2t-5,即-=-,解得t=.(4分)图②(2)如图②,过点P作PM⊥AB于M.由△PME∽△ABC,得=,∴=-,得PM=(4-t),∴S△PQE=EQ·PM=(5-2t)·(4-t)=t2-t+6,S梯形DCBE=×(4+8)×3=18,∴y=18--=-t2+t+12.(8分)(3)假设存在时刻t,使S△PQE∶S五边形PQBCD=1∶29,此时S△PQE=S四边形BCDE,∴t2-t+6=×18,即2t2-13t+18=0,∴t1=2,t2=(舍去).当t=2时,PM=×(4-2)=,ME=×(4-2)=,EQ=5-2×2=1,MQ=ME+EQ=+1=.PQ===,∵PQ·h=,∴h=×=.(12分)评析本题考查的知识点有勾股定理、三角形中位线定理、相似三角形、二次函数、一元二次方程求根等.考查学生综合分析问题和解决问题的能力.属难题.。

青岛市名校联考2020届数学中考模拟试卷

青岛市名校联考2020届数学中考模拟试卷

青岛市名校联考2020届数学中考模拟试卷一、选择题1.小明总结了以下结论:①a(b+c)=ab+ac ;②a(b ﹣c)=ab ﹣ac ;③(b ﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0);其中一定成立的个数是( ) A .1B .2C .3D .42.如图,在Rt △ABC 中,∠C =30°,AB =4,D ,F 分别是AC ,BC 的中点,等腰直角三角形DEH 的边DE 经过点F ,EH 交BC 于点G ,且DF =2EF ,则CG 的长为( )A .B . 1C .52D 3.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为菱形的是( ) A .AC BD ⊥B .ABD ADB ∠=∠C .AB CD =D .AB BC =4.民间剪纸是中国古老的传统民间艺术,它历史悠久,风格独特,深受国内外人士所喜爱,下列剪纸作品中,是轴对称图形的为( )A .B .C .D .5.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=,4OC =,则CD 的长为( )A .B .4C .D .86.如图所示,四边形ABCD 是边长为3的正方形,点E 在BC 上,BE =1,△ABE 绕点A 逆时针旋转后得到△ADF ,则FE 的长等于( )A .B .C .D .7.如图,小明从二次函数y =ax 2+bx+c 图象中看出这样四条结论:①a >0; ②b >0; ③c >0; ④b 2﹣4ac >0;其中正确的是( )A .①②④B .②④C .①②③D .①②③④8.在数轴上点M 表示的数为2-,与点M 距离等于3个单位长度的点表示的数为( ) A.1B.5-C.5-或1D.1-或59.三棱柱的三视图如图所示,已知△EFG 中,EF =8cm ,EG =12cm ,∠EFG =45°.则AB 的长为( )cm .A .8B .12C .D .10.下列事件属于必然事件的是( ) A .明天我市最高气温为56℃B .下雨后有彩虹C .在1个标准大气压下,水加热到100℃沸腾D .中秋节晚上能看到月亮11.如图,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,连结BD ,如果∠DAC=∠DBA ,那么∠BAC 度数是( )A .32°B .35°C .36°D .40°12.下列式子中,计算正确的是( ) A .224x x x += B .()222a b a b -=- C .()326a a -=-D .3412x x x ⋅=二、填空题13.因式分解2x 3﹣8x =_____.14.抛物线 221y x =-的顶点坐标是________.15.如图,▱ABCO 中,OA=2,AB=6,将▱ABCO 绕点A 逆时针旋转得▱ADEF ,AD 经过原点O ,点F 落在x 轴上,若双曲线y=kx经过点D ,则k 的值为____.16.(2017浙江省湖州市,第16题,4分)如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数1yx=和9yx=在第一象限的图象于点A,B,过点B作 BD⊥x轴于点D,交1yx=的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是______.17.将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB 上,折痕为AH,则的值是______.18.计算()233ab的结果等于_____________三、解答题19.黄金分割比是生活中比较多见的一种长度比值,它能给人许多美感和科学性,我们初中阶段学过的许多几何图形也有着类似的边长比例关系.例如我们熟悉的顶角是36°的等腰三角形,其底与腰之比就,底角平分线与腰的交点为黄金分割点.(1)如图1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分线CD交腰AB于点D,请你证明点D是腰AB 的黄金分割点;(2)如图2,在△ABC 中,AB =AC ,若AB BC =,则请你求出∠A 的度数; (3)如图3,如果在Rt △ABC 中,∠ACB =90°,CD 为AB 上的高,∠A 、∠B 、∠ACB 的对边分别为a ,b ,c .若点D 是AB 的黄金分割点,那么该直角三角形的三边a ,b ,c 之间是什么数量关系?并证明你的结论.20.近些年全国各地频发雾霾天气,给人民群众的身体健康带来了危害,某商场看到商机后决定购进甲、乙两种空气净化器进行销售.若每台甲种空气净化器的进价比每台乙种空气净化器的进价少300元,且用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同. (1)求每台甲种空气净化器、每台乙种空气净化器的进价分别为多少元?(2)若该商场准备进货甲、乙两种空气净化器共30台,且进货花费不超过42000元,问最少进货甲种空气净化器多少台?21.如图,在平面直角坐标系xOy 中,点A 在x 轴上,点B 在第一象限内,∠OAB =90°,OA =AB ,△OAB 的面积为2,反比例函数y =kx的图象经过点B . (1)求k 的值;(2)已知点P 坐标为(a ,0),过点P 作直线OB 的垂线l ,点O ,A 关于直线l 的对称点分别为O′,A′,若线段O′A′与反比例函数y =kx的图象有公共点,直接写出a 的取值范围.22.九(1)班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类别,每位同学仅选一项.根据调査结果绘制了不完整的频数分布表和扇形统计图.(1)直接写出:a = .b = m = ;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请求选取的2人恰好是甲和乙的概率.23.计算:()1013cos3012π-︒⎛⎫-+- ⎪⎝⎭. 24.为弘扬“绿水青山就是金山银山”精神,某地区鼓励农户利用荒坡种植果树,某农户考察三种不同的果树苗A 、B 、C ,经引种试验后发现,引种树苗A 的自然成活率为0.8,引种树苗B 、C 的自然成活率均为0.9.(1)若引种树苗A 、B 、C 各10棵. ①估计自然成活的总棵数;②利用①的估计结论,从没有自然成活的树苗中随机抽取两棵,求抽到的两棵都是树苗A 的概率: (2)该农户决定引种B 种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.若每棵树苗引种最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B 种树苗多少棵?25.先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足方程x 2-2x-3=0. 【参考答案】*** 一、选择题13.2x (x+2)(x ﹣2) 14.(0,-1)1516.k=7或5. 17.18.269a b 三、解答题19.(1)见解析;(2)108°;(3)该直角三角形的三边a ,b ,c 之间应满足2b ac =,见解析. 【解析】 【分析】(1)根据三角形内角和等于180°,求出∠ABC=∠ACB=72°,再根据CD 是∠ACB 的角平分线,求出∠ACD=∠BCD=36°,所以△BCD 和△ABC 是相似的两个等腰三角形,并且AD=BC ,根据相似三角形对应边成比例列出比例式整理即可证明;(2)在BC 边上截取BD=AB ,连接AD ,再根据“AB=AC,12AB BC =分别求出CD AC 与AC BC 的值都是,所以△ACD ∽△ACB ,根据相似三角形对应角相等和三角形的一个外角等于和它不相邻的两个内角的和,利用三角形内角和定理列式即可求出∠A 的度数;(3)根据相似三角形对应边成比例分别求出AD、BD的长,再根据AB=AD+BD代入整理即可得到a、b、c 之间的关系.【详解】解:(1)证明:∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,又CD是∠ACB的角平分线,∴∠ACD=∠BCD=36°,∴∠A=∠DCA,∠BDC=72°,∴AD=CD=BC,在△BCD和△BAC中,∠B=∠B,∠BCD=∠A,∴△BCD∽△BAC,∴BC BD AB BC=,∴BC2=AB•BD又BC=AD,∴AD2=AB•BD,∴D是AB的黄金分割点;(2)在底边BC上截取BD=AB,连接AD,∵12ABBC=,AB=AC,BDBC∴=,ACBC∴=,CD CD1BD AC2∴==,CD ACAC BC∴=,又∠C=∠C,∴△ACD∽△BCA,∴设∠CAB=∠CDA=x,∴∠BAD=∠BDA=2x,∴x+2x+x+x=180°,∴x=36°,∴∠BAC=108°;(3)∵在Rt△ABC中,∠ACB=90°,CD为AB上的高,∴△ADC∽△CDB∽△ACB,AD AC BD BC,AC AB BC AB∴==22b aAD,BDc c∴==,∵点D是AB的黄金分割点,∴AD2=BD•AB,222b ac c c ⎛⎫∴=⋅ ⎪⎝⎭,该直角三角形的三边a ,b ,c 之间应满足b 2=ac .【点睛】本题综合性较强,主要利用相似三角形对应边成比例、对应角相等,三角形的外角性质,三角形的内角和定理,熟练掌握各定理和性质并灵活运用是解题的关键.20.(1)每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元(2)至少进货甲种空气净化器10台. 【解析】 【分析】(1)设每台甲种空气净化器为x 元,乙种净化器为(x+300)元,根据用6000元购进甲种空气净化器的数量与用7500元购进乙种空气净化器的数量相同,列出方程求解即可;(2)设甲种空气净化器为y 台,乙种净化器为(30﹣y)台,根据进货花费不超过42000元,列出不等式求解即可. 【详解】(1)设每台甲种空气净化器为x 元,乙种净化器为(x+300)元,由题意得:60007500300x x =+, 解得:x =1200,经检验得:x =1200是原方程的解, 则x+300=1500,答:每台甲种空气净化器、每台乙种空气净化器的进价分别为1200元,1500元. (2)设甲种空气净化器为y 台,乙种净化器为(30﹣y)台,根据题意得: 1200y+1500(30﹣y)≤42000, y≥10,答:至少进货甲种空气净化器10台. 【点睛】本题考查分式方程和不等式的应用,分析题意,找到合适的等量关系列出方程和不等式是解决问题的关键.21.(1)k =4;(2或 【解析】 【分析】(1)运用反比例函数的几何意义,求出k =4;(2)运用对称的点坐标关系,分别表示O′、A′,在第三象限,当点O′在双曲线上时a 取最小值,当点A′在双曲线上时,a 取最大值;在第一象限,同理可求a 的取值范围 【详解】解:(1)∵∠OAB=90°,OA=AB,∴设点B的坐标为(m,m),则OA=AB=m,∵△OAB的面积为2,∴12m m=2,解得:m=2(负值舍去),∴点B的坐标为(2,2),代入反比例函数y=kx中,得k=4;(2)∵B(2,2)∴∠BOA=45°,∵l⊥OB,∴O′A′⊥x轴∴P、O′、A′三点共线,且点O′在直线OB上∴O′(a,a)、A′(a,a﹣2)当O′在反比例函数图象上时,有a×a=4解得:a1=﹣2,a2=2当A′在反比例函数图象上时,有a×(a﹣2)=4解得:a3=a4=1若线段O′A′与反比例函数y=kx的图象有公共点,a或【点睛】本题考查了反比例函数图象与一次函数图象的交点问题,熟练运用图象上的点的坐标满足图象的解析式是本题的关键22.(1)20、40、15;(2)1 6【解析】【分析】(1)先由散文对应的频数及其频率可得总人数b,再用总人数乘以小数对应频率求得其人数a,用其他人数除以总人数可得m的值;(2)利用树状图法展示所有12种等可能的结果数,再找出恰好是甲和乙的结果数,然后根据概率公式求解.【详解】解:(1)∵被调查的总人数b=10÷0.25=40(人),∴a=40×0.5=20,m%=640×100%=15%,即m=15,故答案为:20、40、15;(2)画树状图如下:共有12种等可能的结果数,其中恰好是甲和乙的只有2种,所以选取的2人恰好是甲和乙的概率=21 126=.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法或列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.【解析】【分析】先计算零指数幂、负指数幂、特殊角的三角函数、绝对值,再进行二次根式化简,然后根据实数的运算法则求得计算结果.【详解】解:原式=2﹣1+1【点睛】考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数值、绝对值等考点的运算.24.(1)①自然成活的有26棵;②16;(2)至少引种B种树苗700棵.【解析】【分析】(1)①根据成活率求得答案即可;②列出树状图,利用概率公式求解即可;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96x,未能成活棵数为0.04x,利用农户为了获利不低于20万元列出不等式求解即可.【详解】解:(1)①10×0.8+10×0.9+10×0.9=26(棵),答:自然成活的有26棵;②在这12种情况下,抽到的2棵均为树苗A的有2种,∴P=16;(2)设引B树苗x棵,则最终成活棵数为:0.9x+0.1x×0.75×0.8=0.96 x,未能成活棵数为0.04 x 300(0.96 x)﹣50(0.04x)≥200000x≥100000143=69943143∴x=700棵答:该户至少引种B种树苗700棵.【点睛】本题考查了利用频率估计概率及列表法求概率的知识,解题的关键是能够正确的通过列树状图将所有等可能的结果列举出来,难度不大. 25.94【解析】 【分析】先根据分式的运算法则化简分数,然后解一元二次方程求出x ,将能使分式有意义的值代入化简后的式子即可求出答案. 【详解】 解:原式=1(2)211x x x xx x x -+⋅-+-+ =1x x x -+ =21x x +; 当x 2-2x-3=0时,解得:x=3或x=-1(不合题意,舍去) 当x=3时,原式=94; 【点睛】本题考查分式的运算和一元二次方程解法,解题的关键是熟练运用分式的运算法则化简分式,注意代入x 值要使分式有意义.。

备战2020中考青岛市中考模拟考试数学试题含答案(3)【含多套模拟】

备战2020中考青岛市中考模拟考试数学试题含答案(3)【含多套模拟】

中学数学二模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣93.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3 9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.13.(3分)不等式组的解集是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=时,四边形AOCP是菱形;②连接BP,当∠ABP=时,PC是⊙O的切线.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是;②∠ABE=;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.参考答案与试题解析一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣2【分析】根据绝对值的定义进行计算.【解答】解:||=,故选:B.【点评】本题考查了绝对值.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000039=3.9×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得左视图为:.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2+a2=2a2,故此选项错误;B、a6÷a2=a4,故此选项错误;C、(﹣2a)3=﹣8a3,正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是分,错误;D、方差是=19,错误;故选:A.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.7.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°【分析】由P A与PB都为圆O的切线,利用切线的性质得到OA垂直于AP,OB垂直于BP,可得出两个角为直角,再由同弧所对的圆心角等于所对圆周角的2倍,由已知∠C 的度数求出∠AOB的度数,在四边形P ABO中,根据四边形的内角和定理即可求出∠P 的度数.【解答】解:∵P A、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选:C.【点评】本题主要考查了切线的性质,四边形的内角与外角,以及圆周角定理,熟练运用性质及定理是解本题的关键.8.(3分)若函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,则m的值为()A.﹣2或3B.﹣2或﹣3C.1或﹣2或3D.1或﹣2或﹣3【分析】根据m=1和m≠1两种情况,根据一次函数的性质、二次函数与方程的关系解答.【解答】解:当m=1时,函数解析式为:y=﹣6x+是一次函数,图象与x轴有且只有一个交点,当m≠1时,函数为二次函数,∵函数y=(m﹣1)x2﹣6x+m的图象与x轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.【点评】本题考查的是抛物线与x轴的交点问题,掌握二次函数与一元二次方程的关系、灵活运用分情况讨论思想是解题的关键.9.(3分)如图,点A在双曲线y═(x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于OA的长为半径作弧,两弧相交于D,E两点,作直线DE 交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A.2B.C.D.【分析】如图,设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【解答】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF==,∴AK=OK==,∴OA=,由△FOC∽△OBA,可得==,∴==,∴OB=,AB=,∴A(,),∴k=.故选:B.【点评】本题考查作图﹣复杂作图,反比例函数图象上的点的坐标特征,线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.(3分)如图,点A在x轴上,点B,C在反比例函数y=(k>0,x>0)的图象上.有一个动点P从点A出发,沿A→B→C→O的路线(图中“→”所示路线)匀速运动,过点P作PM⊥x轴,垂足为M,设△POM的面积为S,点P的运动时间为t,则S关于t 的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成A→B、B→C、C→O三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:D.【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.填空题(每题3分,共15分)11.(3分)计算:+(﹣1)0﹣()﹣2=0.【分析】直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=3+1﹣4=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,随机闭合开关S1,S2,S3中的两个,能够让灯泡发光的概率为.【分析】根据题意可得:随机闭合开关S1,S2,S3中的两个,有3种方法,其中有两种能够让灯泡发光,故其概率为.【解答】解:P(灯泡发光)=.故本题答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13.(3分)不等式组的解集是﹣1≤x<3.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.14.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为π﹣2.【分析】空白处的面积等于△ABC的面积减去扇形BCD的面积的2倍,阴影部分的面积等于△ABC的面积减去空白处的面积即可得出答案.【解答】解:∵∠ACB=90°,AC=BC=2,∴S△ABC=×2×2=2,S扇形BCD==π,S空白=2×(2﹣π)=4﹣π,S阴影=S△ABC﹣S空白=2﹣4+π=π﹣2,故答案为π﹣2.【点评】本题考查了扇形的面积公式,正确理解公式是关键.15.(3分)如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC 上,当△DCM为直角三角形时,折痕MN的长为或.【分析】依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.【解答】解:分两种情况:①如图,当∠CDM=90°时,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=,由折叠可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如图,当∠CMD=90°时,△CDM是直角三角形,由题可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=,∴AN=2,BN=,过N作NH⊥AM于H,则∠ANH=30°,∴AH=AN=1,HN=,由折叠可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案为:或.【点评】本题考查了翻折变换﹣折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题16.(8分)先化简,再求值:(﹣)÷,其中x满足x2﹣2x﹣2=0.【分析】先根据分式的混合运算顺序和运算法则化简原式,再由x2﹣2x﹣2=0得x2=2x+2=2(x+1),整体代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x2﹣2x﹣2=0,∴x2=2x+2=2(x+1),则原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.17.(9分)某校在一次社会实践活动中,组织学生参观了虎园、烈士陵园、博物馆和植物园,为了解本次社会实践活动的效果,学校随机抽取了部分学生,对“最喜欢的景点”进行了问卷调查,并根据统计结果绘制了如下不完整的统计图.其中最喜欢烈士陵园的学生人数与最喜欢博物馆的学生人数之比为2:1,请结合统计图解答下列问题:(1)本次活动抽查了60名学生;(2)请补全条形统计图;(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是36度;(4)该校此次参加社会实践活动的学生有720人,请求出最喜欢烈士陵园的人数约有多少人?【分析】(1)由虎园人数及其所占百分比可得总人数;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,根据各参观项目人数和等于总人数求得x的值,据此即可补全图形;(3)用360°乘以最喜欢植物园的学生人数占被调查人数的比例可得;(4)用总人数乘以样本中最喜欢烈士陵园的人数所占比例.【解答】解:(1)本次活动调查的学生人数为18÷30%=60人,故答案为:60;(2)设最喜欢博物馆的学生人数为x,则最喜欢烈士陵园的学生人数为2x,则x+2x=60﹣18﹣6,解得:x=12,即最喜欢博物馆的学生人数为12,则最喜欢烈士陵园的学生人数为24,补全条形图如下:(3)在扇形统计图中,最喜欢植物园的学生人数所对应扇形的圆心角是360°×=36°,故答案为:36;(4)最喜欢烈士陵园的人数约有720×=288人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,AB是半圆O的直径,点P是半圆上不与点A,B重合的动点,PC∥AB,点M是OP中点.(1)求证:四边形OBCP是平行四边形;(2)填空:①当∠BOP=120°时,四边形AOCP是菱形;②连接BP,当∠ABP=45°时,PC是⊙O的切线.【分析】(1)由AAS证明△CPM≌△AOM,得出PC=OA,得出PC=OB,即可得出结论;(2)①证出OA=OP=P A,得出△AOP是等边三角形,∠A=∠AOP=60°,得出∠BOP =120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【解答】(1)证明:∵PC∥AB,∴∠PCM=∠OAM,∠CPM=∠AOM.∵点M是OP的中点,∴OM=PM,在△CPM和△AOM中,,∴△CPM≌△AOM(AAS),∴PC=OA.∵AB是半圆O的直径,∴OA=OB,∴PC=OB.又PC∥AB,∴四边形OBCP是平行四边形.(2)解:①∵四边形AOCP是菱形,∴OA=P A,∵OA=OP,∴OA=OP=P A,∴△AOP是等边三角形,∴∠A=∠AOP=60°,∴∠BOP=120°;故答案为:120°;②∵PC是⊙O的切线,∴OP⊥PC,∠OPC=90°,∵PC∥AB,∴∠BOP=90°,∵OP=OB,∴△OBP是等腰直角三角形,∴∠ABP=∠OPB=45°,故答案为:45°.【点评】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.19.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【分析】延长CA交BE于点D,得CD⊥BE,设AD=x,得BD=x米,CD=(20+x)米,根据=tan∠DCB列方程求出x的值即可得.【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用﹣方向角问题,作出辅助线构造直角三角形是解题的关键.20.(9分)如图,已知反比例函数y=(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【分析】(1)根据待定系数法,将点的坐标分别代入两个函数的表达式中求出待定系数,可得答案;(2)利用△AOP的面积减去△AOQ的面积.【解答】解:(1)反比例函数y=(m≠0)的图象经过点(1,4),∴,解得m=4,故反比例函数的表达式为,一次函数y=﹣x+b的图象与反比例函数的图象相交于点Q(﹣4,n),∴,解得,∴一次函数的表达式y=﹣x﹣5;(2)由,解得或,∴点P(﹣1,﹣4),在一次函数y=﹣x﹣5中,令y=0,得﹣x﹣5=0,解得x=﹣5,故点A(﹣5,0),S△OPQ=S△OP A﹣S△OAQ==7.5.【点评】本题考查了反比例函数图象与一次函数图象的交点坐标问题,(1)用待定系数法求出函数表达式是解题的关键,(2)转化思想是解题关键,将三角形的面积转化成两个三角形的面积的差.21.(10分)“京东电器”准备购进A、B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A售价120元,B售价80元已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A台灯进行降价促销,A台灯每盏降价m(8<m <15),B的售价不变,超市如何进货获利最大?【分析】(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意,列出方程即可(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550,求即可(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000,分情况讨论即可.【解答】解:(1)设A品牌台灯进价为x元/盏,则B品牌台灯进价为(x﹣30)元/盏,根据题意得=,解得x=80,经检验x=80 是原分式方程的解.∴x﹣30=80﹣30=50(元/盏),答:A、B两种品牌台灯的进价分别是80 元/盏,50 元/盏(2)设超市购进A品牌台灯a盏,则购进B品牌台灯有(100﹣a)盏,根据题意得:3400≤(120﹣80)a+(80﹣50)(100﹣a)≤3550解得,40≤a≤55.∵a为整数,∴该超市有16 种进货方案(3)令超市销售台灯所获总利润记作w,根据题意,有w=(120﹣m﹣80)a+(80﹣50)(100﹣a)=(10﹣m)a+3000∵8<m<15∴①当8<m<10 时,即10﹣m>0,w随a的增大而增大,故当a=55 时,所获总利润w最大,即A品牌台灯55 盏、B品牌台灯45 盏;②当m=10 时,w=3000;故当A品牌台灯数量满足40≤a≤55时,利润均为3000元;③当10<m<15 时,即10﹣m<0,w随a的增大而减小,故当a=40 时,所获总利润w最大,即A品牌台灯40 盏、B品牌台灯60 盏【点评】此题为一次函数的应用,渗透了函数与方程的思想,关键是掌握销售利润公式:利润=(售价﹣成本)×数量.22.(10分)(1)问题发现在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC交AB于点F,将AD绕点D顺时针旋转α得到ED,连接BE.如图(1),当α=90°时,试猜想:①AF与BE的数量关系是AF=BE;②∠ABE=90°;(2)拓展探究如图(2),当0°<α<90°时,请判断AF与BE的数量关系及∠ABE的度数,并说明理由.(3)解决问题如图(3),在△ABC中,AC=BC,AB=8,∠ACB=α,点D在射线BC上,将AD绕点D顺时针旋转α得到ED,连接BE,当BD=3CD时,请直接写出BE的长度.【分析】(1)只要证明△ADF≌△EDB,可得AF=BE,再利用“8字型”字母∠OBE=∠ADO=90°即可解决问题;(2)结论:AF=BF,∠ABE=a.只要证明△ADF≌△EDB,即可解决问题;(3)分两种情形分别求解即可;【解答】解(1)如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,∴△ADF≌△EDB,∴AF=BE,∴∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为AF=BF,90°.(2)结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,又∵AD=DE,∴△ADF≌△EDB,∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)①如图3﹣1中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴==,∵AB=8,∴AF=2,∴BE=AF=2,②如图3﹣2中,当点D在BC的延长线上时,∵AC∥DF,∴==,∵AB=8,∴AF=4,故答案为2或4.【点评】本题考查几何变换综合题、等腰三角形的性质、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.23.(11分)如图,已知直线y=﹣3x+c与x轴相交于点A(1,0),与y轴相交于点B,抛物线y=﹣x2+bx+c经过点A,B,与x轴的另一个交点是C.(1)求抛物线的解析式;(2)点P是对称轴的左侧抛物线上的一点,当S△P AB=2S△AOB时,求点P的坐标;(3)连接BC抛物线上是否存在点M,使∠MCB=∠ABO?若存在,请直接写出点M的坐标;否则说明理由.【分析】(1)先把A点坐标代入y=﹣3x+c求出得到B(0,3),然后利用待定系数法求抛物线解析式;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),由于S△P AB=S△POB+S△ABO﹣S△POA,S△P AB=2S△AOB,则S△POB﹣S△POA=S△ABO,讨论:当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,然后分别解方程求出x即可得到对应P 点坐标;(3)解方程﹣x2﹣2x+3=0得C(﹣3,0),则可判断△OBC为等腰直角三角形,讨论:当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),表示出DE=BE=(3﹣t),接着利用tan∠MCB=tan∠ABO得到==,所以3﹣(3﹣t)=(3﹣t),解方程求出t得到D点坐标,接下来利用待定系数法确定直线CD的解析式为y=x+,然后解方程组得此时M点坐标;当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,设N(k,﹣3k+3),证明△ABC∽△ACN,利用相似比求出AN=,再利用两点间的距离公式得到(k﹣1)2+(﹣3k+3)2=()2,解方程求出t得N 点坐标为(﹣,),易得直线CN的解析式为y=2x+6,然后解方程组得此时M点坐标.【解答】解:(1)把A(1,0)代入y=﹣3x+c得﹣3+c=0,解得c=3,则B(0,3),把A(1,0),B(0,3)代入y=﹣x2+bx+c得,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)连接OP,如图1,抛物线的对称轴为直线x=﹣=﹣1,设P(x,﹣x2﹣2x+3)(x<﹣1),S△P AB=S△POB+S△ABO﹣S△POA,∵S△P AB=2S△AOB,∴S△POB﹣S△POA=S△ABO,当P点在x轴上方时,•3•(﹣x)﹣•1•(﹣x2﹣2x+3)=•1•3,解得x1=﹣2,x2=3(舍去),此时P点坐标为(﹣2,3);当P点在x轴下方时,•3•(﹣x)+•1•(x2+2x﹣3)=•1•3,解得x1=﹣2(舍去),x2=3(舍去),综上所述,P点坐标为(﹣2,3);(3)存在.当y=0时,﹣x2﹣2x+3=0,解得x1=﹣1,x2=﹣3,则C(﹣3,0),∵OC=OB=3,∴△OBC为等腰直角三角形,∴∠OBC=∠OCB=45°,BC=3,当∠BCM在直线BC下方时,如图2,直线CM交y轴于D,作DE⊥BC于E,设D(0,t),∵∠DBE=45°,∴△BDE为等腰直角三角形,∴DE=BE=BD=(3﹣t),∵∠MCB=∠ABO,∴tan∠MCB=tan∠ABO,∴==,即CE=3DE,∴3﹣(3﹣t)=(3﹣t),解得t=,则D(0,),设直线CD的解析式为y=mx+n,把C(﹣3,0),D(0,)代入得,解得,∴直线CD的解析式为y=x+,解方程组得或,此时M点坐标为(,);当∠BCM在直线CB上方时,如图3,CM交直线AB于N,易得直线AB的解析式为y=﹣3x+3,AB=,AC设N(k,﹣3k+3),∵∠MCB=∠ABO,∠CBO=∠OCB,∴∠NCA=∠ABC,而∠BAC=∠CAN,∴△ABC∽△ACN,∴AB:AC=AC:AN,即:4=4:AN,∴AN=,∴(k﹣1)2+(﹣3k+3)2=()2,整理得(k﹣1)2=,解得k1=(舍去),k2=﹣,∴N点坐标为(﹣,),易得直线CN的解析式为y=2x+6,解方程组,得或,此时M点坐标为(﹣1,4),综上所述,满足条件的M点的坐标为(,)或(﹣1,4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰直角三角形的性质;会利用待定系数法求函数解析式,能把求函数交点问题转化为解方程组的问题;灵活运用锐角三角函数的定义和相似比进行几何计算;理解坐标与图形性质,记住两点间的距离公式.中学数学二模模拟试卷一.选择题(每小题3分,共30分1.(3分)﹣的绝对值是()A.2B.C.﹣D.﹣22.(3分)俗话说:“水滴石穿”,水滴不断的落在一块石头的同一个位置,经过若干年后,石头上形成了一个深度为0.000000039cm的小洞,则0.000000039用科学记数法可表示为()A.3.9×10﹣8B.﹣3.9×10﹣8C.0.39×10﹣7D.39×10﹣9 3.(3分)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A.B.C.D.4.(3分)下列运算正确的是()A.a2+a2=a4B.a6÷a2=a3C.(﹣2a)3=﹣8a3D.(a+1)2=a2+15.(3分)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.(3分)在“经典诵读”比赛活动中,某校10名学生参赛成绩如图所示,对于这10名学生的参赛成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°。

青岛市2020年中考数学模拟试卷(一)(有答案)

青岛市2020年中考数学模拟试卷(一)(有答案)

山东省青岛市2020年中考数学模拟试卷(一)(解析版)一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2B.﹣5C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.2020年某市加大财政支农力度,为了响应中央号召,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.48.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张sin15°≈0.26,角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴∴=,=.=.=.同理,过点A作AH⊥BC于H,可证∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=.②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC.24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2020年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2B.﹣5C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.2020年某市加大财政支农力度,为了响应中央号召,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×107元 C.523×108元D.5.23×108元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:53200万=5.23×108,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5B.96,95C.95,94.5D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.18个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有80次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.=12(个).【解答】解:3故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,故答案为﹣﹣=2.=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.OB.【解答】解:连接OA,根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=故答案为:25.=25°,【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,74分)16.(8分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.可得到两直线的交点坐标;【分析】(1)通过解方程组(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式==••=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.17.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张sin15°≈0.26,角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:cos15°≈0.97,tan15°≈0.27,sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.97≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(8分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(8分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤180;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣180)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1800﹣60=1340,解得x的值,根据100≤x ≤180,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:解得k=﹣∴y=﹣,,b=30,x+30,100≤x≤180;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣180)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为180元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1800,则﹣x2+36x﹣1800﹣60=1340,解得x1=200,x2=160,∵100≤x≤180,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=∴∴,sinB=.=CD.=CD,=.同理,过点A作AH⊥BC于H,可证=.。

山东青岛2020年中考数学模拟试卷 二(含答案)

山东青岛2020年中考数学模拟试卷 二(含答案)

山东青岛2020年中考数学模拟试卷二一、选择题1.81的算术平方根是( )A.9B.±9C.3D.±32.下列图形中,是中心对称图形的是( )3.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( )A.0.2×107B.2×107C.0.2×108D.2×1084.下列运算中,正确的是( )A.a2+a3=a5B.a6÷a3=a2C.(a4)2=a6D.a+a=2a5.如图,AC是⊙O的直径,∠BAC=20°,P是弧AB的中点,则∠PAB等于()A.35°B.40°C.60°D.70°6.已知Q(2x+4,x2-1)在y轴上,则点Q的坐标为( )A.(0,4)B.(4,0)C.(0,3)D.(3,0)7.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是( )A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°8.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0.其中错误结论的个数是( )A.1 B.2 C.3 D.4二、填空题9.计算+= (结果用根号表示)10.已知方程x2+kx﹣2=0的一个根是1,则另一个根是 ,k的值是 .11.如图是甲、乙两名射击运动员10次射击成绩的统计表和折线统计图.你认为甲、乙两名运动员, 的射击成绩更稳定.(填甲或乙)12.如图,四边形ABCD内接于⊙O,∠A=115°,则∠BOD等于°.13.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF= .14.计算:①;②;③④,观察你计算的结果,用你发现的规律直接写出下面式子的值= .三、计算题15.化简:.16.解不等式组并把解集在数轴上表示出来.四、作图题17.如图,已知△ABC三个顶点的坐标分别为A(﹣2,﹣4),B(0,﹣4),C(1,﹣1)(1)请在网格中,画出线段BC关于原点对称的线段B1C1;(2)请在网格中,过点C画一条直线CD,将△ABC分成面积相等的两部分,与线段AB相交于点D,写出点D的坐标;(3)若另有一点P(﹣3,﹣3),连接PC,则tan∠BCP= .五、解答题18.某商场在今年“十·一”国庆节举行了购物摸奖活动.摸奖箱里有四个标号分别为1,2,3,4的质地、大小都相同的小球,任意摸出一个小球,记下小球的标号后,放回箱里并摇匀,再摸出一个小球,又记下小球的标号.商场规定:两次摸出的小球的标号之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客李老师参加此次摸奖活动时中奖的概率.19.某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.20.如图,水库大坝的横断面为四边形ABCD,其中AD∥BC,坝顶BC=10米,坝高20米,斜坡AB的坡度i=1:2.5,斜坡CD的坡角为30°.(1)求坝底AD的长度(结果精确到1米);(2)若坝长100米,求建筑这个大坝需要的土石料(参考数据:)21.某一公路的道路维修工程,准备从甲、乙两个工程队选一个队单独完成.根据两队每天的工程费用和每天完成的工程量可知,若由两队合做此项维修工程,6天可以完成,共需工程费用385200元,若单独完成此项维修工程,甲队比乙队少用5天,每天的工程费用甲队比乙队多4000元,从节省资金的角度考虑,应该选择哪个工程队?22.如图,已知△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.23.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?六、综合题24.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是上的动点,且不与点A、C、B重合,直线AM交直线OC于点D,连结OM与CM.(1)若半圆的半径为10.①当∠AOM=60°时,求DM的长;②当AM=12时,求DM的长.(2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.25.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案1.答案为:A.2.答案为:A.3.答案为:B;4.D.5.A6.C.7.B8.答案为:A9.答案为:5.10.答案为:x1=﹣2,k=1.11.答案为:乙.12.答案为:130.13.解;如图1中,∵四边形ABCD是正方形,∴AD=BC=5,AB=CD=3,∠ABC=∠C=∠ABE=90°,AD∥EC∵AE=AD=5,∴∠AED=∠ADE=∠DEC,在RT△ABE中,∵AE=5,AB=3,∴EB=4,在△EDF和△EDC中,△EDF≌△EDC∴EF=EC=EB+BC=9.如图2中,∵AD=AE=5,AB=3,∴BE=4,∴EC=1,∵AD∥BC,∴∠ADE=∠DEC=∠AED,在△EDF和△EDC中,∴△DEF≌△DEC,∴EF=EC=1,综上所述EF=9或1.故答案为9或1.14.答案为:406;15.原式=16.答案为:-2<x≤1.17.解:如图:(1)作出线段B1、C1连接即可;(2)画出直线CD,点D坐标为(﹣1,﹣4),(3)连接PB,∵PB2=BC2=12+32=10,PC2=22+42=20,∴PB2+BC2=PC2,∴△PBC为等腰直角三角形,∴∠PCB=45°,∴tan∠BCP=1,故答案为1.18.解:P (两次摸出的小球的标号之和为“8”或“6”)=41.19.解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B 等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D 等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C 等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A 等级的学生人数=1500×32%=480人.20.解:(1)作BE ⊥AD 于E ,CF ⊥AD 于F ,则四边形BEFC 是矩形,∴EF=BC=10米,∵BE=20米,斜坡AB 的坡度i=1:2.5,∴AE=50米,∵CF=20米,斜坡CD 的坡角为30°,∴DF==20≈35米,∴AD=AE+EF+FD=95米;(2)建筑这个大坝需要的土石料:×(95+10)×20×100=105000米3.21.解:设甲队单独完成此项工程需要x 天,乙队单独完成需要(x+5)天.依据题意可列方程: +=,解得:x 1=10,x 2=﹣3(舍去).经检验:x=10是原方程的解.设甲队每天的工程费为y元.依据题意可列方程:6y+6(y﹣4000)=385200,解得:y=34100.甲队完成此项工程费用为34100×10=341000元.乙队完成此项工程费用为30100×15=451500元.答:从节省资金的角度考虑,应该选择甲工程队.22.ED=1,提示:延长BE,交AC于F点.23.解:(1)当0≤x≤30时,y=2.4;当30≤x≤70时,设y=kx+b,把(30,2.4),(70,2)代入得,解得,∴y=﹣0.01x+2.7;当70≤x≤100时,y=2;(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;当70≤x≤100时,w=2x﹣(x+1)=x﹣1;(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,当x=30时,w′的最大值为32,不合题意;当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,当x=70时,w′的最大值为48,不合题意;当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,所以产量至少要达到80吨.24.解:25.解:(1)设OA所在直线的函数解析式为y=kx,∵A(2,4),∴2k=4,∴k=2,∴OA所在直线的函数解析式为y=2x.(2)①∵顶点M的横坐标为m,且在线段OA上移动,∴y=2m(0≤m≤2).∴顶点M的坐标为(m,2m).∴抛物线函数解析式为y=(x﹣m)2+2m.∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2).∴点P的坐标是(2,m2﹣2m+4).②∵PB=m2﹣2m+4=(m﹣1)2+3,又∵0≤m≤2,∴当m=1时,PB最短.(3)当线段PB最短时,此时抛物线的解析式为y=(x﹣1)2+2即y=x2﹣2x+3.假设在抛物线上存在点Q,使S△QMA=S△PMA.设点Q的坐标为(x,x2﹣2x+3).①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C,∵PB=3,AB=4,∴AP=1,∴OC=1,∴C点的坐标是(0,﹣1).∵点P的坐标是(2,3),∴直线PC的函数解析式为y=2x﹣1.∵S△QMA=S△PMA,∴点Q落在直线y=2x﹣1上.∴x2﹣2x+3=2x﹣1.解得x1=2,x2=2,即点Q(2,3).∴点Q与点P重合.∴此时抛物线上不存在点Q(2,3),使△QMA与△APM的面积相等.②当点Q落在直线OA的上方时,作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E,∵AP=1,∴EO=DA=1,∴E、D的坐标分别是(0,1),(2,5),∴直线DE函数解析式为y=2x+1.∵S△QMA=S△PMA,∴点Q落在直线y=2x+1上.∴x2﹣2x+3=2x+1.解得:x1=2+,x2=2﹣.代入y=2x+1得:y1=5+2,y2=5﹣2.∴此时抛物线上存在点Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA的面积相等.综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2﹣,5﹣2)使△QMA与△PMA的面积相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.5的相反数是( )A .55B .﹣5C .﹣55 D .52.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约亿千克,这个数用科学记数法应表示为( ) A .×1011 B .×1010C .×1011D .×10103.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分. A .85B .86C .87D .884. 若以A ,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限5. 图①是由五个完全相同的小正方体组成的立方体图形,将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是( )A. 主视图B. 俯视图C. 左视图D. 主视图、俯视图和左视图都改变 6.如图,已知∠ABC =∠DCB ,添加以下条件,不能判定△ABC ≌△DCB 的是( )A .∠A =∠DB .∠ACB =∠DBC C .AC =DBD .AB =DC7. 若反比例函数y =(k ≠0)的图象经过点P (2,﹣3),则该函数的图象不经过的点是( ) A .(3,﹣2)B .(1,﹣6)C .(﹣1,6)D .(﹣1,﹣6)8.若圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为( ) A .30πcm2B .60πcm2C .48πcm2D .80πcm29.将1.2.3三个数字随机生成的点的坐标列成下表.如果每个点出现的可能性相等,那么从中任意取一点,这个点在函数y=x 图象上的概率是( )A.0.3B.0.5C.31 D.3210.如图1,点P 从矩形ABCD 的顶点A 出发沿A →B →C 以2cm /s 的速度匀速运动到点C ,图2是点P 运动时,△APD 的面积y (cm 2)随运动时间x (s )变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .48C .32D .2411.如图,AB 是⊙O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交⊙O 于点D ,∠BAC 的平分线交CD 于点E .当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是( ) A .2 B .2C .23 D .2512. 函数y=4x-1和y=x-1在第一象限内的图象如图,点P 是y=4x-1的图象上一动点,PC ⊥x 轴于点C ,交y=x-1的图象于点A ,PD ⊥y 轴于D ,交y=x-1的图象于点B ,给出如下4个结论:①△ ODB 与△OCA 的面积相等; ②线段PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④3CA=AP .其中正确的结论是( )A.①②③B.①②④C.②③④D.①③④二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

) 13.在△ABC 中,∠B =45°,cosA =12,则∠C 的度数是________. 14. 不等式2+9≥3(+2)的正整数解是_______.15.把命题“平行于同一条直线的两条直线互相平行”改写成“如果…,那么…”的形式为_______. 16.如图,在边长为6cm 的正方形ABCD 中,点E 、F 、G 、H 分别从点A 、B 、C 、D 同时出发,均以1cm /s 的速度向点B 、C 、D 、A 匀速运动,当点E 到达点B 时,四个点同时停止运动,在运动过程中,当运动时间为 s 时,四边形EFGH 的面积最小,其最小值是 cm 2.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边AC 上两点,且∠DAE =45°,若BE =4,CD =3,则AB 的长为 .18.如图,点A 在双曲线y =上,点B 在双曲线y =(k ≠0)上,AB ∥x 轴,过点A 作AD ⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC =2CD ,则k 的值为 . 三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

) 19.(6分)先化简,再求值:(1﹣x +)÷,其中x =tan45°+()﹣1.20.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点分别为A (﹣1,﹣1)、B (﹣3,3)、C (﹣4,1)(1)画出△ABC 关于y 轴对称的△A 1B 1C 1,并写出点B 的对应点B 1的坐标;(2)画出△ABC 绕点A 按顺时针旋转90°后的△AB 2C 2,并写出点C 的对应点C 2的坐标.21.(10分)进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息解决下列问题:(1)这次学校抽查的学生人数是;(2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人22.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,E在同一直线上).(cos80°≈,sin80°≈,≈)(1)此时小强头部E点与地面DK相距多少(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少23.(10分)某市一种出租车起步价是5元(路程在3km以内均付5元),达到或超过3km,每增加0.5km加价元(不足0.5km按0.5km计).某乘客坐这种出租车从甲地到乙地,下车时付车费元,那么甲地到乙地的路程是多少24. (10分)如图,正方形ABCD边长为4,点O在对角线DB上运动(不与点B,D重合),连接OA,作OP⊥OA,交直线BC于点P.(1)判断线段OA,OP的数量关系,并说明理由.(2)当OD=时,求CP的长.(3)设线段DO,OP,PC,CD围成的图形面积为S1,△AOD的面积为S2,求S1﹣S2的最值.25.(12分)如图1,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C(0,﹣2),顶点为D,对称轴交x轴于点E.(1)求该二次函数的解析式;(2)设M为该抛物线对称轴左侧上的一点,过点M作直线MN∥x轴,交该抛物线于另一点N.是否存在点M,使四边形DMEN是菱形若存在,请求出点M的坐标;若不存在,请说明理由;(3)连接CE(如图2),设点P是位于对称轴右侧该抛物线上一点,过点P作PQ⊥x轴,垂足为Q.连接PE,请求出当△PQE与△COE相似时点P的坐标.参考答案一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

)13. °14. 1,2,3 15. “如果两条直线平行于同一条直线,那么这两条直线平行”.16. 3;18 17. 6218. 12 18.三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

)19. (6分)解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.20. (8分)解:(1)如图(1)所示,△A1B1C1即为所求,其中B1的坐标为(3,3).(2)如图(2)所示,△AB2C2即为所求,C2的坐标为(1,2).21.(10分)解:(1)这次学校抽查的学生人数是12÷30%=40(人),故答案为:40人;(2)C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图补充为:(3)估计全校报名军事竞技的学生有1000×=100(人).22. (10分)解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100•sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66•cos45°=33≈,∴MN=FN+FM≈,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66•sin45°≈,∴PH≈,∵GN=100•cos80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣=≈,∴他应向前9.5cm.23. (10分)解:设从甲地到乙地的路程是xkm,根据题意,得:﹣<5+(x﹣3)≤,解得:<x≤10,答:甲地到乙地的路程大于9.5km且不超过10km.24. (10分)解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD=S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.25.(12分)解:(1)设抛物线解析式为y=a(x+1)(x﹣3),将点C(0,﹣2)代入,得:﹣3a=﹣2,解得a=,则抛物线解析式为y=(x+1)(x﹣3)=x2﹣x﹣2;(2)∵y=x2﹣x﹣2=(x﹣1)2﹣,∴顶点D(1,﹣),即DE=,∵四边形DMEN是菱形,∴点M的纵坐标为﹣,则x2﹣x﹣2=﹣,解得x=1±,∵M为该抛物线对称轴左侧上的一点,∴x<1,则x=1﹣,∴点M坐标为(1﹣,﹣);(3)∵C(0,﹣2),E(1,0),∴OC=2,OE=1,如图,设P(m,m2﹣m﹣2)(m>1),则PQ=|m2﹣m﹣2|,EQ=m﹣1,①若△COE∽△PQE,则=,即=,解得m=0(舍)或m=5或m=2或m=﹣3(舍),此时点P坐标为(5,8)或(2,﹣2);②若△COE∽△EQP,则=,即=,解得m=(负值舍去)或m=,此时点P的坐标为(,)或(,);综上,点P的坐标为(5,8)或(2,﹣2)或(,)或(,).—。

相关文档
最新文档